Search results for: approximate nearest neighbor search
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2571

Search results for: approximate nearest neighbor search

1821 A Systematic Review on Prevalence, Serotypes and Antibiotic Resistance of Salmonella in Ethiopia

Authors: Atsebaha Gebrekidan Kahsay, Tsehaye Asmelash, Enquebaher Kassaye

Abstract:

Background: Salmonella remains a global public health problem with a significant burden in sub-Saharan African countries. Human restricted cause of typhoid and paratyphoid fever are S. Typhi and S. Paratyphi, whereas S. Enteritidis and S. Typhimurium is the causative agent of invasive nontyphoidal diseases among humans and animals are their reservoir. The antibiotic resistance of Salmonella is another public health threat around the globe. To come up with full information about human and animal salmonellosis, we made a systematic review of the prevalence, serotypes, and antibiotic resistance of Salmonella in Ethiopia. Methods: This systematic review used Google Scholar and PubMed search engines to search articles from Ethiopia that were published in English in peer-reviewed international journals from 2010 to 2022. We used keywords to identify the intended research articles and used a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist to ensure the inclusion and exclusion criteria. Frequencies and percentages were analyzed using Microsoft Excel. Results: Two hundred seven published articles were searched, and 43 were selected for a systematic review, human (28) and animals (15). The prevalence of Salmonella in humans and animals was 434 (5.2%) and 641(10.1%), respectively. Fourteen serotypes were identified from animals, and S. Typhimurium was among the top five. Among the ciprofloxacin-resistant isolates in human studies, 16.7% was the highest, whereas, for ceftriaxone, 100% resistance was reported. Conclusions: The prevalence of Salmonella among diarrheic patients and food handlers (5.2%) was lower than the prevalence in food animals (10.1%). We did not find serotypes of Salmonella in human studies, although fourteen serotypes were included in food-animal studies, and S. Typhimurium was among the top five. Salmonella species from some human studies revealed a non-susceptibility to ceftriaxone. We recommend further study about invasive nontyphoidal Salmonella and predisposing factors among humans and animals in Ethiopia.

Keywords: antibiotic resistance, prevalence, systematic review, serotypes, Salmonella, Ethiopia

Procedia PDF Downloads 81
1820 Elastic Deformation of Multistory RC Frames under Lateral Loads

Authors: Hamdy Elgohary, Majid Assas

Abstract:

Estimation of lateral displacement and interstory drifts represent a major step in multistory frames design. In the preliminary design stage, it is essential to perform a fast check for the expected values of lateral deformations. This step will help to ensure the compliance of the expected values with the design code requirements. Also, in some cases during or after the detailed design stage, it may be required to carry fast check of lateral deformations by design reviewer. In the present paper, a parametric study is carried out on the factors affecting in the lateral displacements of multistory frame buildings. Based on the results of the parametric study, simplified empirical equations are recommended for the direct determination of the lateral deflection of multistory frames. The results obtained using the recommended equations have been compared with the results obtained by finite element analysis. The comparison shows that the proposed equations lead to good approximation for the estimation of lateral deflection of multistory RC frame buildings.

Keywords: lateral deflection, interstory drift, approximate analysis, multistory frames

Procedia PDF Downloads 271
1819 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 112
1818 Offline Signature Verification Using Minutiae and Curvature Orientation

Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee

Abstract:

A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.

Keywords: signature, ridge breaks, minutiae, orientation

Procedia PDF Downloads 146
1817 The Location-Routing Problem with Pickup Facilities and Heterogeneous Demand: Formulation and Heuristics Approach

Authors: Mao Zhaofang, Xu Yida, Fang Kan, Fu Enyuan, Zhao Zhao

Abstract:

Nowadays, last-mile distribution plays an increasingly important role in the whole industrial chain delivery link and accounts for a large proportion of the whole distribution process cost. Promoting the upgrading of logistics networks and improving the layout of final distribution points has become one of the trends in the development of modern logistics. Due to the discrete and heterogeneous needs and spatial distribution of customer demand, which will lead to a higher delivery failure rate and lower vehicle utilization, last-mile delivery has become a time-consuming and uncertain process. As a result, courier companies have introduced a range of innovative parcel storage facilities, including pick-up points and lockers. The introduction of pick-up points and lockers has not only improved the users’ experience but has also helped logistics and courier companies achieve large-scale economy. Against the backdrop of the COVID-19 of the previous period, contactless delivery has become a new hotspot, which has also created new opportunities for the development of collection services. Therefore, a key issue for logistics companies is how to design/redesign their last-mile distribution network systems to create integrated logistics and distribution networks that consider pick-up points and lockers. This paper focuses on the introduction of self-pickup facilities in new logistics and distribution scenarios and the heterogeneous demands of customers. In this paper, we consider two types of demand, including ordinary products and refrigerated products, as well as corresponding transportation vehicles. We consider the constraints associated with self-pickup points and lockers and then address the location-routing problem with self-pickup facilities and heterogeneous demands (LRP-PFHD). To solve this challenging problem, we propose a mixed integer linear programming (MILP) model that aims to minimize the total cost, which includes the facility opening cost, the variable transport cost, and the fixed transport cost. Due to the NP-hardness of the problem, we propose a hybrid adaptive large-neighbourhood search algorithm to solve LRP-PFHD. We evaluate the effectiveness and efficiency of the proposed algorithm by using instances generated based on benchmark instances. The results demonstrate that the hybrid adaptive large neighbourhood search algorithm is more efficient than MILP solvers such as Gurobi for LRP-PFHD, especially for large-scale instances. In addition, we made a comprehensive analysis of some important parameters (e.g., facility opening cost and transportation cost) to explore their impacts on the results and suggested helpful managerial insights for courier companies.

Keywords: city logistics, last-mile delivery, location-routing, adaptive large neighborhood search

Procedia PDF Downloads 78
1816 A Critical Review and Bibliometric Analysis on Measures of Achievement Motivation

Authors: Kanupriya Rawat, Aleksandra Błachnio, Paweł Izdebski

Abstract:

Achievement motivation, which drives a person to strive for success, is an important construct in sports psychology. This systematic review aims to analyze the methods of measuring achievement motivation used in previous studies published over the past four decades and to find out which method of measuring achievement motivation is the most prevalent and the most effective by thoroughly examining measures of achievement motivation used in each study and by evaluating most highly cited achievement motivation measures in sport. In order to understand this latent construct, thorough measurement is necessary, hence a critical evaluation of measurement tools is required. The literature search was conducted in the following databases: EBSCO, MEDLINE, APA PsychARTICLES, Academic Search Ultimate, Open Dissertations, ERIC, Science direct, Web of Science, as well as Wiley Online Library. A total of 26 articles met the inclusion criteria and were selected. From this review, it was found that the Achievement Goal Questionnaire- Sport (AGQ-Sport) and the Task and Ego Orientation in Sport Questionnaire (TEOSQ) were used in most of the research, however, the average weighted impact factor of the Achievement Goal Questionnaire- Sport (AGQ-Sport) is the second highest and most relevant in terms of research articles related to the sport psychology discipline. Task and Ego Orientation in Sport Questionnaire (TEOSQ) is highly popular in cross-cultural adaptation but has the second last average IF among other scales due to the less impact factor of most of the publishing journals. All measures of achievement motivation have Cronbach’s alpha value of more than .70, which is acceptable. The advantages and limitations of each measurement tool are discussed, and the distinction between using implicit and explicit measures of achievement motivation is explained. Overall, both implicit and explicit measures of achievement motivation have different conceptualizations of achievement motivation and are applicable at either the contextual or situational level. The conceptualization and degree of applicability are perhaps the most crucial factors for researchers choosing a questionnaire, even though they differ in their development, reliability, and use.

Keywords: achievement motivation, task and ego orientation, sports psychology, measures of achievement motivation

Procedia PDF Downloads 96
1815 Bioinformatics Identification of Rare Codon Clusters in Proteins Structure of HBV

Authors: Abdorrasoul Malekpour, Mohammad Ghorbani Mojtaba Mortazavi, Mohammadreza Fattahi, Mohammad Hassan Meshkibaf, Ali Fakhrzad, Saeid Salehi, Saeideh Zahedi, Amir Ahmadimoghaddam, Parviz Farzadnia Dr., Mohammadreza Hajyani Asl Bs

Abstract:

Hepatitis B as an infectious disease has eight main genotypes (A–H). The aim of this study is to Bioinformatically identify Rare Codon Clusters (RCC) in proteins structure of HBV. For detection of protein family accession numbers (Pfam) of HBV proteins; used of uni-prot database and Pfam search tool were used. Obtained Pfam IDs were analyzed in Sherlocc program and RCCs in HBV proteins were detected. In further, the structures of TrEMBL entries proteins studied in PDB database and 3D structures of the HBV proteins and locations of RCCs were visualized and studied using Swiss PDB Viewer software. Pfam search tool have found nine significant hits and 0 insignificant hits in 3 frames. Results of Pfams studied in the Sherlocc program show this program not identified RCCs in the external core antigen (PF08290) and truncated HBeAg protein (PF08290). By contrast the RCCs become identified in Hepatitis core antigen (PF00906) Large envelope protein S (PF00695), X protein (PF00739), DNA polymerase (viral) N-terminal domain (PF00242) and Protein P (Pf00336). In HBV genome, seven RCC identified that found in hepatitis core antigen, large envelope protein S and DNA polymerase proteins and proteins structures of TrEMBL entries sequences that reported in Sherlocc program outputs are not complete. Based on situation of RCC in structure of HBV proteins, it suggested those RCCs are important in HBV life cycle. We hoped that this study provide a new and deep perspective in protein research and drug design for treatment of HBV.

Keywords: rare codon clusters, hepatitis B virus, bioinformatic study, infectious disease

Procedia PDF Downloads 488
1814 A Novel Multi-Objective Park and Ride Control Scheme Using Renewable Energy Sources: Cairo Case Study

Authors: Mohammed Elsayed Lotfy Elsayed Abouzeid, Tomonobu Senjyu

Abstract:

A novel multi-objective park and ride control approach is presented in this research. Park and ride will encourage the owners of the vehicles to leave their cars in the nearest points (on the edges of the crowded cities) and use public transportation facilities (train, bus, metro, or mon-rail) to reach their work inside the crowded city. The proposed control scheme is used to design electric vehicle charging stations (EVCS) to charge 1000 electric vehicles (EV) during their owners' work time. Cairo, Egypt is used as a case study. Photovoltaic (PV) and battery energy storage system (BESS) are used to meet the EVCS demand. Two multi-objective optimization techniques (MOGA and epsilon-MOGA) are utilized to get the optimal sizes of PV and BESS so as to meet the load demand and minimize the total life cycle cost. Detailed analysis and comparison are held to investigate the performance of the proposed control scheme using MATLAB.

Keywords: Battery Energy Storage System, Electric Vehicle, Park and Ride, Photovoltaic, Multi-objective

Procedia PDF Downloads 144
1813 Primary Resonance in Vortex-Induced Vibration of a Pipeline Close to a Plane Boundary

Authors: Yiming Jin, Ping Dong

Abstract:

The primary resonance of a pipeline close to a plane boundary is investigated in this paper. Based on classic Van der Pol equation and added a nonlinear item, a new wake oscillator model is proposed to predict the vortex-induced vibration (VIV) of a circular cylinder close to a plane boundary. Then, with the multi-scale method, the approximate solution for the case of the primary resonance is obtained. Besides, to study the characteristic of the primary resonance, the effects of the mass ration, frequency, damp ratio and gap ratio on the frequency-response curves of the pipeline are analysed. On the whole, the trend of the numerical results match up with that of the experimental data well and the mass ration, frequency, damp ratio and gap ratio play an important role in the vortex-induced vibration (VIV) of a circular cylinder close to a plane boundary, especially, the smaller is the mass ratio, the larger impact the gap ratio has on the frequency-response curves of the primary resonance.

Keywords: primary resonance, gap ratio, vortex-induced vibration, multi-scale method

Procedia PDF Downloads 372
1812 Experimenting the Influence of Input Modality on Involvement Load Hypothesis

Authors: Mohammad Hassanzadeh

Abstract:

As far as incidental vocabulary learning is concerned, the basic contention of the Involvement Load Hypothesis (ILH) is that retention of unfamiliar words is, generally, conditional upon the degree of involvement in processing them. This study examined input modality and incidental vocabulary uptake in a task-induced setting whereby three variously loaded task types (marginal glosses, fill-in-task, and sentence-writing) were alternately assigned to one group of students at Allameh Tabataba’i University (n=2l) during six classroom sessions. While one round of exposure was comprised of the audiovisual medium (TV talk shows), the second round consisted of textual materials with approximately similar subject matter (reading texts). In both conditions, however, the tasks were equivalent to one another. Taken together, the study pursued the dual objectives of establishing a litmus test for the ILH and its proposed values of ‘need’, ‘search’ and ‘evaluation’ in the first place. Secondly, it sought to bring to light the superiority issue of exposure to audiovisual input versus the written input as far as the incorporation of tasks is concerned. At the end of each treatment session, a vocabulary active recall test was administered to measure their incidental gains. Running a one-way analysis of variance revealed that the audiovisual intervention yielded higher gains than the written version even when differing tasks were included. Meanwhile, task 'three' (sentence-writing) turned out the most efficient in tapping learners' active recall of the target vocabulary items. In addition to shedding light on the superiority of audiovisual input over the written input when circumstances are relatively held constant, this study for the most part, did support the underlying tenets of ILH.

Keywords: Keywords— Evaluation, incidental vocabulary learning, input mode, Involvement Load Hypothesis, need, search.

Procedia PDF Downloads 279
1811 Explicit Iterative Scheme for Approximating a Common Solution of Generalized Mixed Equilibrium Problem and Fixed Point Problem for a Nonexpansive Semigroup in Hilbert Space

Authors: Mohammad Farid

Abstract:

In this paper, we introduce and study an explicit iterative method based on hybrid extragradient method to approximate a common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. Further, we prove that the sequence generated by the proposed iterative scheme converge strongly to the common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup. This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results presented in this paper are the supplement, extension and generalization of the previously known results in this area.

Keywords: generalized mixed equilibrium problem, fixed-point problem, nonexpansive semigroup, variational inequality problem, iterative algorithms, hybrid extragradient method

Procedia PDF Downloads 475
1810 Nucleotide Diversity and Bacterial Endosymbionts of the Black Cherry Aphid Myzus cerasi (Fabricus, 1775) (Hemiptera: Aphididae) from Turkey

Authors: Burcu Inal, Irfan Kandemir

Abstract:

Sequences of mitochondrial cytochrome oxidase I (COI) gene of twenty-five Turkish and one Greek Myzus cerasi (Fabricus) (Hemiptera: Aphididae) in populations were collected from Prunus avium and Prunus cerasus. The partial coding region of COI studied is 605 bp for all the populations, from which 565 nucleotides were conserved, 40 were variable, 37 were singleton, and 3 sites were parsimony-informative. Four haplotypes were identified based on nucleotide substitutions, and the mean of intraspecific divergence was calculated to be 0.3%. Phylogenetic trees were constructed using Maximum Likelihood, Minimum Evolution, Neighbor-joining, and Unweighed Pair Group Method of Arithmetic Averages (UPGMA) and Myzus persicae (Sulzer) and Myzus borealis Ossiannilson were included as outgroups. The population of M. cerasi from Isparta diverged from the rest of the groups and formed a clade (Haplotype B) with Myzus borealis. The rest of the haplotype diversity includes Haplotype A and Haplotype C with individuals characterized as Myzus cerasi pruniavium and Haplotype D with Myzus cerasi cerasi. M. cerasi diverge into two subspecies and it must be reevaluated whether this pest is monophagous or oligophagous in terms of plant type dependence. The obligated endosymbiont Buchnera aphidicola was also found during this research, but no facultative symbionts could be found. It is expected further studies will be required for a complete barcoding and diversity of bacterial endosymbionts present.

Keywords: bacterial endosymbionts, barcoding, black cherry aphid, nucleotide diversity

Procedia PDF Downloads 173
1809 Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets

Authors: Suraka Bhattacharjee, Ranjan Chaudhury

Abstract:

The interaction between the charge degrees of freedom for itinerant antiferromagnets is investigated in terms of generalized charge stiffness constant corresponding to nearest neighbour t-J model and t1-t2-t3-J model. The low dimensional hole doped antiferromagnets are the well known systems that can be described by the t-J-like models. Accordingly, we have used these models to investigate the fermionic pairing possibilities and the coupling between the itinerant charge degrees of freedom. A detailed comparison between spin and charge couplings highlights that the charge and spin couplings show very similar behaviour in the over-doped region, whereas, they show completely different trends in the lower doping regimes. Moreover, a qualitative equivalence between generalized charge stiffness and effective Coulomb interaction is also established based on the comparisons with other theoretical and experimental results. Thus it is obvious that the enhanced possibility of fermionic pairing is inherent in the reduction of Coulomb repulsion with increase in doping concentration. However, the increased possibility can not give rise to pairing without the presence of any other pair producing mechanism outside the t-J model. Therefore, one can conclude that the t-J-like models themselves solely are not capable of producing conventional momentum-based superconducting pairing on their own.

Keywords: generalized charge stiffness constant, charge coupling, effective Coulomb interaction, t-J-like models, momentum-space pairing

Procedia PDF Downloads 159
1808 Study of the Biochemical Properties of the Protease Coagulant Milk Extracted from Sunflower Cake: Manufacturing Test of Cheeses Uncooked Dough Press and Analysis of Sensory Properties

Authors: Kahlouche Amal, Touzene F. Zohra, Betatache Fatihaet Nouani Abdelouahab

Abstract:

The development of the world production of the cheese these last decades, as well as agents' greater request cheap coagulants, accentuated the search for new surrogates of the rennet. What about the interest to explore the vegetable biodiversity, the source well cheap of many naturals metabolites that the scientists today praise it (thistle, latex of fig tree, Cardoon, seeds of melon). Indeed, a big interest is concerned the search for surrogates of vegetable origin. The objective of the study is to show the possibility of extracting a protease coagulant the milk from the cake of Sunflower, available raw material and the potential source of surrogates of rennet. so, the determination of the proteolytic activity of raw extracts, the purification, the elimination of the pigments of tint of the enzymatic preparations, a better knowledge of the coagulative properties through study of the effect of certain factors (temperature, pH, concentration in CaCl2) are so many factors which contribute to value milk particularly those produced by the small ruminants of the Algerian dairy exploitations. Otherwise, extracts coagulants of vegetable origin allowed today to value traditional, in addition, although the extract coagulants of vegetable origin made it possible today to develop traditional cheeses whose Iberian peninsula is the promoter, but the test of 'pressed paste not cooked' cheese manufacturing led to the semi-scale pilot; and that, by using the enzymatic extract of sunflower (Helianthus annus) which gave satisfactory results as well to the level of outputs as on the sensory level,which, statistically,did not give any significant difference between studied cheeses. These results confirm the possibility of use of this coagulase as a substitute of rennet commercial on an industrial scale.

Keywords: characterization, cheese, Rennet, sunflower

Procedia PDF Downloads 351
1807 Acculturation Impact on Mental Health Among Arab Americans

Authors: Sally Kafelghazal

Abstract:

Introduction: Arab Americans, who include immigrants, refugees, or U.S. born persons of Middle Eastern or North African descent, may experience significant difficulties during acculturation to Western society. Influential stressors include relocation, loss of social support, language barriers, and economic factors, all of which can impact mental health. There is limited research investigating the effects of acculturation on the mental health of the Arab American population. Objectives: The purpose of this study is to identify ways in which acculturation impacts the mental health of Arab Americans, specifically the development of depression and anxiety. Method: A literature search was conducted using PubMed and PsycArticles (ProQuest), utilizing the following search terms: “Arab Americans,” “Arabs,” “mental health,” “depression,” “anxiety,” “acculturation.” Thirty-nine articles were identified and of those, nine specifically investigated the relationship between acculturation and mental health in Arab Americans. Three of the nine focused exclusively on depression. Results: Several risk factors were identified that contribute to poor mental health associated with acculturation, which include immigrant or refugee status, facing discrimination, and religious ideology. Protective factors include greater levels of acculturation, being U.S. born, and greater heritage identity. Greater mental health disorders were identified in Arab Americans compared to normative samples, perhaps particularly depression; none of the articles specifically addressed anxiety. Conclusion: The current research findings support the potential association between the process of acculturation and greater levels of mental health disorders in Arab Americans. However, the diversity of the Arab American population makes it difficult to draw consistent conclusions. Further research needs to be conducted in order to assess which subgroups in the Arab American population are at highest risk for developing new or exacerbating existing mental health disorders in order to devise more effective interventions.

Keywords: arab americans, arabs, mental health, anxiety, depression, acculturation

Procedia PDF Downloads 81
1806 Human Factors Simulation Approach to Analyze Older Drivers’ Performance in Intersections Left-Turn Scenarios

Authors: Yassir AbdelRazig, Eren Ozguven, Ren Moses

Abstract:

While there exists a greater understanding of the differences between the driving behaviors of older and younger drivers, there is still a need to further understand how the two groups perform when attempting to perform complex intersection maneuvers. This paper looks to determine if, and to what extent, these differences exist when drivers encounter permissive left-hand turns, pedestrian traffic, two and four-lane intersections, heavy fog, and night conditions. The study will utilize a driving simulator to develop custom drivable scenarios containing one or more of the previously mentioned conditions. 32 younger and 32 older (+65 years) participants perform driving simulation scenarios and have their velocity, time to the nearest oncoming vehicle, accepted and rejected gaps, etc., recorded. The data collected from the simulator is analyzed via Raff’s method and logistic regression in order to determine and compare the critical gaps values of the two cohorts. Out of the parameters considered for this study, only the age of the driver, their experience (if they are a younger driver), the size of a gap, and the presence of pedestrians on the crosswalk proved significant. The results did not support the hypothesis that older drivers would be significantly more conservative in their critical gaps judgment and acceptance.

Keywords: older drivers, simulation, left-turn, human factors

Procedia PDF Downloads 248
1805 Efficacy of Celecoxib Adjunct Treatment on Bipolar Disorder: Systematic Review and Meta-Analysis

Authors: Daniela V. Bavaresco, Tamy Colonetti, Antonio Jose Grande, Francesc Colom, Joao Quevedo, Samira S. Valvassori, Maria Ines da Rosa

Abstract:

Objective: Performed a systematic review and meta-analysis to evaluated the potential effect of the cyclo-oxygenases (Cox)-2 inhibitor Celecoxib adjunct treatment in Bipolar Disorder (BD), through of randomized controlled trials. Method: A search of the electronic databases was proceeded, on MEDLINE, EMBASE, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), Biomed Central, Web of Science, IBECS, LILACS, PsycINFO (American Psychological Association), Congress Abstracts, and Grey literature (Google Scholar and the British Library) for studies published from January 1990 to February 2018. A search strategy was developed using the terms: 'Bipolar disorder' or 'Bipolar mania' or 'Bipolar depression' or 'Bipolar mixed' or 'Bipolar euthymic' and 'Celecoxib' or 'Cyclooxygenase-2 inhibitors' or 'Cox-2 inhibitors' as text words and Medical Subject Headings (i.e., MeSH and EMTREE) and searched. The therapeutic effects of adjunctive treatment with Celecoxib were analyzed, it was possible to carry out a meta-analysis of three studies included in the systematic review. The meta-analysis was performed including the final results of the Young Mania Rating Scale (YMRS) at the end of randomized controlled trials (RCT). Results: Three primary studies were included in the systematic review, with a total of 121 patients. The meta-analysis had significant effect in the YMRS scores from patients with BD who used Celecoxib adjuvant treatment in comparison to placebo. The weighted mean difference was 5.54 (95%CI=3.26-7.82); p < 0.001; I2 =0%). Conclusion: The systematic review suggests that adjuvant treatment with Celecoxib improves the response of major treatments in patients with BD when compared with adjuvant placebo treatment.

Keywords: bipolar disorder, Cox-2 inhibitors, Celecoxib, systematic review, meta-analysis

Procedia PDF Downloads 491
1804 Household Water Source Substitution and Demand for Water Connections

Authors: Elizabeth Spink

Abstract:

The United Nations' Sustainable Development Goal 6 sets a target for safe and affordable drinking water for all. Developing country governments aiming to achieve this goal often face significant challenges when trying to service last mile customers, particularly those in peri-urban and rural areas. Expansion of water networks often requires high connection fees from households, and demand for connections may be low if there are cheaper substitute sources of water available. This research studies the effect of the availability of substitute sources of water on demand for individual water connections in Livingstone, Zambia, using an event study analysis of metering campaigns. Metering campaigns reduce the share of a household's neighbors that can provide free water to the household if their water connection becomes disconnected due to nonpayment. The results show that household payments in newly metered regions increase by 10 percentage points in the months following metering events, with a decrease in disconnections of 6 percentage points for low-income households. To isolate the effect of changes in a household's substitution possibilities, a similar analysis is conducted among households that neighbor the metered region. These results show mixed evidence of the impact of substitutes on payment behavior and disconnections. The results suggest that metering may be effective in increasing household demand for individual water connections primarily through a lower monthly cost burden for newly metered households.

Keywords: piped-water access, water demand, water utilities, water sharing

Procedia PDF Downloads 198
1803 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique

Authors: Reda Abdel Azim, Tariq Shehab

Abstract:

The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.

Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension

Procedia PDF Downloads 255
1802 From Scalpel to Leadership: The Landscape for Female Neurosurgeons in the UK

Authors: Anda-veronica Gherman, Dimitrios Varthalitis

Abstract:

Neurosurgery, like many surgical specialties, undoubtedly exhibits a significant gender gap, particularly in leadership positions. While increasing women representation in neurosurgery is important, it is crucial to increase their presence in leadership positions. Across the globe and Europe there are concerning trends of only 4% of all neurosurgical departments being chaired by women. This study aims to explore the situation regarding gender disparities in leadership in the United Kingdom and to identify possible contributing factors as well as discussing future strategies to bridge this gap. Methods: A literature review was conducted utilising PubMed as main database with search keywords including ‘female neurosurgeon’, ‘women neurosurgeon’, ‘gender disparity’, ‘leadership’ and ‘UK’. Additionally, a manual search of all neurosurgical departments in the UK was performed to identify the current female department leads and training director leads. Results: The literature search identified a paucity of literature addressing specifically leadership in female neurosurgeons within the UK, with very few published papers specifically on this topic. Despite more than half of medical students in the UK being female, only a small proportion pursue a surgical career, with neurosurgery being one of the least represented specialties. Only 27% of trainee neurosurgeons are female, and numbers are even lower at a consultant level, where women represent just 8%.Findings from published studies indicated that only 6.6% of leadership positions in neurosurgery are occupied by women in the UK. Furthermore, our manual searches across UK neurosurgical departments revealed that around 5% of department lead positions are currently held by women. While this figure is slightly higher than the European average of 4%, it remains lower compared to figures of 10% in other North-West European countries. The situation is slightly more positive looking at the training directors, with 15% being female. Discussion: The findings of this study highlight a significant gender disparity in leadership positions within neurosurgery in the UK, which may have important implications, perpetuating the lack of diversity on the decision-making process, limiting the career advancement opportunities of women and depriving the neurosurgical field from the voices, opinions and talents of women. With women representing half of the population, there is an undeniable need for more female leaders at the policy-making level. There are many barriers that can contribute to these numbers, including bias, stereotypes, lack of mentorship and work-like balance. A few solutions to overcome these barriers can be training programs addressing bias and impostor syndrome, leadership workshops tailored for female needs, better workplace policies, increased in formal mentorship and increasing the visibility of women in neurosurgery leadership positions through media, speaking opportunities, conferences, awards etc. And lastly, more research efforts should focus on the leadership and mentorship of women in neurosurgery, with an increased number of published papers discussing these issues.

Keywords: female neurosurgeons, female leadership, female mentorship, gender disparities

Procedia PDF Downloads 30
1801 Make Populism Great Again: Identity Crisis in Western World with a Narrative Analysis of Donald Trump's Presidential Campaign Announcement Speech

Authors: Soumi Banerjee

Abstract:

In this research paper we will go deep into understanding Benedict Anderson’s definition of the nation as an imagined community and we will analyze why and how national identities were created through long and complex processes, and how there can exist strong emotional bonds between people within an imagined community, given the fact that these people have never known each other personally, but will still feel some form of imagined unity. Such identity construction on the part of an individual or within societies are always in some sense in a state of flux as imagined communities are ever changing, which provides us with the ontological foundation for reaching on this paper. This sort of identity crisis among individuals living in the Western world, who are in search for psychological comfort and security, illustrates a possible need for spatially dislocated, ontologically insecure and vulnerable individuals to have a secure identity. To create such an identity there has to be something to build upon, which could be achieved through what may be termed as ‘homesteading’. This could in short, and in my interpretation of Kinnvall and Nesbitt’s concept, be described as a search for security that involves a search for ‘home’, where home acts as a secure place, which one can build an identity around. The next half of the paper will then look into how populism and identity have played an increasingly important role in the political elections in the so-called western democracies of the world, using the U.S. as an example. Notions of ‘us and them’, the people and the elites will be looked into and analyzed through a social constructivist theoretical lens. Here we will analyze how such narratives about identity and the nation state affects people, their personality development and identity in different ways by studying the U.S. President Donald Trump’s speeches and analyze if and how he used different identity creating narratives for gaining political and popular support. The reason to choose narrative analysis as a method in this research paper is to use the narratives as a device to understand how the perceived notions of 'us and them' can initiate huge identity crisis with a community or a nation-state. This is a relevant subject as results and developments such as rising populist rightwing movements are being felt in a number of European states, with the so-called Brexit vote in the U.K. and the election of Donald Trump as president are two of the prime examples. This paper will then attempt to argue that these mechanisms are strengthened and gaining significance in situations when humans in an economic, social or ontologically vulnerable position, imagined or otherwise, in a general and broad meaning perceive themselves to be under pressure, and a sense of insecurity is rising. These insecurities and sense of being under threat have been on the rise in many of the Western states that are otherwise usually perceived to be some of the safest, democratically stable and prosperous states in the world, which makes it of interest to study what has changed, and help provide some part of the explanation as to how creating a ‘them’ in the discourse of national identity can cause massive security crisis.

Keywords: identity crisis, migration, ontological security(in), nation-states

Procedia PDF Downloads 255
1800 Aerodynamic Design and Optimization of Vertical Take-Off and Landing Type Unmanned Aerial Vehicles

Authors: Enes Gunaltili, Burak Dam

Abstract:

The airplane history started with the Wright brothers' aircraft and improved day by day. With the help of this advancements, big aircrafts replace with small and unmanned air vehicles, so in this study we design this type of air vehicles. First of all, aircrafts mainly divided into two main parts in our day as a rotary and fixed wing aircrafts. The fixed wing aircraft generally use for transport, cargo, military and etc. The rotary wing aircrafts use for same area but there are some superiorities from each other. The rotary wing aircraft can take off vertically from the ground, and it can use restricted area. On the other hand, rotary wing aircrafts generally can fly lower range than fixed wing aircraft. There are one kind of aircraft consist of this two types specifications. It is named as VTOL (vertical take-off and landing) type aircraft. VTOLs are able to takeoff and land vertically and fly horizontally. The VTOL aircrafts generally can fly higher range from the rotary wings but can fly lower range from the fixed wing aircraft but it gives beneficial range between them. There are many other advantages of VTOL aircraft from the rotary and fixed wing aircraft. Because of that, VTOLs began to use for generally military, cargo, search, rescue and mapping areas. Within this framework, this study answers the question that how can we design VTOL as a small unmanned aircraft systems for search and rescue application for benefiting the advantages of fixed wing and rotary wing aircrafts by eliminating the disadvantages of them. To answer that question and design VTOL aircraft, multidisciplinary design optimizations (MDO), some theoretical terminologies, formulations, simulations and modelling systems based on CFD (Computational Fluid Dynamics) is used in same time as design methodology to determine design parameters and steps. As a conclusion, based on tests and simulations depend on design steps, suggestions on how the VTOL aircraft designed and advantages, disadvantages, and observations for design parameters are listed, then VTOL is designed and presented with the design parameters, advantages, and usage areas.

Keywords: airplane, rotary, fixed, VTOL, CFD

Procedia PDF Downloads 282
1799 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 126
1798 Agile Software Effort Estimation Using Regression Techniques

Authors: Mikiyas Adugna

Abstract:

Effort estimation is among the activities carried out in software development processes. An accurate model of estimation leads to project success. The method of agile effort estimation is a complex task because of the dynamic nature of software development. Researchers are still conducting studies on agile effort estimation to enhance prediction accuracy. Due to these reasons, we investigated and proposed a model on LASSO and Elastic Net regression to enhance estimation accuracy. The proposed model has major components: preprocessing, train-test split, training with default parameters, and cross-validation. During the preprocessing phase, the entire dataset is normalized. After normalization, a train-test split is performed on the dataset, setting training at 80% and testing set to 20%. We chose two different phases for training the two algorithms (Elastic Net and LASSO) regression following the train-test-split. In the first phase, the two algorithms are trained using their default parameters and evaluated on the testing data. In the second phase, the grid search technique (the grid is used to search for tuning and select optimum parameters) and 5-fold cross-validation to get the final trained model. Finally, the final trained model is evaluated using the testing set. The experimental work is applied to the agile story point dataset of 21 software projects collected from six firms. The results show that both Elastic Net and LASSO regression outperformed the compared ones. Compared to the proposed algorithms, LASSO regression achieved better predictive performance and has acquired PRED (8%) and PRED (25%) results of 100.0, MMRE of 0.0491, MMER of 0.0551, MdMRE of 0.0593, MdMER of 0.063, and MSE of 0.0007. The result implies LASSO regression algorithm trained model is the most acceptable, and higher estimation performance exists in the literature.

Keywords: agile software development, effort estimation, elastic net regression, LASSO

Procedia PDF Downloads 71
1797 Transforming Educational Leadership With Innovative Administrative Strategies

Authors: Kofi Nkonkonya Mpuangnan, Samantha Govender, Hlengiwe Romualda Mhlongo

Abstract:

Educational leaders are skilled architects crafting a vibrant environment where growth, creativity, and adaptability can flourish within schools. Their journey is one of transformation, urging them to explore administrative strategies that align seamlessly with evolving educational models and cater to the specific needs of students, educators, and stakeholders. Through this committed effort to innovate, they seek to enhance the effectiveness and influence of educational systems, paving the way for a more inclusive and forward-thinking educational environment. In this context, the authors explored the concept of transforming educational leadership with administrative strategies in alignment with the following research objectives. To find the strategies that can be adopted by transformation leaders to promote effective administrative practices in an educational setting and to explore the roles of educational leaders in promoting collaboration in education. To find answers to these questions, a systematic literature review underpinned by the transformational leadership model was adopted. Therefore, concepts integrated from a variety of outlets, including academic journals, conference proceedings, and reports found within SCOPUS, WoS, and IBSS databases. A search was aided using specific themes like innovative administrative practices, the roles of educational leaders, and interdisciplinary approaches to administrative practices. The process of conducting the search adhered to the five-step framework, which was subjected to inclusion and exclusion of studies. It was found that transformational leadership, agile methodologies, employee wellbeing, seminars and workshops could foster a culture of innovation and creativity among teachers and staff to transform administrative practices in education settings. It was recommended that professional development programs be organized periodically for educational leaders in educational institutions to help them revitalize their knowledge and skills in educational administration.

Keywords: educational leadership, innovative strategies, administrative practices, professional development, stakeholder engaement, student outcome

Procedia PDF Downloads 93
1796 Motif Search-Aided Screening of the Pseudomonas syringae pv. Maculicola Genome for Genes Encoding Tertiary Alcohol Ester Hydrolases

Authors: M. L. Mangena, N. Mokoena, K. Rashamuse, M. G. Tlou

Abstract:

Tertiary alcohol ester (TAE) hydrolases are a group of esterases (EC 3.1.1.-) that catalyze the kinetic resolution of TAEs and as a result, they are sought-after for the production of optically pure tertiary alcohols (TAs) which are useful as building blocks for number biologically active compounds. What sets these enzymes apart is, the presence of a GGG(A)X-motif in the active site which appears to be the main reason behind their activity towards the sterically demanding TAEs. The genome of Pseudomonas syringae pv. maculicola (Psm) comprises a multitude of genes that encode esterases. We therefore, hypothesize that some of these genes encode TAE hydrolases. In this study, Psm was screened for TAE hydrolase activity using the linalyl acetate (LA) plate assay and a positive reaction was observed. As a result, the genome of Psm was screened for esterases with a GGG(A)X-motif using the motif search tool and two potential TAE hydrolase genes (PsmEST1 and 2, 1100 and 1000bp, respectively) were identified, PsmEST1 was amplified by PCR and the gene sequenced for confirmation. Analysis of the sequence data with the SingnalP 4.1 server revealed that the protein comprises a signal peptide (22 amino acid residues) on the N-terminus. Primers specific for the gene encoding the mature protein (without the signal peptide) were designed such that they contain NdeI and XhoI restriction sites for directional cloning of the PCR products into pET28a. The gene was expressed in E. coli JM109 (DE3) and the clones screened for TAE hydrolase activity using the LA plate assay. A positive clone was selected, overexpressed and the protein purified using nickel affinity chromatography. The activity of the esterase towards LA was confirmed using thin layer chromatography.

Keywords: hydrolases, tertiary alcohol esters, tertiary alcohols, screening, Pseudomonas syringae pv., maculicola genome, esterase activity, linalyl acetate

Procedia PDF Downloads 355
1795 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
1794 Generating Spherical Surface of Wear Drain in Cutting Metal by Finite Element Method Analysis

Authors: D. Kabeya Nahum, L. Y. Kabeya Mukeba

Abstract:

In this work, the design of surface defects some support of the anchor rod ball joint. The future adhesion contact was rocking in manufacture machining, for giving by the numerical analysis of a short simple solution of thermo-mechanical coupled problem in process engineering. The analysis of geometrical evaluation and the quasi-static and dynamic states are discussed in kinematic dimensional tolerances onto surfaces of part. Geometric modeling using the finite element method (FEM) in rough part of such phase provides an opportunity to solve the nonlinearity behavior observed by empirical data to improve the discrete functional surfaces. The open question here is to obtain spherical geometry of drain wear with the operation of rolling. The formulation with (1 ± 0.01) mm thickness near the drain wear semi-finishing tool for studying different angles, do not help the professional factor in design cutting metal related vibration, friction and interface solid-solid of part and tool during this physical complex process, with multi-parameters no-defined in Sobolev Spaces. The stochastic approach of cracking, wear and fretting due to the cutting forces face boundary layers small dimensions thickness of the workpiece and the tool in the machining position is predicted neighbor to ‘Yakam Matrix’.

Keywords: FEM, geometry, part, simulation, spherical surface engineering, tool, workpiece

Procedia PDF Downloads 274
1793 Accurate Cortical Reconstruction in Narrow Sulci with Zero-Non-Zero Distance (ZNZD) Vector Field

Authors: Somojit Saha, Rohit K. Chatterjee, Sarit K. Das, Avijit Kar

Abstract:

A new force field is designed for propagation of the parametric contour into deep narrow cortical fold in the application of knowledge based reconstruction of cerebral cortex from MR image of brain. Designing of this force field is highly inspired by the Generalized Gradient Vector Flow (GGVF) model and markedly differs in manipulation of image information in order to determine the direction of propagation of the contour. While GGVF uses edge map as its main driving force, the newly designed force field uses the map of distance between zero valued pixels and their nearest non-zero valued pixel as its main driving force. Hence, it is called Zero-Non-Zero Distance (ZNZD) force field. The objective of this force field is forceful propagation of the contour beyond spurious convergence due to partial volume effect (PVE) in to narrow sulcal fold. Being function of the corresponding non-zero pixel value, the force field has got an inherent property to determine spuriousness of the edge automatically. It is effectively applied along with some morphological processing in the application of cortical reconstruction to breach the hindrance of PVE in narrow sulci where conventional GGVF fails.

Keywords: deformable model, external force field, partial volume effect, cortical reconstruction, MR image of brain

Procedia PDF Downloads 397
1792 Convergence Analysis of a Gibbs Sampling Based Mix Design Optimization Approach for High Compressive Strength Pervious Concrete

Authors: Jiaqi Huang, Lu Jin

Abstract:

Pervious concrete features with high water permeability rate. However, due to the lack of fine aggregates, the compressive strength is usually lower than other conventional concrete products. Optimization of pervious concrete mix design has long been recognized as an effective mechanism to achieve high compressive strength while maintaining desired permeability rate. In this paper, a Gibbs Sampling based algorithm is proposed to approximate the optimal mix design to achieve a high compressive strength of pervious concrete. We prove that the proposed algorithm efficiently converges to the set of global optimal solutions. The convergence rate and accuracy depend on a control parameter employed in the proposed algorithm. The simulation results show that, by using the proposed approach, the system converges to the optimal solution quickly and the derived optimal mix design achieves the maximum compressive strength while maintaining the desired permeability rate.

Keywords: convergence, Gibbs Sampling, high compressive strength, optimal mix design, pervious concrete

Procedia PDF Downloads 181