Search results for: urban network space
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11101

Search results for: urban network space

3481 Indian Brands Speak Through Colors That Is ‘Culturally Vibrant’

Authors: Ranjana Dani

Abstract:

Brand communication narratives in India has evolved today to reflect the vibrant and intriguing tone of voice inspired by a rich cultural heritage while addressing the culturally alert attitude of the contemporary global Indian. Brands are strongly associated with the organization's values, vision, and mission and portray this through specific ‘look and feel’ and ‘tone of voice’. It is within the brand’s visual language that COLOUR has evolved to become a most powerful weapon in the designer’s arsenal. Color is big business in Brand Design! A brand is a ‘collection of perceptions’, meaningful brand connect is about striving to occupy head and heart space in consumers. The persona of the young Indian reflects a deep attachment to cultural roots as seen through the characteristic of ‘Indie Pride,’ blended with the ambitious, aspirational traits of a modern ‘global citizen’.Studies on ‘Color Perceptions’ indicate a trend that amplifies this, and hence brands reflect a GLOCAL palette, a Global and Local Blend. This paper establishes this through case studies that expand the inspirations, selection processes, and use of innovative color palettes crafted by some dynamic brand designers. This throws light on the role of color as it generates visual impact and recall for successful brands.

Keywords: colour palettes, brand design and business, cultural context, colour perceptions, glocal, contemporaneity

Procedia PDF Downloads 79
3480 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence

Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar

Abstract:

This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.

Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves

Procedia PDF Downloads 202
3479 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: convolution neural network, deep learning, malaria, thin blood smears

Procedia PDF Downloads 135
3478 Cytochrome B Marker Reveals Three Distinct Genetic Lineages of the Oriental Latrine Fly Chrysomya megacephala (Diptera: Calliphoridae) in Malaysia

Authors: Rajagopal Kavitha, Van Lun Low, Mohd Sofian-Azirun, Chee Dhang Chen, Mohd Yusof Farida Zuraina, Mohd Salleh Ahmad Firdaus, Navaratnam Shanti, Abdul Haiyee Zaibunnisa

Abstract:

This study investigated the hidden genetic lineages in the oriental latrine fly Chrysomya megacephala (Fabricius) across four states (i.e., Johore, Pahang, Perak and Selangor) and a federal territory (i.e., Kuala Lumpur) in Malaysia using Cytochrome b (Cyt b) genetic marker. The Cyt b phylogenetic tree and haplotype network revealed three distinct genetic lineages of Ch. megacephala. Lineage A, the basal clade was restricted to flies that originated from Kuala Lumpur and Selangor, while Lineages B and C, comprised of flies from all studied populations. An overlap of the three genetically divergent groups of Ch. megacephala was observed. However, the flies from both Kuala Lumpur and Selangor populations consisted of three different lineages, indicating that they are genetically diverse compared to those from Pahang, Perak and Johore.

Keywords: forensic entomology, calliphoridae, mitochondrial DNA, cryptic lineage

Procedia PDF Downloads 515
3477 Enhanced Iceberg Information Dissemination for Public and Autonomous Maritime Use

Authors: Ronald Mraz, Gary C. Kessler, Ethan Gold, John G. Cline

Abstract:

The International Ice Patrol (IIP) continually monitors iceberg activity in the North Atlantic by direct observation using ships, aircraft, and satellite imagery. Daily reports detailing navigational boundaries of icebergs have significantly reduced the risk of iceberg contact. What is currently lacking is formatting this data for automatic transmission and display of iceberg navigational boundaries in commercial navigation equipment. This paper describes the methodology and implementation of a system to format iceberg limit information for dissemination through existing radio network communications. This information will then automatically display on commercial navigation equipment. Additionally, this information is reformatted for Google Earth rendering of iceberg track line limits. Having iceberg limit information automatically available in standard navigation equipment will help support full autonomous operation of sailing vessels.

Keywords: iceberg, iceberg risk, iceberg track lines, AIS messaging, international ice patrol, North American ice service, google earth, autonomous surface vessels

Procedia PDF Downloads 142
3476 A Textile-Based Scaffold for Skin Replacements

Authors: Tim Bolle, Franziska Kreimendahl, Thomas Gries, Stefan Jockenhoevel

Abstract:

The therapeutic treatment of extensive, deep wounds is limited. Autologous split-skin grafts are used as a so-called ‘gold standard’. Most common deficits are the defects at the donor site, the risk of scarring as well as the limited availability and quality of the autologous grafts. The aim of this project is a tissue engineered dermal-epidermal skin replacement to overcome the limitations of the gold standard. A key requirement for the development of such a three-dimensional implant is the formation of a functional capillary-like network inside the implant to ensure a sufficient nutrient and gas supply. Tailored three-dimensional warp knitted spacer fabrics are used to reinforce the mechanically week fibrin gel-based scaffold and further to create a directed in vitro pre-vascularization along the parallel-oriented pile yarns within a co-culture. In this study various three-dimensional warp knitted spacer fabrics were developed in a factorial design to analyze the influence of the machine parameters such as the stitch density and the pattern of the fabric on the scaffold performance and further to determine suitable parameters for a successful fibrin gel-incorporation and a physiological performance of the scaffold. The fabrics were manufactured on a Karl Mayer double-bar raschel machine DR 16 EEC/EAC. A fine machine gauge of E30 was used to ensure a high pile yarn density for sufficient nutrient, gas and waste exchange. In order to ensure a high mechanical stability of the graft, the fabrics were made of biocompatible PVDF yarns. Key parameters such as the pore size, porosity and stress/strain behavior were investigated under standardized, controlled climate conditions. The influence of the input parameters on the mechanical and morphological properties as well as the ability of fibrin gel incorporation into the spacer fabric was analyzed. Subsequently, the pile yarns of the spacer fabrics were colonized with Human Umbilical Vein Endothelial Cells (HUVEC) to analyze the ability of the fabric to further function as a guiding structure for a directed vascularization. The cells were stained with DAPI and investigated using fluorescence microscopy. The analysis revealed that the stitch density and the binding pattern have a strong influence on both the mechanical and morphological properties of the fabric. As expected, the incorporation of the fibrin gel was significantly improved with higher pore sizes and porosities, whereas the mechanical strength decreases. Furthermore, the colonization trials revealed a high cell distribution and density on the pile yarns of the spacer fabrics. For a tailored reinforcing structure, the minimum porosity and pore size needs to be evaluated which still ensures a complete incorporation of the reinforcing structure into the fibrin gel matrix. That will enable a mechanically stable dermal graft with a dense vascular network for a sufficient nutrient and oxygen supply of the cells. The results are promising for subsequent research in the field of reinforcing mechanically weak biological scaffolds and develop functional three-dimensional scaffolds with an oriented pre-vascularization.

Keywords: fibrin-gel, skin replacement, spacer fabric, pre-vascularization

Procedia PDF Downloads 257
3475 Volunteering and Social Integration of Ex-Soviet Immigrants in Israel

Authors: Natalia Khvorostianov, Larissa Remennick

Abstract:

Recent immigrants seldom join the ranks of volunteers for various social causes. This gap reflects both material reasons (immigrants’ lower income and lack of free time) and cultural differences (value systems, religiosity, language barrier, attitudes towards host society, etc.). Immigrants from the former socialist countries are particularly averse to organized forms of volunteering for a host of reasons rooted in their past, including the memories of false or forced forms of collectivism imposed by the state. In this qualitative study, based on 21 semi-structured interviews, we explored the perceptions and practices of volunteer work among FSU immigrants - participants in one volunteering project run by an Israeli NGO for the benefit of elderly ex-Soviet immigrants. Our goal was to understand the motivations of immigrant volunteers and the role of volunteering in the processes of their own social and economic integration in their adopted country – Israel. The results indicate that most volunteers chose causes targeting fellow immigrants, their resettlement and well-being, and were motivated by the wish to build co-ethnic support network and overcome marginalization in the Israeli society. Other volunteers were driven by the need for self-actualization in the context of underemployment and occupational downgrading.

Keywords: FSU immigrants, integration, volunteering, participation, social capital

Procedia PDF Downloads 399
3474 Application of Cube IQ Software to Optimize Heterogeneous Packing Products in Logistics Cargo and Minimize Transportation Cost

Authors: Muhammad Ganda Wiratama

Abstract:

XYZ company is one of the upstream chemical companies that produce chemical products such as NaOH, HCl, NaClO, VCM, EDC, and PVC for downstream companies. The products are shipped by land using trucks and sea lanes using ship mode. Especially for solid products such as flake caustic soda (F-NaOH) and PVC resin, the products are sold in loose bag packing and palletize packing (packed in pallet). The focus of this study is to increase the number of items that can be loaded in pallet packaging on the company's logistics vehicle. This is very difficult because on this packaging, the dimensions or size of the material to be loaded become larger and certainly much heavier than the loose bag packing. This factor causes the arrangement and handling of materials in the mode of transportation more difficult. In this case, it is difficult to load a different type of volume packing pallet dimension in one truck or container. By using the Cube-IQ software, it is hoped that the planning of stuffing activity material by pallet can become easier in optimizing the existing space with various possible combinations of possibilities. In addition, the output of this software can also be used as a reference for operators in the material handling include the order and orientation of materials contained in the truck or container. The more optimal contents of logistics cargo, then transportation costs can also be minimized.

Keywords: loading activity, container loading, palletize product, simulation

Procedia PDF Downloads 300
3473 Thyroid Hormones and Thyrotropin Status in Nepalese Postmenopausal Women

Authors: S. A. Khan, B. Mishra, O. Sherchan

Abstract:

Background and Aims: Thyroid disorder is the most common endocrine disorder after diabetes mellitus. Females are more vulnerable to this disease, and old age is an important risk factor. This study was undertaken to investigate the burden of thyroid disorder in Nepalese postmenopausal women. Methods: In the present cross-sectional study, we included 271 post-menopausal women. Three ml of blood was collected following standard protocol after taking the written consent. Serum was separated and analyzed for free T3, free T4, and Thyroid Stimulating Hormone (TSH) by Chemiluminescence Immunoassay (CLIA) method in Snibe Maglumi 1000 analyzer. Data obtained was analyzed in SPSS Version 21. P < 0.05 was set for statistical significant at 95% Confidence Interval (CI). Results: Majority of the participants belong to Janjati (46.5%) ethnicity, followed by Brahmin/Chhetri (41.7%), residing either in urban or suburban locality. Most of them were non-vegetarian, non-smoker, and non-alcoholic. Subjects were divided into hyperthyroid (TSH < 0.3 uIU/ml), hypothyroid (TSH > 4.5 uIU/ml), and euthyroid (TSH=0.3-4.5 uIU/ml) based on TSH value. We reported 10.3% hyperthyroid and 29.2% hypothyroid cases. TSH was significantly correlated with T3 (r=-0.244; p < 0.001) T4 (r=-0.398; p < 0.001); age (r=-0.138; p=0.023) and BMI (r=0.123; p=0.043). Multiple linear regression model for TSH reveals only T3 and T4 were significantly associated with TSH (p < 0.001; p=0.001). Conclusion: To conclude, nearly 39.5% of the postmenopausal women had thyroid disorder. Postmenopausal women are vulnerable to thyroid disorder; therefore, requires regular thyroid monitoring.

Keywords: thyroid stimulating hormone, TSH, T3, T4, thyroid disorder

Procedia PDF Downloads 133
3472 Formex Algebra Adaptation into Parametric Design Tools: Dome Structures

Authors: Réka Sárközi, Péter Iványi, Attila B. Széll

Abstract:

The aim of this paper is to present the adaptation of the dome construction tool for formex algebra to the parametric design software Grasshopper. Formex algebra is a mathematical system, primarily used for planning structural systems such like truss-grid domes and vaults, together with the programming language Formian. The goal of the research is to allow architects to plan truss-grid structures easily with parametric design tools based on the versatile formex algebra mathematical system. To produce regular structures, coordinate system transformations are used and the dome structures are defined in spherical coordinate system. Owing to the abilities of the parametric design software, it is possible to apply further modifications on the structures and gain special forms. The paper covers the basic dome types, and also additional dome-based structures using special coordinate-system solutions based on spherical coordinate systems. It also contains additional structural possibilities like making double layer grids in all geometry forms. The adaptation of formex algebra and the parametric workflow of Grasshopper together give the possibility of quick and easy design and optimization of special truss-grid domes.

Keywords: parametric design, structural morphology, space structures, spherical coordinate system

Procedia PDF Downloads 259
3471 Geoecological Problems of Karst Waters in Chiatura Municipality, Georgia

Authors: Liana Khandolishvili, Giorgi Dvalashvili

Abstract:

Karst waters in the world play an important role in the water supply. Among them, the Vaucluse in Chiatura municipality (Georgia) is used as drinking water and is irreplaceable for the local population. Accordingly, it is important to assess their geo-ecological conditions and take care to maintain sustainability. The aim of the paper is to identify the hazards of pollution of underground waters in the karst environment and to develop a scheme for their protection, which will take into consideration both the hydrogeological characteristics and the role of humans. To achieve this goal, the EPIK method was selected using which an epikarst zone of the study area was studied in detail, as well as the protective cover, infiltration conditions and frequency of karst network development, after which the conditions of karst waters in Chiatura municipality was assessed, their main pollutants were identified and the recommendations were prepared for their protection. The results of the study showed that the karst water pollution rate in Chiatura municipality is highest, where karst-fissured layers are represented and intensive extraction works are underway. The EPIK method is innovative in Georgia and was first introduced on the example of karst waters of Chiatura municipality.

Keywords: cave, EPIK method, pollution, Karst waters, geology, geography, ecology

Procedia PDF Downloads 98
3470 Effect of Ti+ Irradiation on the Photoluminescence of TiO2 Nanofibers

Authors: L. Chetibi, D. Hamana, T. O. Busko, M. P. Kulish, S. Achour

Abstract:

TiO2 nanostructures have attracted much attention due to their optical, dielectric and photocatalytic properties as well as applications including optical coating, photocatalysis and photoelectrochemical solar cells. This work aims to prepare TiO2 nanofibers (NFs) on titanium substrate (Ti) by in situ oxidation of Ti foils in a mixture solution of concentrated H2O2 and NaOH followed by proton exchange and calcinations. Scanning Electron microscopy (SEM) revealed an obvious network of TiO2 nanofibers. The photoluminescence (PL) spectra of these nanostructures revealed a broad intense band in the visible light range with a reduced near edge band emission. The PL bands in the visible region, mainly, results from surface oxygen vacancies and others defects. After irradiation with Ti+ ions (the irradiation energy was E = 140 keV with doses of 1013 ions/cm2), the intensity of the PL spectrum decreased as a consequence of the radiation treatment. The irradiation with Ti+ leads to a reduction of defects and generation of non irradiative defects near to the level of the conduction band as evidenced by the PL results. On the other hand, reducing the surface defects on TiO2 nanostructures may improve photocatalytic and optoelectronic properties of this nanostructure.

Keywords: TiO2, nanofibers, photoluminescence, irradiation

Procedia PDF Downloads 248
3469 Voices of Fear: A Case Study Of Tobephobia Experienced by Female Teachers

Authors: Prakash Singh

Abstract:

In this exploratory qualitative case study, the voices of female teachers are captured that describe their fear of failure in coping with their daily anxieties, stresses, and tensions in their classrooms. When teachers are usually appointed, the curriculum forms the heart of all their professional obligations. The policy of quality and equality of education for all learners is a must as part of these deliberations, otherwise it would spell the inevitable failure for teachers. Yet, how often have teachers been asked whether they are happy during their professional tenure. Research affirms that this question is not a priority, seeing that the happiness of learners and the educational administrators enjoy precedence. Teachers are often subject to undue pressures and tensions because of environmental factors that extends beyond the curriculum. School violence, bullying, drug abuse, and gangsters are not uncommon to the school milieu, no matter where such schools can be located. In this case study, the voices of female teachers find space concerning their experiences of tobephobia (TBP). The questions that inevitably arise are: Are the educational authorities aware of the effects of TBP in education? What can be done to arrest and eliminate the debilitating effects of TBP? This exploratory study contributes to the growing concerns of TBP in education. It is therefore imperative that the effects of TBP on human resources in education must be accentuated so that meaningful solutions can be found to address challenging educational issues such as school violence, bullying, and drug abuse amongst learners.

Keywords: curriculum, female teachers, school violence, tobephobia

Procedia PDF Downloads 409
3468 Traffic Analysis and Prediction Using Closed-Circuit Television Systems

Authors: Aragorn Joaquin Pineda Dela Cruz

Abstract:

Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.

Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction

Procedia PDF Downloads 106
3467 Embedded Digital Image System

Authors: Dawei Li, Cheng Liu, Yiteng Liu

Abstract:

This paper introduces an embedded digital image system for Chinese space environment vertical exploration sounding rocket. In order to record the flight status of the sounding rocket as well as the payloads, an onboard embedded image processing system based on ADV212, a JPEG2000 compression chip, is designed in this paper. Since the sounding rocket is not designed to be recovered, all image data should be transmitted to the ground station before the re-entry while the downlink band used for the image transmission is only about 600 kbps. Under the same condition of compression ratio compared with other algorithm, JPEG2000 standard algorithm can achieve better image quality. So JPEG2000 image compression is applied under this condition with a limited downlink data band. This embedded image system supports lossless to 200:1 real time compression, with two cameras to monitor nose ejection and motor separation, and two cameras to monitor boom deployment. The encoder, ADV7182, receives PAL signal from the camera, then output the ITU-R BT.656 signal to ADV212. ADV7182 switches between four input video channels as the program sequence. Two SRAMs are used for Ping-pong operation and one 512 Mb SDRAM for buffering high frame-rate images. The whole image system has the characteristics of low power dissipation, low cost, small size and high reliability, which is rather suitable for this sounding rocket application.

Keywords: ADV212, image system, JPEG2000, sounding rocket

Procedia PDF Downloads 425
3466 Time Series Analysis of Air Pollution in Suceava County ( Nord- East of Romania)

Authors: Lazurca Liliana Gina

Abstract:

Different time series analysis of yearly air pollution at Suceava County, Nord-East of Romania, has been performed in this study. The trends in the atmospheric concentrations of the main gaseous and particulate pollutants in urban, industrial and rural environments across Suceava County were estimated for the period of 2008-2014. The non-parametric Mann-Kendall test was used to determine the trends in the annual average concentrations of air pollutants (NO2, NO, NOx, SO2, CO, PM10, O3, C6H6). The slope was estimated using the non-parametric Sen’s method. Trend significance was assumed at the 5% significance level (p < 0.05) in the current study. During the 7 year period, trends in atmospheric concentrations may not have been monotonic, in some instances concentrations of species increased and subsequently decreased. The trend in Suceava County is to keep a low concentration of pollutants in ambient air respecting the limit values.All the results that we obtained show that Romania has taken a lot of regulatory measures to decrease the concentrations of air pollutants in the last decade, in Suceava County the air quality monitoring highlight for the most part of the analyzed pollutants decreasing trends. For the analyzed period we observed considerable improvements in background air in Suceava County.

Keywords: pollutant, trend, air quality monitoring, Mann-Kendall

Procedia PDF Downloads 370
3465 Optimizing the Residential Design Process Using Automated Technologies

Authors: Milena Nanova, Martin Georgiev, Damyan Damov

Abstract:

Modern residential architecture is increasingly influenced by rapid urbanization, technological advancements, and growing investor expectations. The integration of AI and digital tools such as CAD and BIM (Building Information Modelling) is transforming the design process by improving efficiency, accuracy, and speed. However, urban development faces challenges, including the high competition for viable sites and the time-consuming nature of traditional investment feasibility studies and architectural planning. Finding and analyzing suitable sites for residential development is complicated by intense competition and rising investor demands. Investors require quick assessments of property potential to avoid missing opportunities, while traditional architectural design processes rely on the experience of the team and can be time-consuming, adding pressure to make fast, effective decisions. The widespread use of CAD tools has sped up the drafting process, enhancing both accuracy and efficiency. Digital tools allow designers to manipulate drawings quickly, reducing the time spent on revisions. BIM further advances this by enabling native 3D modelling, where changes to a design in one view are automatically reflected in all others, minimizing errors and saving time. AI is becoming an integral part of architectural design software. While AI is currently being incorporated into existing programs like AutoCAD, Revit, and ArchiCAD, its full potential is reached in parametric modelling. In this process, designers define parameters (e.g., building size, layout, and materials), and the software generates multiple design variations based on those inputs. This method accelerates the design process by automating decisions and enabling the quick generation of alternative solutions. The study utilizes generative design, a specific application of parametric modelling that uses Machine Learning (ML) to explore a wide range of design possibilities based on predefined criteria. It optimizes designs through iterations, testing many variations to find the best solutions. This process is particularly beneficial in the early stages of design, where multiple options are explored before refining the best ones. ML’s ability to handle complex mathematical tasks allows it to generate unconventional yet effective designs that a human designer might overlook. Residential architecture, with its anticipated and typical layouts and modular nature, is especially suitable for generative design. The relationships between rooms and the overall organization of apartment units follow logical patterns, making it an ideal candidate for parametric modelling. Using these tools, architects can quickly explore various apartment configurations, considering factors like apartment sizes, types, and circulation patterns, and identify the most efficient layout for a given site. Parametric modelling and generative design offer significant benefits to residential architecture by streamlining the design process, enabling faster decision-making, and optimizing building layouts. These technologies allow architects and developers to analyze numerous design possibilities, improving outcomes while responding to the challenges of urban development. By integrating ML-driven generative design, the architecture industry can enhance creativity, efficiency, and adaptability in residential projects.

Keywords: architectural design, generative design, parametric models, residential buildings, workflow optimization

Procedia PDF Downloads 14
3464 Traditional Terms, Spaces, Forms and Artifacts in Cultural Semiotics of Southwest Nigeria

Authors: Ajibade Adeyemo

Abstract:

The paper examined local terms used for spaces, forms and building practices in southwest Nigeria as cultural semiotics. Housing has more cultural meaning than mere shelter as shown in building terms such as ‘roof over my head’. The study is significant in the study area because its people were traditionally orally centered until ‘culture contact’ led to graphical presentation and appreciation in the form of drawings which is a modern language of architecture. This semiotic study will facilitate the understanding of the wholesomeness of traditional building practices and thoughts. This is in the culture of the traditional multi-sensory appreciation of architecture, urban design and the arts. It will analyze traditional aphoristic words and terms which are like proverbs which are significant in language because of their metaphorical essence. Many of such terms in the dominant Yoruba language of the study area are oftentimes phenomenal reducing universal terms like the earth and heaven to the simple module of housing. These words could be worth investigating because they are symbolic serve as codes which are cultural tool of regional ethnic significance. Sassure’s and Pierce’s concepts of Semiotics in line with Eco’s concept of semiotics of metaphor shall be deployed.

Keywords: traditional terms, spaces, forms, artifacts, cultural semiotics, southwest

Procedia PDF Downloads 281
3463 Comparison between Hardy-Cross Method and Water Software to Solve a Pipe Networking Design Problem for a Small Town

Authors: Ahmed Emad Ahmed, Zeyad Ahmed Hussein, Mohamed Salama Afifi, Ahmed Mohammed Eid

Abstract:

Water has a great importance in life. In order to deliver water from resources to the users, many procedures should be taken by the water engineers. One of the main procedures to deliver water to the community is by designing pressurizer pipe networks for water. The main aim of this work is to calculate the water demand of a small town and then design a simple water network to distribute water resources among the town with the smallest losses. Literature has been mentioned to cover the main point related to water distribution. Moreover, the methodology has introduced two approaches to solve the research problem, one by the iterative method of Hardy-cross and the other by water software Pipe Flow. The results have introduced two main designs to satisfy the same research requirements. Finally, the researchers have concluded that the use of water software provides more abilities and options for water engineers.

Keywords: looping pipe networks, hardy cross networks accuracy, relative error of hardy cross method

Procedia PDF Downloads 172
3462 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 184
3461 Quantum Sieving for Hydrogen Isotope Separation

Authors: Hyunchul Oh

Abstract:

One of the challenges in modern separation science and technology is the separation of hydrogen isotopes mixtures since D2 and H2 consist of almost identical size, shape and thermodynamic properties. Recently, quantum sieving of isotopes by confinement in narrow space has been proposed as an alternative technique. Despite many theoretical suggestions, however, it has been difficult to discover a feasible microporous material up to now. Among various porous materials, the novel class of microporous framework materials (COFs, ZIFs and MOFs) is considered as a promising material class for isotope sieving due to ultra-high porosity and uniform pore size which can be tailored. Hence, we investigate experimentally the fundamental correlation between D2/H2 molar ratio and pore size at optimized operating conditions by using different ultramicroporous frameworks. The D2/H2 molar ratio is strongly depending on pore size, pressure and temperature. An experimentally determined optimum pore diameter for quantum sieving lies between 3.0 and 3.4 Å which can be an important guideline for designing and developing feasible microporous frameworks for isotope separation. Afterwards, we report a novel strategy for efficient hydrogen isotope separation at technologically relevant operating pressure through the development of quantum sieving exploited by the pore aperture engineering. The strategy involves installation of flexible components in the pores of the framework to tune the pore surface.

Keywords: gas adsorption, hydrogen isotope, metal organic frameworks(MOFs), quantum sieving

Procedia PDF Downloads 268
3460 Adoption and Diffusion of Valuation Standards in the Forensic Accounting Community and in Courts: Facilitating and Inhibiting Factors

Authors: Matteo Manera, Mariateresa Torchia, Gregory Moscato

Abstract:

Forensic accounting is a hot subject of research in accounting. Valuation remains one of the major topics for practitioners. Valuation standards are a powerful instrument that can contribute to a fair process: their use aims at reducing subjectivity and arbitrary decisions in courts. In most jurisdictions, valuation standards are not the law: forensic accountants are not obliged to use valuation standards when they perform valuation works for judges. To date, as far as we know, no literature work has investigated adoption and diffusion of valuation standards in the forensic accounting space. In this paper, we analyze the spread of valuation standards through the lenses of isomorphism and -as corollaries- of Agency Theory and Signaling Theory. Because of lack of research in the particular area of valuation standards adoption, the present work relies on qualitative, exploratory research, based on semi-structured interviews conducted (up to saturation) with expert forensic accountants. Our work digs into motivations behind adoption and diffusion, as well into perceptions of forensic accountants around benefits of valuation standards and into barriers to their diffusion: the result is that, while the vast majority of forensic accountants praise the great work of the standards setters in introducing valuation standards, it might be that less than 50% of forensic accountants actually use valuation standards, in courts. Our preliminary findings, to be supported or refuted by future research, lead us to address a “trilogy” of recommendations to the stakeholders involved in the process of adoption and diffusion of valuation standards in courts.

Keywords: forensic accounting, valuation standards, adoption of standards, motivations, benefits, barriers, Isomorphism

Procedia PDF Downloads 177
3459 Effective Design Factors for Bicycle-Friendly Streets

Authors: Zohreh Asadi-Shekari, Mehdi Moeinaddini, Muhammad Zaly Shah, Amran Hamzah

Abstract:

Bicycle level of service (BLOS) is a measure for evaluating street conditions for cyclists. Currently, various methods are proposed for BLOS. These analytical methods however have some drawbacks: they usually assume cyclists as users that can share street facilities with motorized vehicles, it is not easy to link them to design process and they are not easy to follow. In addition, they only support a narrow range of cycling facilities and may not be applicable for all situations. Along this, the current paper introduces various effective design factors for bicycle-friendly streets. This study considers cyclists as users of streets who have special needs and facilities. Therefore, the key factors that influence BLOS based on different cycling facilities that are proposed by developed guidelines and literature are identified. The combination of these factors presents a complete set of effective design factors for bicycle-friendly streets. In addition, the weight of each factor in existing BLOS models is estimated and these effective factors are ranked based on these weights. These factors and their weights can be used in further studies to propose special bicycle-friendly street design model.

Keywords: bicycle level of service, bicycle-friendly streets, cycling facilities, rating system, urban streets

Procedia PDF Downloads 489
3458 Survey on Fiber Optic Deployment for Telecommunications Operators in Ghana: Coverage Gap, Recommendations and Research Directions

Authors: Francis Padi, Solomon Nunoo, John Kojo Annan

Abstract:

The paper "Survey on Fiber Optic Deployment for Telecommunications Operators in Ghana: Coverage Gap, Recommendations and Research Directions" presents a comprehensive survey on the deployment of fiber optic networks for telecommunications operators in Ghana. It addresses the challenges encountered by operators using microwave transmission systems for backhauling traffic and emphasizes the advantages of deploying fiber optic networks. The study delves into the coverage gap, provides recommendations, and outlines research directions to enhance the telecommunications infrastructure in Ghana. Additionally, it evaluates next-generation optical access technologies and architectures tailored to operators' needs. The paper also investigates current technological solutions and regulatory, technical, and economical dimensions related to sharing mobile telecommunication networks in emerging countries. Overall, this paper offers valuable insights into fiber optic network deployment for telecommunications operators in Ghana and suggests strategies to meet the increasing demand for data and mobile applications.

Keywords: survey on fiber optic deployment, coverage gap, recommendations, research directions

Procedia PDF Downloads 31
3457 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 93
3456 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 118
3455 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic

Authors: N. Drir, L. Barazane, M. Loudini

Abstract:

It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.

Keywords: maximum power point tracking, neural networks, photovoltaic, P&O

Procedia PDF Downloads 341
3454 Polite Request Strategies in Commuter Discourse in Xhosa

Authors: Mawande Dlali

Abstract:

This paper examines the request strategies in commuter discourse involving taxi drivers and passengers in Khayelitsha as well as the responses to these requests. The present study considers requests in commuter transport as face threatening acts (FTAs), hence the need for the commuter crew to strategically shape their communicative actions to achieve their overall discourse goal of getting passengers to perform actions that are in their own interest with minimum resistance or confrontation. The crew presents itself by using communicative devices that prompt the passengers to evaluate it positively as warm, friendly, and respectful. However, the passengers' responses to requests range from compliance to resistance depending on their interpretation of the speaker’s motive and the probable social consequences. Participant observation by the researcher was the main method of collecting examples of requests and responses to the requests. Unstructured interviews and informal discussions were made with randomly selected taxi drivers and commuters. The findings and explanations presented in this article revealed the predominance of polite requests as speech acts in taxi discourse in Khayelitsha. This research makes a contribution to the contemporary pragmatics study of African languages in urban context.

Keywords: face threatening acts, speech acts, request strategies, discourse

Procedia PDF Downloads 169
3453 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation

Authors: Ke He, Wumaier Parezhati, Haruka Yamashita

Abstract:

Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.

Keywords: Doc2Vec, online marketplace, marketing, recommendation systems

Procedia PDF Downloads 115
3452 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 80