Search results for: proposed module
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9458

Search results for: proposed module

1778 Game-Theory-Based on Downlink Spectrum Allocation in Two-Tier Networks

Authors: Yu Zhang, Ye Tian, Fang Ye Yixuan Kang

Abstract:

The capacity of conventional cellular networks has reached its upper bound and it can be well handled by introducing femtocells with low-cost and easy-to-deploy. Spectrum interference issue becomes more critical in peace with the value-added multimedia services growing up increasingly in two-tier cellular networks. Spectrum allocation is one of effective methods in interference mitigation technology. This paper proposes a game-theory-based on OFDMA downlink spectrum allocation aiming at reducing co-channel interference in two-tier femtocell networks. The framework is formulated as a non-cooperative game, wherein the femto base stations are players and frequency channels available are strategies. The scheme takes full account of competitive behavior and fairness among stations. In addition, the utility function reflects the interference from the standpoint of channels essentially. This work focuses on co-channel interference and puts forward a negative logarithm interference function on distance weight ratio aiming at suppressing co-channel interference in the same layer network. This scenario is more suitable for actual network deployment and the system possesses high robustness. According to the proposed mechanism, interference exists only when players employ the same channel for data communication. This paper focuses on implementing spectrum allocation in a distributed fashion. Numerical results show that signal to interference and noise ratio can be obviously improved through the spectrum allocation scheme and the users quality of service in downlink can be satisfied. Besides, the average spectrum efficiency in cellular network can be significantly promoted as simulations results shown.

Keywords: femtocell networks, game theory, interference mitigation, spectrum allocation

Procedia PDF Downloads 156
1777 Nutriscience Project: A Web-Based Intervention to Improve Nutritional Literacy among Families and Educators of Pre-School Children

Authors: R. Barros, J. Azevedo, P. Padrão, M. Gregório, I. Pádua, C. Almeida, C. Rodrigues, P. Fontes, A. Coelho

Abstract:

Recent evidence shows a positive association between nutritional literacy and healthy eating. Traditional nutrition education strategies for childhood obesity prevention have shown weak effect. The Nutriscience project aims to create and evaluate an innovative and multidisciplinary strategy for promoting effective and accessible nutritional information to children, their families, and educators. Nutriscience is a one-year prospective follow-up evaluation study including pre-school children (3-5 y), who attend national schools’ network (29). The project is structured around a web-based intervention, using an on-line interactive platform, and focus on increasing fruit and vegetable consumption, and reducing sugar and salt intake. The platform acts as a social network where educational materials, games, and nutritional challenges are proposed in a gamification approach that promotes family and community social ties. A nutrition Massive Online Open Course is developed for educators, and a national healthy culinary contest will be promoted on TV channel. A parental self-reported questionnaire assessing sociodemographic and nutritional literacy (knowledge, attitudes, skills) is administered (baseline and end of the intervention). We expect that results on nutritional literacy from the presented strategy intervention will give us important information about the best practices for health intervention with kindergarten families. This intervention program using a digital interactive platform could be an educational tool easily adapted and disseminated for childhood obesity prevention.

Keywords: childhood obesity, educational tool, nutritional literacy, web-based intervention

Procedia PDF Downloads 333
1776 Development of Natural Zeolites Adsorbent: Preliminary Study on Water-Isopropyl Alcohol Adsorption in a Close-Loop Continuous Adsorber

Authors: Sang Kompiang Wirawan, Pandu Prabowo Jati, I Wayan Warmada

Abstract:

Klaten Indonesian natural zeolite can be used as powder or pellet adsorbent. Pellet adsorbent has been made from activated natural zeolite powder by a conventional pressing method. Starch and formaldehyde were added as binder to strengthen the construction of zeolite pellet. To increase the absorptivity and its capacity, natural zeolite was activated first chemically and thermally. This research examined adsorption process of water from Isopropyl Alcohol (IPA)-water system using zeolite adsorbent pellet from natural zeolite powder which has been activated with H2SO4 0.1 M and 0.3 M. Adsorbent was pelleted by pressing apparatus at certain pressure to make specification in 1.96 cm diameter, 0.68 cm thickness which the natural zeolite powder (-80 mesh). The system of isopropyl-alcohol water contained 80% isopropyl-alcohol. Adsorption process was held in close-loop continuous apparatus which the zeolite pellet was put inside a column and the solution of IPA-water was circulated at certain flow. Concentration changing was examined thoroughly at a certain time. This adsorption process included mass transfer from bulk liquid into film layer and from film layer into the solid particle. Analysis of rate constant was using first order isotherm model that simulated with MATLAB. Besides using first order isotherm, intra-particle diffusion model was proposed by using pore diffusion model. The study shows that adsorbent activated by H2SO4 0.1 M has good absorptivity with mass transfer constant at 0.1286 min-1.

Keywords: intra-particle diffusion, fractional attainment, first order isotherm, zeolite

Procedia PDF Downloads 308
1775 YOLO-IR: Infrared Small Object Detection in High Noise Images

Authors: Yufeng Li, Yinan Ma, Jing Wu, Chengnian Long

Abstract:

Infrared object detection aims at separating small and dim target from clutter background and its capabilities extend beyond the limits of visible light, making it invaluable in a wide range of applications such as improving safety, security, efficiency, and functionality. However, existing methods are usually sensitive to the noise of the input infrared image, leading to a decrease in target detection accuracy and an increase in the false alarm rate in high-noise environments. To address this issue, an infrared small target detection algorithm called YOLO-IR is proposed in this paper to improve the robustness to high infrared noise. To address the problem that high noise significantly reduces the clarity and reliability of target features in infrared images, we design a soft-threshold coordinate attention mechanism to improve the model’s ability to extract target features and its robustness to noise. Since the noise may overwhelm the local details of the target, resulting in the loss of small target features during depth down-sampling, we propose a deep and shallow feature fusion neck to improve the detection accuracy. In addition, because the generalized Intersection over Union (IoU)-based loss functions may be sensitive to noise and lead to unstable training in high-noise environments, we introduce a Wasserstein-distance based loss function to improve the training of the model. The experimental results show that YOLO-IR achieves a 5.0% improvement in recall and a 6.6% improvement in F1-score over existing state-of-art model.

Keywords: infrared small target detection, high noise, robustness, soft-threshold coordinate attention, feature fusion

Procedia PDF Downloads 69
1774 The Mediating Role of Early Maladaptive Schemas in the Relationship between Attachment and Trait Anger and Anger Expression

Authors: Ayperi̇ Haspolat Özcan, Meltem Anafarta Şendağ

Abstract:

This study aimed to establish a model in the light of current approaches for understanding the mediating role of early maladaptive schemas in the relationship between attachment and anger. Accordingly, the proposed mediation model was tested by mediation with bootstrapping technique, considering gender and attachment figure differences. The university students (N= 444) with ages ranging from 17 to 28 participated in the study. Participants filled out Parental and Peer Attachment Scale Short Form, Young Schema Questionnaire - Short Form 3, Trait Anger and Anger Expression Scales. The mediating role of early maladaptive schemas (impaired autonomy, disconnection and rejection, unrelenting standards, other-directedness, and impaired limits) in the relationship between attachment (mother and father) and anger aspects (trait anger, anger in, anger out and anger control) were found to be significant for both male and female participants. Separate mediation analyses for both genders and different attachment figures have also drawn attention to noticeable differences in the results. Specifically, for females, various paths were discovered in predicting various aspects of anger (anger in, anger out, anger control, and trait anger). On the other hand, for males only anger directed inwards was found to be predicted by any source of attachment through disconnection and rejection schema only. These obvious gender differences in understanding the mechanism of anger are discussed in the light of cultural gender roles and the social acceptance of anger in males. In the area of application, the study of various aspects of anger with particular attention to attachment and early maladaptive schemas as well as the importance of distinguishing the gender differences are emphasized as important points.

Keywords: anger expression, attachment, early maladaptive schemas, trait anger

Procedia PDF Downloads 286
1773 Effect of Inorganic Fertilization on Soil N Dynamics in Agricultural Plots in Central Mexico

Authors: Karla Sanchez-Ortiz, Yunuen Tapia-Torres, John Larsen, Felipe Garcia-Oliva

Abstract:

Due to food demand production, the use of synthetic nitrogenous fertilizer has increased in agricultural soils to replace the N losses. Nevertheless, the intensive use of synthetic nitrogenous fertilizer in conventional agriculture negatively affects the soil and therefore the environment, so alternatives such as organic agriculture have been proposed for being more environmentally friendly. However, further research in soil is needed to see how agricultural management affects the dynamics of C and N. The objective of this research was to evaluate the C and N dynamics in the soil with three different agricultural management: an agricultural plot with intensive inorganic fertilization, a plot with semi-organic management and an agricultural plot with recent abandonment (2 years). For each plot, the soil C and N dynamics and the enzymatic activity of NAG and β-Glucosidase were characterized. Total C and N concentration of the plant biomass of each site was measured as well. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) was higher in abandoned plot, as well as this plot had higher total carbon (TC) and total nitrogen (TN), besides microbial N and microbial C. While the enzymatic activity of NAG and β-Glucosidase was greater in the agricultural plot with inorganic fertilization, as well as nitrate (NO₃) was higher in fertilized plot, in comparison with the other two plots. The aboveground biomass (AB) of maize in the plot with inorganic fertilization presented higher TC and TN concentrations than the maize AB growing in the semiorganic plot, but the C:N ratio was highest in the grass AB in the abandoned plot. The C:N ration in the maize grain was greater in the semi-organic agricultural plot. These results show that the plot under intensive agricultural management favors the loss of soil organic matter and N, degrading the dynamics of soil organic compounds, promoting its fertility depletion.

Keywords: mineralization, nitrogen cycle, soil degradation, soil nutrients

Procedia PDF Downloads 180
1772 In vitro Skin Model for Enhanced Testing of Antimicrobial Textiles

Authors: Steven Arcidiacono, Robert Stote, Erin Anderson, Molly Richards

Abstract:

There are numerous standard test methods for antimicrobial textiles that measure activity against specific microorganisms. However, many times these results do not translate to the performance of treated textiles when worn by individuals. Standard test methods apply a single target organism grown under optimal conditions to a textile, then recover the organism to quantitate and determine activity; this does not reflect the actual performance environment that consists of polymicrobial communities in less than optimal conditions or interaction of the textile with the skin substrate. Here we propose the development of in vitro skin model method to bridge the gap between lab testing and wear studies. The model will consist of a defined polymicrobial community of 5-7 commensal microbes simulating the skin microbiome, seeded onto a solid tissue platform to represent the skin. The protocol would entail adding a non-commensal test organism of interest to the defined community and applying a textile sample to the solid substrate. Following incubation, the textile would be removed and the organisms recovered, which would then be quantitated to determine antimicrobial activity. Important parameters to consider include identification and assembly of the defined polymicrobial community, growth conditions to allow the establishment of a stable community, and choice of skin surrogate. This model could answer the following questions: 1) is the treated textile effective against the target organism? 2) How is the defined community affected? And 3) does the textile cause unwanted effects toward the skin simulant? The proposed model would determine activity under conditions comparable to the intended application and provide expanded knowledge relative to current test methods.

Keywords: antimicrobial textiles, defined polymicrobial community, in vitro skin model, skin microbiome

Procedia PDF Downloads 135
1771 Multi-Index Performance Investigation of Rubberized Reclaimed Asphalt Mixture

Authors: Ling Xu, Giuseppe Loprencipe, Antonio D'Andrea

Abstract:

Asphalt pavement with recycled and sustainable materials has become the most commonly adopted strategy for road construction, including reclaimed asphalt pavement (RAP) and crumb rubber (CR) from waste tires. However, the adhesion and cohesion characteristics of rubberized reclaimed asphalt pavement were still ambiguous, resulting in deteriorated adhesion behavior and life performance. This research investigated the effect of bonding characteristics on rutting resistance and moisture susceptibility of rubberized reclaimed asphalt pavement in terms of two RAP sources with different oxidation levels and two tire rubber with different particle sizes. Firstly, the binder bond strength (BBS) test and bonding failure distinguishment were conducted to analyze the surface behaviors of binder-aggregate interaction. Then, the compatibility and penetration grade of rubberized RAP binder were evaluated by rotational viscosity test and penetration test, respectively. Hamburg wheel track (HWT) test with high-temperature viscoelastic deformation analysis was adopted, which illustrated the rutting resistance. Additionally, a water boiling test was employed to evaluate the moisture susceptibility of the mixture and the texture features were characterized with the statistical parameters of image colors. Finally, the colloid structure model of rubberized RAP binder with surface interaction was proposed, and statistical analysis was established to release the correlation among various indexes. This study concluded that the gel-phase colloid structure and molecular diffusion of the free light fraction would affect the surface interpretation with aggregate, determining the bonding characteristic of rubberized RAP asphalt.

Keywords: bonding characteristics, reclaimed asphalt pavement, rubberized asphalt, sustainable material

Procedia PDF Downloads 60
1770 Development of an Online Raw-Vegan Eating Program to Reduce Sugar Intake

Authors: Sara D. Garduno-Diaz, Lorena Loriato

Abstract:

Food selection is one of the main modifiable risk factors for the avoidance of several detrimental health conditions. Excessive and regular sugar intake has been identified as highly unfavorable, yet a highly occurring practice. A proposed approach to modify this eating practice is the online program developed here. The program targets a modification of mindset and lifestyle habits around food, through a four week raw-vegan guided eating program. While the focus of the program is to set up sustainable changes in sugar intake reduction, it also aims to promote a plant-based eating style. Three pilot sessions have been run with participants from seven different countries. Participants are guided through the program via a combination of daily e-mails, a 24-hour support platform, and by-weekly remote live sessions. Meal preparation techniques, as well as cooking instructions, are provided, following set menus developed by a team of professional chefs and nutritionists. Goal setting, as well as alternatives to specific food-related challenges, is addressed. While the program is intended for both women and men, the majority of participants to date have been female. Feedback has been positive, with changes in eating habits have included an elimination of added sugars, an increase in home cooking and vegetable intake, and a reduction in foods of animal origin. Difficulties in following the program have been reported as unavailability of certain ingredients depending on the country of residence of the participants, social and cultural hurdles, and time restrictions. Nevertheless, the results obtained to date indicate this to be a highly interactive program with the potential to be scaled up and applied to various populations as a public health measure on the way to better health.

Keywords: eating habits, food addiction, nutrition education, plant-based, remote practice

Procedia PDF Downloads 108
1769 An Ensemble System of Classifiers for Computer-Aided Volcano Monitoring

Authors: Flavio Cannavo

Abstract:

Continuous evaluation of the status of potentially hazardous volcanos plays a key role for civil protection purposes. The importance of monitoring volcanic activity, especially for energetic paroxysms that usually come with tephra emissions, is crucial not only for exposures to the local population but also for airline traffic. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the high nonlinearity of the complex and coupled volcanic dynamics leads to a large variety of different volcanic behaviors. Moreover, continuously measured parameters (e.g. seismic, deformation, infrasonic and geochemical signals) are often not able to fully explain the ongoing phenomenon, thus making the fast volcano state assessment a very puzzling task for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, here we introduce a system based on an ensemble of data-driven classifiers to infer automatically the ongoing volcano status from all the available different kind of measurements. The system consists of a heterogeneous set of independent classifiers, each one built with its own data and algorithm. Each classifier gives an output about the volcanic status. The ensemble technique allows weighting the single classifier output to combine all the classifications into a single status that maximizes the performance. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision-making purposes.

Keywords: Bayesian networks, expert system, mount Etna, volcano monitoring

Procedia PDF Downloads 246
1768 The Identification of Environmentally Friendly People: A Case of South Sumatera Province, Indonesia

Authors: Marpaleni

Abstract:

The intergovernmental Panel on Climate Change (IPCC) declared in 2007 that global warming and climate change are not just a series of events caused by nature, but rather caused by human behaviour. Thus, to reduce the impact of human activities on climate change it is required to have information about how people respond to the environmental issues and what constraints they face. However, information on these and other phenomena remains largely missing, or not fully integrated within the existing data systems. The proposed study is aimed at filling the gap in this knowledge by focusing on Environmentally Friendly Behaviour (EFB) of the people of Indonesia, by taking the province of South Sumatera as a case of study. EFB is defined as any activity in which people engage to improve the conditions of the natural resources and/or to diminish the impact of their behaviour on the environment. This activity is measured in terms of consumption in five areas at the household level, namely housing, energy, water usage, recycling and transportation. By adopting the Indonesia’s Environmentally Friendly Behaviour conducted by Statistics Indonesia in 2013, this study aims to precisely identify one’s orientation towards EFB based on socio demographic characteristics such as: age, income, occupation, location, education, gender and family size. The results of this research will be useful to precisely identify what support people require to strengthen their EFB, to help identify specific constraints that different actors and groups face and to uncover a more holistic understanding of EFB in relation to particular demographic and socio-economics contexts. As the empirical data are examined from the national data sample framework, which will continue to be collected, it can be used to forecast and monitor the future of EFB.

Keywords: environmentally friendly behavior, demographic, South Sumatera, Indonesia

Procedia PDF Downloads 284
1767 Optimal Power Distribution and Power Trading Control among Loads in a Smart Grid Operated Industry

Authors: Vivek Upadhayay, Siddharth Deshmukh

Abstract:

In recent years utilization of renewable energy sources has increased majorly because of the increase in global warming concerns. Organization these days are generally operated by Micro grid or smart grid on a small level. Power optimization and optimal load tripping is possible in a smart grid based industry. In any plant or industry loads can be divided into different categories based on their importance to the plant and power requirement pattern in the working days. Coming up with an idea to divide loads in different such categories and providing different power management algorithm to each category of load can reduce the power cost and can come handy in balancing stability and reliability of power. An objective function is defined which is subjected to a variable that we are supposed to minimize. Constraint equations are formed taking difference between the power usages pattern of present day and same day of previous week. By considering the objectives of minimal load tripping and optimal power distribution the proposed problem formulation is a multi-object optimization problem. Through normalization of each objective function, the multi-objective optimization is transformed to single-objective optimization. As a result we are getting the optimized values of power required to each load for present day by use of the past values of the required power for the same day of last week. It is quite a demand response scheduling of power. These minimized values then will be distributed to each load through an algorithm used to optimize the power distribution at a greater depth. In case of power storage exceeding the power requirement, profit can be made by selling exceeding power to the main grid.

Keywords: power flow optimization, power trading enhancement, smart grid, multi-object optimization

Procedia PDF Downloads 522
1766 A Conceptual Framework of Impact of Lean on the Performance of Construction Industry

Authors: Jaber Shurrab, Matloub Hussain

Abstract:

The rapid pace of changes in the construction industry, technological advancements, and rising costs present tremendous challenges for project managers. Project managers are under severe pressure to minimize the waste, improve the efficiency of the entire operations and the philosophy of ‘lean thinking’ so that ‘more could be achieved with less’ is becoming very popular. Though, lean management has strong roots in manufacturing industry and over the last decade lean philosophy has started gaining attention in the service industry as well. However, little has been known in the context of waste minimization and lean implementation in the construction industry and this paper deals with this important issue. The primary objective of this paper is to propose a conceptual framework for the exploration of appropriate lean techniques applicable to medium and large construction companies and measure their impact on the competitiveness and economic performance of construction companies of United Arab Emirates (UAE). To this end, a comprehensive literature review and interviews with eight project managers of medium and large construction companies of UAE have been conducted. It has been found that competitive, reduce waste and costs are critical to the construction industry. This is an ongoing research in lean management, giving project managers a practical framework for improving the efficiency of their project through various lean techniques. Originality/value: Research significance emphasizes increasing the effectiveness of the construction industry, influences the development of lean construction framework which improves lean construction practices using the lean techniques. This contributes to the effort of applying lean techniques in the construction industry. Limited publications were done in the construction industry mainly in United Arab Emirates (UAE) compared to the lean manufacturing. This research will recommend a systematic approach for the implementing of the anticipated framework within a cyclical look-ahead period and emphasizes the practical implications of the proposed approach.

Keywords: construction, lean, lean manufacturing, waste

Procedia PDF Downloads 283
1765 Full-Scale 3D Simulation of the Electroslag Rapid Remelting Process

Authors: E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig

Abstract:

The standard electroslag remelting (ESR) process can ideally control the solidification of an ingot and produce homogeneous structure with minimum defects. However, the melt rate of electrode is rather low that makes the whole process uneconomical especially to produce small ingot sizes. In contrast, continuous casting is an economical process to produce small ingots such as billets at high casting speed. Unfortunately, deep liquid melt pool forms in the billet ingot of continuous casting that leads to center porosity and segregation. As such, continuous casting is not suitable to produce segregation prone alloys like tool steel or several super alloys. On the other hand, the electro slag rapid remelting (ESRR) process has advantages of both traditional ESR and continuous casting processes to produce billets. In the ESRR process, a T-shaped mold is used including a graphite ring that takes major amount of current through the mold. There are only a few reports available in the literature discussing about this topic. The research on the ESRR process is currently ongoing aiming to improve the design of the T-shaped mold, to decrease overall heat loss in the process, and to obtain a higher temperature at metal meniscus. In the present study, a 3D model is proposed to investigate the electromagnetic, thermal, and flow fields in the whole process as well as solidification of the billet ingot. We performed a fully coupled numerical simulation to explore the influence of the electromagnetically driven flow (MHD) on the thermal field in the slag and ingot. The main goal is to obtain some fundamental understanding of the formation of melt pool of the solidifying billet ingot in the ESRR process.

Keywords: billet ingot, magnetohydrodynamics (mhd), numerical simulation, remelting, solidification, t-shaped mold.

Procedia PDF Downloads 293
1764 Entrepreneurial Orientation and Innovation Outcomes in Ghanaian Social Enterprises: Interaction Effect of Organizational Unlearning

Authors: Stephen Oduro

Abstract:

With a quantitative research design, this study seeks to analyze how, an intangible resource, Organisational Unlearning shapes the relationship between Entrepreneurial Orientation (EO) and Innovation Outcomes among social entrepreneurship organizations in Ghana. The Resource-Based View (RBV) of the firm and EO-Performance Contingency framework was adopted as the underpinning theories of the study. Entrepreneurial Orientation dimensions, namely Innovativeness, Autonomy, Risk-Taking, Proactiveness, and Competitive aggressiveness were examined to determine its significant, direct influence on the Innovation Outcomes of the social enterprises in Ghana. Organizational Unlearning dimensions, specifically examination of lens fitting, the consolidation of emergent understandings, and framework for changing individual habits were explored to determine whether they strengthen or weaken the direct nexus between Entrepreneurial Orientation dimensions and Innovation Outcomes. A self-administered questionnaire was administered to 556 targeted social enterprises across Africa through online questionnaire platform and the data generated and proposed hypotheses were analyzed and tested using Structural Equation Model-Partial Least Square (SEM-PLS 3) statistical tool. The findings revealed that EO dimensions, specifically proactiveness, autonomy, innovativeness, and risk-taking are positively related to IO, but we found no significant support for competitive aggressiveness. The findings, moreover, divulged that the positive, direct relationship between EO and IO is highly strengthened by OU. It is concluded that OU fully moderates the direct link between EO and IO. The present study contributes to the our understanding of the interrelationship among Entrepreneurial Orientation, Organizational Unlearning, and Innovation Outcomes in the social entrepreneurship context.

Keywords: entrepreneurial orientation, innovation outcomes, organizational unlearning, RBV, SEM-PLS, social enterprise, Africa

Procedia PDF Downloads 140
1763 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 63
1762 Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo

Authors: Vladimir A. Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: degree of rock disturbance, non-destructive testing, thermally induced acoustic emission memory effects, structure and texture of rocks

Procedia PDF Downloads 262
1761 Solving a Micromouse Maze Using an Ant-Inspired Algorithm

Authors: Rolando Barradas, Salviano Soares, António Valente, José Alberto Lencastre, Paulo Oliveira

Abstract:

This article reviews the Ant Colony Optimization, a nature-inspired algorithm, and its implementation in the Scratch/m-Block programming environment. The Ant Colony Optimization is a part of Swarm Intelligence-based algorithms and is a subset of biological-inspired algorithms. Starting with a problem in which one has a maze and needs to find its path to the center and return to the starting position. This is similar to an ant looking for a path to a food source and returning to its nest. Starting with the implementation of a simple wall follower simulator, the proposed solution uses a dynamic graphical interface that allows young students to observe the ants’ movement while the algorithm optimizes the routes to the maze’s center. Things like interface usability, Data structures, and the conversion of algorithmic language to Scratch syntax were some of the details addressed during this implementation. This gives young students an easier way to understand the computational concepts of sequences, loops, parallelism, data, events, and conditionals, as they are used through all the implemented algorithms. Future work includes the simulation results with real contest mazes and two different pheromone update methods and the comparison with the optimized results of the winners of each one of the editions of the contest. It will also include the creation of a Digital Twin relating the virtual simulator with a real micromouse in a full-size maze. The first test results show that the algorithm found the same optimized solutions that were found by the winners of each one of the editions of the Micromouse contest making this a good solution for maze pathfinding.

Keywords: nature inspired algorithms, scratch, micromouse, problem-solving, computational thinking

Procedia PDF Downloads 125
1760 The Impact of Restricting Product Availability on the Purchasing of Lower Sugar Biscuits in UK Convenience Stores

Authors: Hannah S. Waldron

Abstract:

Background: The government has proposed sugar reduction targets in an effort to tackle childhood obesity, focussing on those of low socioeconomic status (SES). Supermarkets are a key location for reducing the amount of sugar purchased, but success so far in this environment has been limited. Building on previous research, this study will assess the impact of restricting the availability of higher sugar biscuits as a strategy to encourage lower sugar biscuit purchasing, and whether the effects vary by customer SES. Method: 14 supermarket convenience stores were divided between control (n=7) and intervention (n=7) groups. In the intervention stores, biscuits with sugar above the government’s target (26.2g/100g) were removed from sale and replaced with lower sugar ( < 26.2g sugar/100g) alternatives. Sales and customer demographic information were collected using loyalty card data and point-of-sale transaction data for 8-weeks pre and post the intervention for lower sugar biscuits, total biscuits, alternative higher sugar products, and all products. Results were analysed using three-way and two-way mixed ANOVAs. Results: The intervention resulted in a significant increase in lower sugar biscuit purchasing (p < 0.001) and a significant decline in overall biscuit sales (p < 0.001) between the time periods compared to control stores. Sales of higher sugar products and all products increased significantly between the two time periods in both the intervention and control stores (p < 0.05). SES showed no significant effect on any of the reported outcomes (p > 0.05). Conclusion: Restricting the availability of higher sugar products may be a successful strategy for encouraging lower sugar purchasing across all SES groups. However, larger-scale interventions are required in additional categories to assess the long term implications for both consumers and retailers.

Keywords: biscuits, nudging, sugar, supermarket

Procedia PDF Downloads 103
1759 MRI Quality Control Using Texture Analysis and Spatial Metrics

Authors: Kumar Kanudkuri, A. Sandhya

Abstract:

Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.

Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy

Procedia PDF Downloads 168
1758 The Impact of Ultrasonicator on the Vertical and Horizontal Mixing Profile of Petrol-Bioethanol

Authors: D. Nkazi, S. E. Iyuke, J. Mulopo

Abstract:

Increasing global energy demand as well as air quality concerns have in recent years led to the search for alternative clean fuels to replace fossil fuels. One such alternative is the blending of petrol with ethanol, which has numerous advantages such ethanol’s ability to act as oxygenate thus reducing the carbon monoxide emissions from the exhaust of internal combustion engines of vehicles. However, the hygroscopic nature of ethanol is a major concern in obtaining a perfectly homogenized petrol-ethanol fuel. This problem has led to the study of ways of homogenizing the petrol-ethanol mixtures. During the blending process, volumes fraction of ethanol and petrol were studied with respect to the depth within the storage container to confirm homogenization of the blend and time of storage. The results reveal that the density of the mixture was constant. The binodal curve of the ternary diagram shows an increase of homogeneous region, indicating an improved of interaction between water and petrol. The concentration distribution in the reactor showed proof of cavitation formation since in both directions, the variation of concentration with both time and distance was found to be oscillatory. On comparing the profiles in both directions, the concentration gradient, diffusion flux, and energy and diffusion rates were found to be higher in the vertical direction compared to the horizontal direction. It was therefore concluded that ultrasonication creates cavitation in the mixture which enhances mass transfer and mixing of ethanol and petrol. The horizontal direction was found to be the diffusion rate limiting step which proposed that the blender should have a larger height to diameter ratio. It is, however, recommended that further studies be done on the rate-limiting step so as to have actual dimensions of the reactor.

Keywords: ultrasonication, petrol, ethanol, concentration

Procedia PDF Downloads 364
1757 Thriving Organisations: Recommendations to Create a Workplace Culture That Prioritises Both Well-being and Performance Equally

Authors: Clare Victoria Martin

Abstract:

With reports of increased mental health problems and a lack of proactive, consistent well-being initiatives, well-being is a topical issue in the workplace, as well as a wider public health concern. Additionally, workplace well-being is closely linked to performance, both from a business perspective and in psychological research. Businesses are therefore becoming increasingly motivated to promote well-being, yet there are still barriers, including a lack of evidence-based workplace interventions, issues with measuring effectiveness and problems creating lasting cultural change. This review aimed to collate workplace well-being research to propose a comprehensive new model for delivering evidence-based workplace well-being training with a real potential for lasting impact. Method: A narrative review was conducted to meta-synthesise relevant research. Thematic analysis was then adopted as a systematic method of identifying key themes from the review to lead to practical recommendations. Interventions focusing on strengths, psychological capital, mindfulness and positivity (SPMP) dominated the research in this area, suggesting benefits of incorporating all four into training. However, to avoid a ‘quick fix’ mentality, the concept of training ‘well-being ambassadors’ as a preventative counterpart to mental health ‘first aiders’ was proposed alongside a new ‘REST and RISE’ model: well-being interventions should be ‘relatable’, ‘enjoyable’, ‘sociable’ and ‘trackable’ (REST) in order to increase ‘resilience’, ‘innovation’, ‘strengths’ and ‘engagement’ (RISE). If the REST principles are applied to interventions focusing on SPMP, research suggests individuals will RISE. Future research should empirically test this new well-being ambassador programme and REST/RISE model in an applied setting.

Keywords: performance, positive psychology, thriving, workplace well-being

Procedia PDF Downloads 116
1756 Acceptance of Health Information Application in Smart National Identity Card (SNIC) Using a New I-P Framework

Authors: Ismail Bile Hassan, Masrah Azrifah Azmi Murad

Abstract:

This study discovers a novel framework of individual level technology adoption known as I-P (Individual- Privacy) towards Smart National Identity Card health information application. Many countries introduced smart national identity card (SNIC) with various applications such as health information application embedded inside it. However, the degree to which citizens accept and use some of the embedded applications in smart national identity remains unknown to many governments and application providers as well. Moreover, the previous studies revealed that the factors of trust, perceived risk, privacy concern and perceived credibility need to be incorporated into more comprehensive models such as extended Unified Theory of Acceptance and Use of Technology known as UTAUT2. UTAUT2 is a mainly widespread and leading theory existing in the information system literature up to now. This research identifies factors affecting the citizens’ behavioural intention to use health information application embedded in SNIC and extends better understanding on the relevant factors that the government and the application providers would need to consider in predicting citizens’ new technology acceptance in the future. We propose a conceptual framework by combining the UTAUT2 and Privacy Calculus Model constructs and also adding perceived credibility as a new variable. The proposed framework may provide assistance to any government planning, decision, and policy makers involving e-government projects. The empirical study may be conducted in the future to provide proof and empirically validate this I-P framework.

Keywords: unified theory of acceptance and use of technology (UTAUT) model, UTAUT2 model, smart national identity card (SNIC), health information application, privacy calculus model (PCM)

Procedia PDF Downloads 464
1755 Bionaut™: A Microrobotic Drug-Device Platform for the Local Treatment of Brainstem Gliomas

Authors: Alex Kiselyov, Suehyun Cho, Darrell Harrington; Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Michael Shpigelmacher

Abstract:

Despite the most aggressive surgical and adjuvant therapeutic strategies, treatment of both pediatric and adult brainstem tumors remains problematic. Novel strategies, including targeted biologics, immunotherapy, and specialized delivery systems such as convection-enhanced delivery (CED), have been proposed. While some of these novel treatments are entering phase I trials, the field is still in need of treatment(s) that exhibits dramatically enhanced potency with optimal therapeutic ratio. Bionaut Labs has developed a modular microrobotic platform for performing localized delivery of diverse therapeutics in vivo. Our biocompatible particles (Bionauts™) are externally propelled and visualized in real-time. Bionauts™ are specifically designed to enhance the effect of radiation therapy via anatomically precise delivery of a radiosensitizing agent, as exemplified by temozolomide (TMZ) and Avastin™ to the brainstem gliomas of diverse origin. The treatment protocol is designed to furnish a better therapeutic outcome due to the localized (vs systemic) delivery of the drug to the neoplastic lesion(s) for use as a synergistic combination of radiation and radiosensitizing agent. In addition, the procedure is minimally invasive and is expected to be appropriate for both adult and pediatric patients. Current progress, including platform optimization, selection of the lead radiosensitizer as well as in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of porcine and ovine models, will be discussed.

Keywords: Bionaut, brainstem, glioma, local delivery, micro-robot, radiosensitizer

Procedia PDF Downloads 193
1754 The Prodomain-Bound Form of Bone Morphogenetic Protein 10 is Biologically Active on Endothelial Cells

Authors: Austin Jiang, Richard M. Salmon, Nicholas W. Morrell, Wei Li

Abstract:

BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality due to impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling.

Keywords: bone morphogenetic protein 10 (BMP10), endothelial cell, signal transduction, transforming growth factor beta (TGF-B)

Procedia PDF Downloads 272
1753 History of Recurrent Mucosal Infections and Immune System Disorders Is Related to Complications of Non-infectious Anterior Uveitis

Authors: Barbara Torres Rives

Abstract:

Uveitis. Non-infectious anterior uveitis is a polygenic inflammatory eye disease, and it is suggested that mediated processes by the immune system (autoimmune or not) are the main mechanisms proposed in the pathogenesis of this type of uveitis. A relationship between infectious processes, digestive disorders, and a dysbiosis of the microbiome was recently described. In addition, alterations in the immune response associated with the initiation and progression of the disease have been described. Objective: The aim of this study was to identify factors related to the immune system associated with complicated non-infectious anterior uveitis. Methods: A cross-sectional observational analytical study was carried out. The universe consisted of all patients attending the ocular inflammation service of the Cuban Institute of Ophthalmology Ramón Pando Ferrer. The sample consisted of 213 patients diagnosed with non-infectious anterior uveitis. Results: Of the 213 patients with non-infectious anterior uveitis, the development of ophthalmologic complications predominated 56.3% (p=0.0094). In patients with complications was more frequent the presence of human leukocyte antigen-B27 allele (49.2%) (p<0.0001), decreased immunoglobulin G (24.2%, p=0.0124), increased immunoglobulin A (14.2%, p=0.0024), history of recurrent sepsis (59.2%, p=0.0018), recurrent respiratory infections (44.2%, p=0.0003), digestive alterations (40%, p=0.0013) and spondyloarthropathies (30%, p=0.0314). By logistic regression, it was observed that, for each completed year, the elevated risk for developing complicated non-infectious anterior uveitis in human leukocyte antigen-B27 allele positive patients (OR: 4.22, p=0.000), Conclusions: The control of recurrent sepsis at mucosal level and immunomodulation could prevent complications in non-infectious anterior uveitis. Therefore, the microbiome becomes the target of treatment and prevention of complications in non-infectious anterior uveitis.

Keywords: non-infectious anterior uveitis, immune system disorders, recurrent mucosal infections, microbiome

Procedia PDF Downloads 89
1752 Machine Learning-Based Techniques for Detecting and Mitigating Cyber-attacks on Automatic Generation Control in Smart Grids

Authors: Sami M. Alshareef

Abstract:

The rapid growth of smart grid technology has brought significant advancements to the power industry. However, with the increasing interconnectivity and reliance on information and communication technologies, smart grids have become vulnerable to cyber-attacks, posing significant threats to the reliable operation of power systems. Among the critical components of smart grids, the Automatic Generation Control (AGC) system plays a vital role in maintaining the balance between generation and load demand. Therefore, protecting the AGC system from cyber threats is of paramount importance to maintain grid stability and prevent disruptions. Traditional security measures often fall short in addressing sophisticated and evolving cyber threats, necessitating the exploration of innovative approaches. Machine learning, with its ability to analyze vast amounts of data and learn patterns, has emerged as a promising solution to enhance AGC system security. Therefore, this research proposal aims to address the challenges associated with detecting and mitigating cyber-attacks on AGC in smart grids by leveraging machine learning techniques on automatic generation control of two-area power systems. By utilizing historical data, the proposed system will learn the normal behavior patterns of AGC and identify deviations caused by cyber-attacks. Once an attack is detected, appropriate mitigation strategies will be employed to safeguard the AGC system. The outcomes of this research will provide power system operators and administrators with valuable insights into the vulnerabilities of AGC systems in smart grids and offer practical solutions to enhance their cyber resilience.

Keywords: machine learning, cyber-attacks, automatic generation control, smart grid

Procedia PDF Downloads 84
1751 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 240
1750 Effects of Research-Based Blended Learning Model Using Adaptive Scaffolding to Enhance Graduate Students' Research Competency and Analytical Thinking Skills

Authors: Panita Wannapiroon, Prachyanun Nilsook

Abstract:

This paper is a report on the findings of a Research and Development (R&D) aiming to develop the model of Research-Based Blended Learning Model Using Adaptive Scaffolding (RBBL-AS) to enhance graduate students’ research competency and analytical thinking skills, to study the result of using such model. The sample consisted of 10 experts in the fields during the model developing stage, while there were 23 graduate students of KMUTNB for the RBBL-AS model try out stage. The research procedures included 4 phases: 1) literature review, 2) model development, 3) model experiment, and 4) model revision and confirmation. The research results were divided into 3 parts according to the procedures as described in the following session. First, the data gathering from the literature review were reported as a draft model; followed by the research finding from the experts’ interviews indicated that the model should be included 8 components to enhance graduate students’ research competency and analytical thinking skills. The 8 components were 1) cloud learning environment, 2) Ubiquitous Cloud Learning Management System (UCLMS), 3) learning courseware, 4) learning resources, 5) adaptive Scaffolding, 6) communication and collaboration tolls, 7) learning assessment, and 8) research-based blended learning activity. Second, the research finding from the experimental stage found that there were statistically significant difference of the research competency and analytical thinking skills posttest scores over the pretest scores at the .05 level. The Graduate students agreed that learning with the RBBL-AS model was at a high level of satisfaction. Third, according to the finding from the experimental stage and the comments from the experts, the developed model was revised and proposed in the report for further implication and references.

Keywords: research based learning, blended learning, adaptive scaffolding, research competency, analytical thinking skills

Procedia PDF Downloads 416
1749 Towards Designing of a Potential New HIV-1 Protease Inhibitor Using Quantitative Structure-Activity Relationship Study in Combination with Molecular Docking and Molecular Dynamics Simulations

Authors: Mouna Baassi, Mohamed Moussaoui, Hatim Soufi, Sanchaita RajkhowaI, Ashwani Sharma, Subrata Sinha, Said Belaaouad

Abstract:

Human Immunodeficiency Virus type 1 protease (HIV-1 PR) is one of the most challenging targets of antiretroviral therapy used in the treatment of AIDS-infected people. The performance of protease inhibitors (PIs) is limited by the development of protease mutations that can promote resistance to the treatment. The current study was carried out using statistics and bioinformatics tools. A series of thirty-three compounds with known enzymatic inhibitory activities against HIV-1 protease was used in this paper to build a mathematical model relating the structure to the biological activity. These compounds were designed by software; their descriptors were computed using various tools, such as Gaussian, Chem3D, ChemSketch and MarvinSketch. Computational methods generated the best model based on its statistical parameters. The model’s applicability domain (AD) was elaborated. Furthermore, one compound has been proposed as efficient against HIV-1 protease with comparable biological activity to the existing ones; this drug candidate was evaluated using ADMET properties and Lipinski’s rule. Molecular Docking performed on Wild Type and Mutant Type HIV-1 proteases allowed the investigation of the interaction types displayed between the proteases and the ligands, Darunavir (DRV) and the new drug (ND). Molecular dynamics simulation was also used in order to investigate the complexes’ stability, allowing a comparative study of the performance of both ligands (DRV & ND). Our study suggested that the new molecule showed comparable results to that of Darunavir and may be used for further experimental studies. Our study may also be used as a pipeline to search and design new potential inhibitors of HIV-1 proteases.

Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation.

Procedia PDF Downloads 36