Search results for: active power tuning
2197 A Study on the Effect of the Work-Family Conflict on Work Engagement: A Mediated Moderation Model of Emotional Exhaustion and Positive Psychology Capital
Authors: Sungeun Hyun, Sooin Lee, Gyewan Moon
Abstract:
Work-Family Conflict has been an active research area for the past decades. Work-Family Conflict harms individuals and organizations, it is ultimately expected to bring the cost of losses to the company in the long run. WFC has mainly focused on effects of organizational effectiveness and job attitude such as Job Satisfaction, Organizational Commitment, and Turnover Intention variables. This study is different from consequence variable with previous research. For this purpose, we selected the positive job attitude 'Work Engagement' as a consequence of WFC. This research has its primary research purpose in identifying the negative effects of the Work-Family Conflict, and started out from the recognition of the problem that the research on the direct relationship on the influence of the WFC on Work Engagement is lacking. Based on the COR(Conservation of resource theory) and JD-R(Job Demand- Resource model), the empirical study model to examine the negative effects of WFC with Emotional Exhaustion as the link between WFC and Work Engagement was suggested and validated. Also, it was analyzed how much Positive Psychological Capital may buffer the negative effects arising from WFC within this relationship, and the Mediated Moderation model controlling the indirect effect influencing the Work Engagement by the Positive Psychological Capital mediated by the WFC and Emotional Exhaustion was verified. Data was collected by using questionnaires distributed to 500 employees engaged manufacturing, services, finance, IT industry, education services, and other sectors, of which 389 were used in the statistical analysis. The data are analyzed by statistical package, SPSS 21.0, SPSS macro and AMOS 21.0. The hierarchical regression analysis, SPSS PROCESS macro and Bootstrapping method for hypothesis testing were conducted. Results showed that all hypotheses are supported. First, WFC showed a negative effect on Work Engagement. Specifically, WIF appeared to be on more negative effects than FIW. Second, Emotional exhaustion found to mediate the relationship between WFC and Work Engagement. Third, Positive Psychological Capital showed to moderate the relationship between WFC and Emotional Exhaustion. Fourth, the effect of mediated moderation through the integration verification, Positive Psychological Capital demonstrated to buffer the relationship among WFC, Emotional Exhastion, and Work Engagement. Also, WIF showed a more negative effects than FIW through verification of all hypotheses. Finally, we discussed the theoretical and practical implications on research and management of the WFC, and proposed limitations and future research directions of research.Keywords: emotional exhaustion, positive psychological capital, work engagement, work-family conflict
Procedia PDF Downloads 2212196 Incentive-Based Motivation to Network with Coworkers: Strengthening Professional Networks via Online Social Networks
Authors: Jung Lee
Abstract:
The last decade has witnessed more people than ever before using social media and broadening their social circles. Social media users connect not only with their friends but also with professional acquaintances, primarily coworkers, and clients; personal and professional social circles are mixed within the same social media platform. Considering the positive aspect of social media in facilitating communication and mutual understanding between individuals, we infer that social media interactions with co-workers could indeed benefit one’s professional life. However, given privacy issues, sharing all personal details with one’s co-workers is not necessarily the best practice. Should one connect with coworkers via social media? Will social media connections with coworkers eventually benefit one’s long-term career? Will the benefit differ across cultures? To answer, this study examines how social media can contribute to organizational communication by tracing the foundation of user motivation based on social capital theory, leader-member exchange (LMX) theory and expectancy theory of motivation. Although social media was originally designed for personal communication, users have shown intentions to extend social media use for professional communication, especially when the proper incentive is expected. To articulate the user motivation and the mechanism of the incentive expectation scheme, this study applies those three theories and identify six antecedents and three moderators of social media use motivation including social network flaunt, shared interest, perceived social inclusion. It also hypothesizes that the moderating effects of those constructs would significantly differ based on the relationship hierarchy among the workers. To validate, this study conducted a survey of 329 active social media users with acceptable levels of job experiences. The analysis result confirms the specific roles of the three moderators in social media adoption for organizational communication. The present study contributes to the literature by developing a theoretical modeling of ambivalent employee perceptions about establishing social media connections with co-workers. This framework shows not only how both positive and negative expectations of social media connections with co-workers are formed based on expectancy theory of motivation, but also how such expectations lead to behavioral intentions using career success model. It also enhances understanding of how various relationships among employees can be influenced through social media use and such usage can potentially affect both performance and careers. Finally, it shows how cultural factors induced by social media use can influence relations among the coworkers.Keywords: the social network, workplace, social capital, motivation
Procedia PDF Downloads 1232195 The Need for Implementing Building Information Modelling (BIM) and Integrated Project Delivery (IPD) in the Construction Project: A Case Study in UAE
Authors: C. W. F. Che Wan Putra, M. Alshawi, M. S. Al Ahbabi, M. Jabakhanji
Abstract:
Much of the waste that is generated throughout the life-cycle of a building is mainly related to project stakeholders not having access to information that others have created. This results in waste and high costs. Over the past decade, however, the industry reacted to these challenges by adopting effective procurement approaches, such as partnering and design and build, to improve collaboration and communication among projects’ stakeholders. Most recently, there is a focus on creating and reusing digital project information of stakeholders throughout the life-cycle to facilitate the exchange of information among partners. This shift is based around BIM (Building Information Modelling) and collaborative environment (IPD). The power of collaborative BIM goes beyond improving efficiency. Sustainability, perhaps the most important challenge for the design and construction community, is at the intersection of BIM and collaborative project delivery, drawing strength from both. Due to these benefits, a research study has been carried out to investigate the need of BIM and IPD, on a large scale construction project which is procured on a traditional approach, i.e. design-bid-build. A qualitative research work including a semi-structured interview with project partners was conducted on a typical project in the UAE, whereby the selected project suffered from severe delays and cost overrun. This paper aims to bring about clear evidence to what most likely to happen to a typical construction project in spite of employing very good consultants, project manager and contractors and how these problems could have been avoided if BIM and IPD were deployed.Keywords: building information modelling (BIM), integrated project delivery (IPD), collaborative environment, case study
Procedia PDF Downloads 3972194 The Reasons for Failure in Writing Essays: Teaching Writing as a Project-Based Enterprise
Authors: Ewa Toloczko
Abstract:
Studies show that developing writing skills throughout years of formal foreign language instruction does not necessarily result in rewarding accomplishments among learners, nor an affirmative attitude they build towards written assignments. What causes this apparently wide-spread bias to writing might be a diminished relevance students attach to it, as opposed to the other productive skill — speaking, insufficient resources available for them to succeed, or the ways writing is approached by instructors, that is inapt teaching techniques that discourage rather that inflame learners’ engagement. The assumption underlying this presentation is that psychological and psycholinguistic factors constitute a key dimension of every writing process, and hence should be seriously considered in both material design and lesson planning. The author intends to demonstrate research in which writing tasks were conceived of as attitudinal rather than technical operations, and consequently turned into meaningful and socially-oriented incidents that students could relate to and have an active hand in. The instrument employed to achieve this purpose and to make writing even more interactive was the format of a project, a carefully devised series of tasks, which involved students as human beings, not only language learners. The projects rested upon the premise that the presence of peers and the teacher in class could be taken advantage of in a supportive rather than evaluative mode. In fact, the research showed that collaborative work and constant meaning negotiation reinforced not only bonds between learners, but also the language form and structure of the output. Accordingly, the role of the teacher shifted from the assessor to problem barometer, always ready to accept the slightest improvements in students’ language performance. This way, written verbal communication, which usually aims to merely manifest accuracy and coherent content for assessment, became part of the enterprise meant to emphasise its social aspect — the writer in real-life setting. The samples of projects show the spectrum of possibilities teachers have when exploring the domain of writing within school curriculum. The ideas are easy to modify and adjust to all proficiency levels and ages. Initially, however, they were meant to suit teenage and young adult learners of English as a foreign language in both European and Asian contexts.Keywords: projects, psycholinguistic/ psychological dimension of writing, writing as a social enterprise, writing skills, written assignments
Procedia PDF Downloads 2322193 Comparative Syudy Of Heat Transfer Capacity Limits of Heat Pipe
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also observed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 3742192 A Geographical Study of Vindhyanchal in Mirzapur City, U.P. India
Authors: Akhilendra Nath Tiwary
Abstract:
Vindhyanchal is a very famous pilgrimage and tourism site in the west of Mirzapur city of Uttar Pradesh State in India. The city in east is a commercial center for cotton, metal ware and carpets. Among the Hindu population, it is believed that the primordial creative forces of the GOD and the power of the GODDESS make respective triangles which superimpose opposite to each other as hexagram at a point or node (Bindu (point) +Vasini (located) or Vindhyavasini, located in a point/node). Mirzapur city has served as a natural connecting point between north and south India. Before independence of India from Britain in 1947, it was a flourishing commercial center. Post-independence, the negligence of planning authorities and nexus of bureaucrats and politicians started affecting its development. In the meantime, emergence of new industrial cities as Kanpur, Agra, Moradabad, etc., nearer to the capital city of Delhi, posed serious challenges to the development of this small city as many commercial and business activities along with the skilled workforce started shifting to these new cities or to the relatively bigger neighboring cities of Varanasi in east and Allahabad in west. In the present paper, the significant causes, issues and challenges in development of Vindhyanchal is discussed with geographical perspective. An attempt has been made to find out the ways to restore the lost glory of the city as a center of pilgrimage, tourism, and commerce.Keywords: cultural node, pilgrimage, sacred, Vindhyan triangle, ommercial centre
Procedia PDF Downloads 4412191 Influence of Aluminum Content on the Microstructural, Mechanical and Tribological Properties of TiAlN Coatings for Using in Dental and Surgical Instrumentation
Authors: Hernan D. Mejia, Gilberto B. Gaitan, Mauricio A. Franco
Abstract:
420 steel is normally used in the manufacture of dental and surgical instrumentation, as well as parts in the chemical, pharmaceutical, and food industries, among others, where they must withstand heavy loads and often be in contact with corrosive environments, which leads to wear and deterioration of these steels in relatively short times. In the case of medical applications, the instruments made of this steel also suffer wear and corrosion during the repetitive sterilization processes due to the relatively low achievable hardness of just 50 HRC and its hardly acceptable resistance to corrosion. In order to improve the wear resistance of 420 steel, TiAlN coatings were deposited, increasing the aluminum content in the alloy by varying the power applied to the aluminum target of 900, 1100, and 1300 W. Evaluations using XRD, Micro Raman, XPS, AFM, SEM, and TEM showed a columnar growth crystal structure with an average thickness of 2 microns and consisting of the TiN and TiAlN phases, whose roughness and grain size decrease with a higher Al content. The AlN phase also appears in the sample deposited at 1300W. The hardness, determined by nanoindentation, initially increases with the aluminum content from 9.7 GPa to 17.1 GPa, but then decreases to 15.4 GPa for the sample with the highest aluminum content due to the appearance of hexagonal AlN and a decrease of harder TiN and TiAlN phases. It was observed that the wear coefficient had a contrary behavior, which took values of 2.7; 1.7 and 6.6x10⁻⁶ mm³/N.m, respectively. All the coated samples significantly improved the wear resistance of the uncoated 420 steel.Keywords: hard coatings, magnetron sputtering, TiAlN coatings, surgical instruments, wear resistance
Procedia PDF Downloads 1222190 Heat Pipe Thermal Performance Improvement in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is a simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of the heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force, the liquid phase flows to evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation
Procedia PDF Downloads 4942189 Optimization of Culture Conditions of Paecilomyces Tenuipes, Entomopathogenic Fungi Inoculated into the Silkworm Larva, Bombyx Mori
Authors: Sung-Hee Nam, Kwang-Gill Lee, You-Young Jo, HaeYong Kweon
Abstract:
Entomopathogenic fungi is a Cordyceps species that is isolated from dead silkworm and cicada. Fungi on cicadas were described in old Chinese medicinal books and From ancient times, vegetable wasps and plant worms were widely known to have active substance and have been studied for pharmacological use. Among many fungi belonging to the genus Cordyceps, Cordyceps sinensis have been demonstrated to yield natural products possessing various biological activities and many bioactive components. Generally, It is commonly used to replenish the kidney and soothe the lung, and for the treatment of fatigue. Due to their commercial and economic importance, the demand for Cordyceps has been rapidly increased. However, a supply of Cordyceps specimen could not meet the increasing demand because of their sole dependence on field collection and habitat destruction. Because it is difficult to obtain many insect hosts in nature and the edibility of host insect needs to be verified in a pharmacological aspect. Recently, this setback was overcome that P. tenuipes was able to be cultivated in a large scale using silkworm as host. Pharmacological effects of P. tenuipes cultured on silkworm such as strengthening immune function, anti-fatigue, anti-tumor activity and controlling liver etc have been proved. They are widely commercialized. In this study, we attempted to establish a method for stable growth inhibition of P. tenuipes on silkworm hosts and an optimal condition for synnemata formation. To determine optimum culturing conditions, temperature and light conditions were varied. The length and number of synnemata was highest at 25℃ temperature and 100~300 lux illumination. On an average, the synnemata of wild P. tenuipes measures 70 ㎜ in length and 20 in number; those of the cultured strain were relatively shorter and more in number. The number of synnemata may have increased as a result of inoculating the host with highly concentrated conidia, while the length may have decreased due to limited nutrition per individual. It is not able that changes in light illumination cause morphological variations in the synnemata. However, regulation of only light and temperature could not produce stromata like perithecia, asci, and ascospores. Yamanaka reported that although a complete fruiting body can be produced under optimal culture conditions, it should be regarded as synnemata because it does not develop into an ascoma bearing ascospores.Keywords: paecilomyces tenuipes, entomopathogenic fungi, silkworm larva, bombyx mori
Procedia PDF Downloads 3192188 Heat Pipes Thermal Performance Improvement in H-VAC Systems Using CFD Modeling
Authors: M. Heydari, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 4432187 Hierarchical Zeolites as Catalysts for Cyclohexene Epoxidation Reactions
Authors: Agnieszka Feliczak-Guzik, Paulina Szczyglewska, Izabela Nowak
Abstract:
A catalyst-assisted oxidation reaction is one of the key reactions exploited by various industries. Their conductivity yields essential compounds and intermediates, such as alcohols, epoxides, aldehydes, ketones, and organic acids. Researchers are devoting more and more attention to developing active and selective materials that find application in many catalytic reactions, such as cyclohexene epoxidation. This reaction yields 1,2-epoxycyclohexane and 1,2-diols as the main products. These compounds are widely used as intermediates in the perfume industry and synthesizing drugs and lubricants. Hence, our research aimed to use hierarchical zeolites modified with transition metal ions, e.g., Nb, V, and Ta, in the epoxidation reaction of cyclohexene using microwaveheating. Hierarchical zeolites are materials with secondary porosity, mainly in the mesoporous range, compared to microporous zeolites. In the course of the research, materials based on two commercial zeolites, with Faujasite (FAU) and Zeolite Socony Mobil-5 (ZSM-5) structures, were synthesized and characterized by various techniques, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and low-temperature nitrogen adsorption/desorption isotherms. The materials obtained were then used in a cyclohexene epoxidation reaction, which was carried out as follows: catalyst (0.02 g), cyclohexene (0.1 cm3), acetonitrile (5 cm3) and dihydrogen peroxide (0.085 cm3) were placed in a suitable glass reaction vessel with a magnetic stirrer inside in a microwave reactor. Reactions were carried out at 45° C for 6 h (samples were taken every 1 h). The reaction mixtures were filtered to separate the liquid products from the solid catalyst and then transferred to 1.5 cm3 vials for chromatographic analysis. The test techniques confirmed the acquisition of additional secondary porosity while preserving the structure of the commercial zeolite (XRD and low-temperature nitrogen adsorption/desorption isotherms). The results of the activity of the hierarchical catalyst modified with niobium in the cyclohexene epoxidation reaction indicate that the conversion of cyclohexene, after 6 h of running the process, is about 70%. As the main product of the reaction, 2-cyclohexanediol was obtained (selectivity > 80%). In addition to the mentioned product, adipic acid, cyclohexanol, cyclohex-2-en-1-one, and 1,2-epoxycyclohexane were also obtained. Furthermore, in a blank test, no cyclohexene conversion was obtained after 6 h of reaction. Acknowledgments The work was carried out within the project “Advanced biocomposites for tomorrow’s economy BIOG-NET,” funded by the Foundation for Polish Science from the European Regional Development Fund (POIR.04.04.00-00-1792/18-00.Keywords: epoxidation, oxidation reactions, hierarchical zeolites, synthesis
Procedia PDF Downloads 762186 Effect of Geometry on the Aerodynamic Performance of Darrieus H Yype Vertical Axis Wind Turbine
Authors: Belkheir Noura, Rabah Kerfah, Boumehani Abdellah
Abstract:
The influence of solidity variations on the aerodynamic performance of H type vertical axis wind turbine is studied in this paper. The wind turbine model used in this paper is the three-blade wind turbine with the symmetrical airfoil, NACA0021. The length of the chord is 0.265m. Numerical investigations were implemented for the different solidity by changing the radius and blade number. A two-dimensional model of the wind turbine is employed. The approach a Reynolds-Averaged Navier–Stokes equations, completed by the K- ώ SST turbulence model, is used. Motion mesh model capability of a computational fluid dynamics (CFD) solver is used. For each value of the solidity, the aerodynamics performances and the characteristics of the flow field are studied at several values of the tip speed ratio, λ = 0.5 to λ = 3, with an incoming wind speed of 8 m/s. The results show that increasing the number of blades will reduce the maximum value of the power coefficient of the wind turbine. Also, for the VAWT with a lower solidity can obtain the maximum Cp at a high tip speed ratio. The effects of changing the radius and blade number on aerodynamic performance are almost the same. Finally, for the validation, experimental data from the literature and computational results were compared. In conclusion, to study the influence of the solidity in the performances of the wind turbine is to provide the reference for the design of H type vertical axis wind turbines.Keywords: wind energy, darrieus h type vertical axis wind turbine, computational fluid dynamic, solidity
Procedia PDF Downloads 902185 Investigation on Cost Reflective Network Pricing and Modified Cost Reflective Network Pricing Methods for Transmission Service Charges
Authors: K. Iskandar, N. H. Radzi, R. Aziz, M. S. Kamaruddin, M. N. Abdullah, S. A. Jumaat
Abstract:
Nowadays many developing countries have been undergoing a restructuring process in the power electricity industry. This process has involved disaggregating former state-owned monopoly utilities both vertically and horizontally and introduced competition. The restructuring process has been implemented by the Australian National Electricity Market (NEM) started from 13 December 1998, began operating as a wholesale market for supply of electricity to retailers and end-users in Queensland, New South Wales, the Australian Capital Territory, Victoria and South Australia. In this deregulated market, one of the important issues is the transmission pricing. Transmission pricing is a service that recovers existing and new cost of the transmission system. The regulation of the transmission pricing is important in determining whether the transmission service system is economically beneficial to both side of the users and utilities. Therefore, an efficient transmission pricing methodology plays an important role in the Australian NEM. In this paper, the transmission pricing methodologies that have been implemented by the Australian NEM which are the Cost Reflective Network Pricing (CRNP) and Modified Cost Reflective Network Pricing (MCRNP) methods are investigated for allocating the transmission service charges to the transmission users. A case study using 6-bus system is used in order to identify the best method that reflects a fair and equitable transmission service charge.Keywords: cost-reflective network pricing method, modified cost-reflective network pricing method, restructuring process, transmission pricing
Procedia PDF Downloads 4442184 World’s Fair (EXPO) Induced Heritage
Authors: Işılay Tiarnagh Sheridan
Abstract:
World EXPO, short version for the “exposition”, is a large universal public exhibition held since 1851. Within the 164 years, it was organized 34 times in 22 cities and as a result it has given birth to its very own culture unlike most of other international events. It has an outstanding power in transforming the places, in which it is held, into trademarks via changes in their urban tissues. For that, it is widely remembered with its cities instead of its countries. Within the scope of this change, some constructions were planned to be temporary, some planned to be permanent and some were thought to be temporary but kept afterwards becoming important monuments such as the Crystal Palace of London (though it was destroyed later by a fire) and the Eiffel Tower of Paris. These examples are the most prominent names upon considering World EXPOs. Yet, there are so many other legacies of these events within modern city fabric today that we don’t usually associate with its Expo history. Some of them are leading figures not only for the housing city but for other cities also, such as the first Metro line of Paris during 1900 World EXPO; some of them are listed as monuments of the cities such as Saint Louis Art Museum of 1904 World EXPO; some of them, like Melbourne Royal Exhibition Building of 1880 World’s EXPO, are among UNESCO World Heritage Sites and some of them are the masterpieces of modern architecture such as the famous Barcelona Pavilion, German pavilion of the 1929 World’s EXPO, of Ludwig Mies van der Rohe. Thus, the aim of this paper is to analyze the history of World’s EXPO and its eventual results in the birth of its own cultural heritage. Upon organizing these results, the paper aims to create a brief list of EXPO heritage monuments and sites so as to form a database for their further conservation needs.Keywords: expo, heritage, world's fair, legacy
Procedia PDF Downloads 4402183 Smart Energy Storage: W₁₈O₄₉ NW/Ti₃C₂Tₓ Composite-Enabled All Solid State Flexible Electrochromic Supercapacitors
Authors: Muhammad Hassan, Kemal Celebi
Abstract:
Developing a highly efficient electrochromic energy storage device with sufficient color fluctuation and significant electrochemical performance is highly desirable for practical energy-saving applications. Here, to achieve a highly stable material with a large electrochemical storage capacity, a W₁₈O₄₉ NW/Ti₃C₂Tₓ composite has been fabricated and deposited on a pre-assembled Ag and W₁₈O₄₉ NW conductive network by Langmuir-Blodgett technique. The resulting hybrid electrode composed of 15 layers of W₁₈O₄₉ NW/Ti₃C₂Tₓ exhibits an areal capacitance of 125 mF/cm², with a fast and reversible switching response. An optical modulation of 98.2% can be maintained at a current density of 5 mAcm⁻². Using this electrode, we fabricated a bifunctional symmetric electrochromic supercapacitor device having an energy density of 10.26 μWh/cm² and a power density of 0.605 mW/cm², with high capacity retention and full columbic efficiency over 4000 charge-discharge cycles. Meanwhile, the device displays remarkable electrochromic characteristics, including fast switching time (5 s for coloring and 7 s for bleaching) and a significant coloration efficiency of 116 cm²/C with good optical modulation stability. In addition, the device exhibits remarkable mechanical flexibility and fast switching while being stable over 100 bending cycles, which is promising for real-world applications.Keywords: MXene, nanowires, supercapacitor, ion diffusion, electrochromic, coloration efficiency
Procedia PDF Downloads 742182 Relationship between Electricity Consumption and Economic Growth: Evidence from Nigeria (1971-2012)
Authors: N. E Okoligwe, Okezie A. Ihugba
Abstract:
Few scholars disagrees that electricity consumption is an important supporting factor for economy growth. However, the relationship between electricity consumption and economy growth has different manifestation in different countries according to previous studies. This paper examines the causal relationship between electricity consumption and economic growth for Nigeria. In an attempt to do this, the paper tests the validity of the modernization or depending hypothesis by employing various econometric tools such as Augmented Dickey Fuller (ADF) and Johansen Co-integration test, the Error Correction Mechanism (ECM) and Granger Causality test on time series data from 1971-2012. The Granger causality is found not to run from electricity consumption to real GDP and from GDP to electricity consumption during the year of study. The null hypothesis is accepted at the 5 per cent level of significance where the probability value (0.2251 and 0.8251) is greater than five per cent level of significance because both of them are probably determined by some other factors like; increase in urban population, unemployment rate and the number of Nigerians that benefit from the increase in GDP and increase in electricity demand is not determined by the increase in GDP (income) over the period of study because electricity demand has always been greater than consumption. Consequently; the policy makers in Nigeria should place priority in early stages of reconstruction on building capacity additions and infrastructure development of the electric power sector as this would force the sustainable economic growth in Nigeria.Keywords: economic growth, electricity consumption, error correction mechanism, granger causality test
Procedia PDF Downloads 3082181 Multi-Size Continuous Particle Separation on a Dielectrophoresis-Based Microfluidics Chip
Authors: Arash Dalili, Hamed Tahmouressi, Mina Hoorfar
Abstract:
Advances in lab-on-a-chip (LOC) devices have led to significant advances in the manipulation, separation, and isolation of particles and cells. Among the different active and passive particle manipulation methods, dielectrophoresis (DEP) has been proven to be a versatile mechanism as it is label-free, cost-effective, simple to operate, and has high manipulation efficiency. DEP has been applied for a wide range of biological and environmental applications. A popular form of DEP devices is the continuous manipulation of particles by using co-planar slanted electrodes, which utilizes a sheath flow to focus the particles into one side of the microchannel. When particles enter the DEP manipulation zone, the negative DEP (nDEP) force generated by the slanted electrodes deflects the particles laterally towards the opposite side of the microchannel. The lateral displacement of the particles is dependent on multiple parameters including the geometry of the electrodes, the width, length and height of the microchannel, the size of the particles and the throughput. In this study, COMSOL Multiphysics® modeling along with experimental studies are used to investigate the effect of the aforementioned parameters. The electric field between the electrodes and the induced DEP force on the particles are modelled by COMSOL Multiphysics®. The simulation model is used to show the effect of the DEP force on the particles, and how the geometry of the electrodes (width of the electrodes and the gap between them) plays a role in the manipulation of polystyrene microparticles. The simulation results show that increasing the electrode width to a certain limit, which depends on the height of the channel, increases the induced DEP force. Also, decreasing the gap between the electrodes leads to a stronger DEP force. Based on these results, criteria for the fabrication of the electrodes were found, and soft lithography was used to fabricate interdigitated slanted electrodes and microchannels. Experimental studies were run to find the effect of the flow rate, geometrical parameters of the microchannel such as length, width, and height as well as the electrodes’ angle on the displacement of 5 um, 10 um and 15 um polystyrene particles. An empirical equation is developed to predict the displacement of the particles under different conditions. It is shown that the displacement of the particles is more for longer and lower height channels, lower flow rates, and bigger particles. On the other hand, the effect of the angle of the electrodes on the displacement of the particles was negligible. Based on the results, we have developed an optimum design (in terms of efficiency and throughput) for three size separation of particles.Keywords: COMSOL Multiphysics, Dielectrophoresis, Microfluidics, Particle separation
Procedia PDF Downloads 1822180 Potential Applications of Biosurfactants from Corn Steep Liquor in Cosmetic
Authors: J. M. Cruz, X. Vecıno, L. Rodrıguez-López, J. M. Dominguez, A. B. Moldes
Abstract:
The cosmetic and personal care industry are the fields where biosurfactants could have more possibilities of success because in this kind of products the replacement of synthetic detergents by natural surfactants will provide an additional added value to the product, at the same time that the harmful effects produced by some synthetic surfactants could be avoided or reduced. Therefore, nowadays, consumers are disposed to pay and additional cost if they obtain more natural products. In this work we provide data about the potential of biosurfactants in the cosmetic and personal care industry. Biosurfactants from corn steep liquor, that is a fermented and condensed stream, have showed good surface-active properties, reducing substantially the surface tension of water. The bacteria that usually growth in corn steep liquor comprises Lactobacillus species, generally recognize as safe. The biosurfactant extracted from CSL consists of a lipopeptide, composed by fatty acids, which can reduce the surface tension of water in more than 30 units. It is a yellow and viscous liquid with a density of 1.053 mg/mL and pH=4. By these properties, they could be introduced in the formulation of cosmetic creams, hair conditioners or shampoos. Moreover this biosurfactant extracted from corn steep liquor, have showed a potent antimicrobial effect on different strains of Streptococcus. Some species of Streptococcus are commonly found weakly living in the human respiratory and genitourinary systems, producing several diseases in humans, including skin diseases. For instance, Streptococcus pyogenes produces many toxins and enzymes that help to stabilize skin infections; probably biosurfactants from corn steep liquor can inhibit the mechanisms of the S. pyogenes enzymes. S. pyogenes is an important cause of pharyngitis, impetigo, cellulitis and necrotizing fasciitis. In this work it was observed that 50 mg/L of biosurfactant extract obtained from corn steep liquor is able to inhibit more than 50% the growth of S. pyogenes. Thus, cosmetic and personal care products, formulated with biosurfactants from corn steep liquor, could have prebiotic properties. The natural biosurfactant presented in this work and obtained from corn milling industry streams, have showed a high potential to provide an interesting and sustainable alternative to those, antibacterial and surfactant ingredients used in cosmetic and personal care manufacture, obtained by chemical synthesis, which can cause irritation, and often only show short time effects.Keywords: antimicrobial activity, biosurfactants, cosmetic, personal care
Procedia PDF Downloads 2562179 Hair Symbolism and Changing Perspective of Women’s Role in Children’s and Young Adult Literature
Authors: Suchismita Dattagupta
Abstract:
Social rules and guidelines specify how a body should be clothed and how it should look. The social rules have made the body a space for expression, oppression and sexual 'commodification'. Being a malleable aspect of the human body, hair has always been worn in a number of ways and this characteristic of hair has made it an essential vehicle for conveying symbolic meaning. Hair, particularly women’s hair has always been considered to be associated with richness and beauty, apart from being associated with sexual power. Society has always had a preoccupation with hair bordering on obsession and has projected its moral and political supremacy by controlling and influencing how an individual wears their hair. Irrespective of the gender of the individual, society has tried to control an individual’s hair to express its control. However, with time, there has been a marked change in the way hair has been used by the individual. Hair has always been the focus of scholarly studies; not just aesthetically, but also in the cultural and social context. The fascination with hair rises from the fact that it is the only part of the human body that is always on display. Fetishization of hair is common in literature and goes ahead to reveal the character’s social and moral status. Modern authors for children and young adults have turned this concept on its head to point out how characters are breaking away from the mould and establishing their personal, moral and social boundaries. This paper will trace the change in hair symbolism in literature for children and young adults to understand how it has changed over the course of the time and what light it throws on the changing pattern of women’s position in society.Keywords: gender, hair, social symbols, society, women's role
Procedia PDF Downloads 2312178 From Ride-Hailing App to Diversified and Sustainable Platform Business Model
Authors: Ridwan Dewayanto Rusli
Abstract:
We show how prisoner's dilemma-type competition problems can be mitigated through rapid platform diversification and ecosystem expansion. We analyze a ride-hailing company in Southeast Asia, Gojek, whose network grew to more than 170 million users comprising consumers, partner drivers, merchants, and complementors within a few years and has already achieved higher contribution margins than ride-hailing peers Uber and Lyft. Its ecosystem integrates ride-hailing, food delivery and logistics, merchant solutions, e-commerce, marketplace and advertising, payments, and fintech offerings. The company continues growing its network of complementors and App developers, expanding content and gaining critical mass in consumer data analytics and advertising. We compare the company's growth and diversification trajectory with those of its main international rivals and peers. The company's rapid growth and future potential are analyzed using Cusumano's (2012) Staying Power and Six Principles, Hax and Wilde's (2003) and Hax's (2010) The Delta Model as well as Santos' (2016) home-market advantages frameworks. The recently announced multi-billion-dollar merger with one of Southeast Asia's largest e-commerce majors lends additional support to the above arguments.Keywords: ride-hailing, prisoner's dilemma, platform and ecosystem strategy, digital applications, diversification, home market advantages, e-commerce
Procedia PDF Downloads 922177 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles
Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil
Abstract:
The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing
Procedia PDF Downloads 952176 Seafarers Safety, Watch-Keeping and Navigation
Authors: Sunday Moses Ojelabi
Abstract:
Safety is the protection of the crew, passenger and equipment itself, as well as those living and working near bodies of water, from hazardous situations. To assure safety, watch keeping is paramount because neglecting your watchkeeping can lead to hazardous situations. Navigation is the assignment of a sailor to a specific route on a vessel to operate. Navigation is the process of planning, managing, and directing a vessel safely to the desired destination with the aid of intense and efficient watch keeping. Safety, i,e, all measures done to preserve the welfare of marine life, maritime infrastructure, facilities, ships, offshore installations, crew, and passengers, as well as the preservation of navigation and the ease of maritime trade, are referred to as safety measures;. When it comes to health, the absence of a proper first aid kit will affect injured sailors and passengers. Not using goggles while shipping, ear muffs, etc., in the course of maintenance can be hazardous. Watchkeeping: i.e the specific dutiies assigned to a personnel in a vessel to see to its continous smooth functionality. Your lookout or watch officer [officer on navigational duty] must be active at all times in the course of duty. Navigation refers to the technique of precisely determining a craft or vehicle's position and directing its motion along a particular course. The seafarers are not being put through regular seminars, training, and orientations. In parts of West Africa, sailors go to school without being able to secure jobs until their papers expire. For that, they won’t go for another Standard Trainning Certification and Watch keeping for Seafarers to upgrade their certificate. In light of this, they are not familiar with the new vessels in the country, and for this, they can`t meet the safety, watch keeping, and navigation standards. Also, shipping companies and ship owners are being selfish by not putting the proper things needed onboard regarding safety, watchkeeping, and navigational equipment. The questions raised in these presentations are the breakdown of the safety activities, watch keeping effectiveness, and navigational accuracy. All safety and watch keeping regulations should be applied efficiently. The problem identified includes a lack of safety instruments onboard vessels in African waters. Also, inadequate proper watchkeeping due to the excess workload on the seafarers can lead to an improper lookout, which gives room to collision, hijacking, and piracy. The impact of this research is to inform African seafarers, shipping companies, and ship owners of the necessary information concerning the safety of their lives and that of their passengers, cargo, and equipment.Keywords: standard of training, certification, watch keeping for seafarers, navigation, safety, watchkeeping
Procedia PDF Downloads 752175 Using Autoencoder as Feature Extractor for Malware Detection
Authors: Umm-E-Hani, Faiza Babar, Hanif Durad
Abstract:
Malware-detecting approaches suffer many limitations, due to which all anti-malware solutions have failed to be reliable enough for detecting zero-day malware. Signature-based solutions depend upon the signatures that can be generated only when malware surfaces at least once in the cyber world. Another approach that works by detecting the anomalies caused in the environment can easily be defeated by diligently and intelligently written malware. Solutions that have been trained to observe the behavior for detecting malicious files have failed to cater to the malware capable of detecting the sandboxed or protected environment. Machine learning and deep learning-based approaches greatly suffer in training their models with either an imbalanced dataset or an inadequate number of samples. AI-based anti-malware solutions that have been trained with enough samples targeted a selected feature vector, thus ignoring the input of leftover features in the maliciousness of malware just to cope with the lack of underlying hardware processing power. Our research focuses on producing an anti-malware solution for detecting malicious PE files by circumventing the earlier-mentioned shortcomings. Our proposed framework, which is based on automated feature engineering through autoencoders, trains the model over a fairly large dataset. It focuses on the visual patterns of malware samples to automatically extract the meaningful part of the visual pattern. Our experiment has successfully produced a state-of-the-art accuracy of 99.54 % over test data.Keywords: malware, auto encoders, automated feature engineering, classification
Procedia PDF Downloads 712174 Improve Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling
Authors: H. Shokouhmand, A. Ghanami
Abstract:
A heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At a hot surface of the heat pipe, the liquid phase absorbs heat and changes to the vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to the liquid phase. Due to gravitational force the liquid phase flows to the evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses the heater, humidifier, or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian-Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 4352173 Synthesis and Characterization of Highly Oriented Bismuth Oxyiodide Thin Films for the Photocatalytical Degradation of Pharmaceuticals Compounds in Water
Authors: Juan C. Duran-Alvarez, Daniel Mejia, Rodolfo Zanella
Abstract:
Heterogeneous photocatalysis is a promising method to achieve the complete degradation and mineralization of organic pollutants in water via their exhaustive oxidation. In order to take this advanced oxidation process towards sustainability, it is necessary to reduce the energy consumption, referred as the light sources and the post-treatment operations. For this, the synthesis of new nanostructures of low band gap semiconductors in the form of thin films is in continuous development. In this work, thin films of the low band gap semiconductor bismuth oxyiodide (BiOI) were synthesized via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. For this, Bi(NO3)3 and KI solutions were prepared, and glass supports were immersed in each solution under strict rate and time immersion conditions. Synthesis was performed at room temperature and a washing step was set prior to each immersion. Thin films with an average thickness below 100 nm were obtained upon a cycle of 30 immersions, as determined by AFM and profilometry measurements. Cubic BiOI nanocrystals with average size of 17 nm and a high orientation to the 001 plane were observed by XRD. In order to optimize the synthesis method, several Bi/I ratios were tested, namely 1/1, 1/5, 1/10, 1/20 and 1/50. The highest crystallinity of the BiOI films was observed when the 1/5 ratio was used in the synthesis. Non-stoichiometric conditions also resulted in the highest uniformity of the thin layers. PVP was used as an additive to improve the adherence of the BiOI thin films to the support. The addition of 0.1 mg/mL of PVP during the washing step resulted in the highest adherence of the thin films. In photocatalysis tests, degradation rate of the antibiotic ciprofloxacin as high as 75% was achieved using visible light (380 to 700 nm) irradiation for 5 h in batch tests. Mineralization of the antibiotic was also observed, although in a lower extent; ~ 30% of the total organic carbon was removed upon 5 h of visible light irradiation. Some ciprofloxacin by-products were identified throughout the reaction; and some of these molecules displayed residual antibiotic activity. In conclusion, it is possible to obtain highly oriented BiOI thin films under ambient conditions via the SILAR method. Non-stoichiometric conditions using PVP additive are necessary to increase the crystallinity and adherence of the films, which are photocatalytically active to remove recalcitrant organic pollutants under visible light irradiation.Keywords: bismuth oxyhalides, photocatalysis, thin films, water treatment
Procedia PDF Downloads 1172172 Rising Velocity of a Non-Newtonian Liquids in Capillary Tubes
Authors: Reza Sabbagh, Linda Hasanovich, Aleksey Baldygin, David S. Nobes, Prashant R. Waghmare
Abstract:
The capillary filling process is significantly important to study for numerous applications such as the under filling of the material in electronic packaging or liquid hydrocarbons seepage through porous structure. The approximation of the fluid being Newtonian, i.e., linear relationship between the shear stress and deformation rate cannot be justified in cases where the extent of non-Newtonian behavior of liquid governs the surface driven transport, i.e., capillarity action. In this study, the capillary action of a non-Newtonian fluid is not only analyzed, but also the modified generalized theoretical analysis for the capillary transport is proposed. The commonly observed three regimes: surface forces dominant (travelling air-liquid interface), developing flow (viscous force dominant), and developed regimes (interfacial, inertial and viscous forces are comparable) are identified. The velocity field along each regime is quantified with Newtonian and non-Newtonian fluid in square shaped vertically oriented channel. Theoretical understanding of capillary imbibition process, particularly in the case of Newtonian fluids, is relied on the simplified assumption of a fully developed velocity profile which has been revisited for developing a modified theory for the capillary transport of non-Newtonian fluids. Furthermore, the development of the velocity profile from the entrance regime to the developed regime, for different power law fluids, is also investigated theoretically and experimentally.Keywords: capillary, non-Newtonian flow, shadowgraphy, rising velocity
Procedia PDF Downloads 2032171 Comparison of Isokinetic Powers (Flexion and Knee Extension) of Basketball and Football Players (Age 17–20)
Authors: Ugur Senturk, Ibrahım Erdemır, Faruk Guven, Cuma Ece
Abstract:
The objective of this study is to compare flexion and extension movements in knee-joint group by measuring isokinetic knee power of amateur basketball and football players. For this purpose, total 21 players were included, which consist of football players (n=12) and basketball players (n=9), within the age range of 17–20. After receiving the age, length, body weight, vertical jump, and BMI measurements of all subjects, the measurement of lower extremity knee-joint movement (Flexion-Extension) was made with isokinetic dynamometer (isomed 2000) at 60 o/sec. and 240 o/sec. angular velocity. After arrangement and grouping of collected information forms and knee flexion and extension parameters, all data were analyzed with SPSS for Windows. Descriptive analyses of the parameters were made. Non-parametric t test and Mann-Whitney U test were used to compare the parameters of football players and basketball players and to find the inter-group differences. The comparisons and relations in the range p<0.05 and p<0.01 between the groups were surveyed. As a conclusion, no statistical differences were found between isokinetic knee flexion and extension parameters of football and basketball players. However, it was found that the football players were older than the basketball players. In addition to this, the average values of the basketball players in the highest torque and the highest torque average curve were found higher than football players in comparisons of left knee extension. However, it was found that fat levels of the basketball players were found to be higher than the football players.Keywords: isokinetic contraction, isokinetic dynamometer, peak torque, flexion, extension, football, basketball
Procedia PDF Downloads 5282170 Bioethical Standards as a Tool for the Improvement of Human Relations Toward Health, Animals, and Plants: The Example of Three Croatian Mediterranean Local Communities
Authors: Toni Buterin, Robert Doričić
Abstract:
Mainstream bioethics, narrowed down mainly to human medicine and research, can hardly be expected to efficiently face modern challenges related to environmental issues. Departing from the interpretation of "European Bioethics" as a discipline considering ethical duties not only toward fellow humans, but to all living beings, this paper presents the results of a study conducted in three communities in Croatian Northern Adriatic region, selected for their recent experience of ecological threats (Labin – thermo-electric power plant; Bakar – cokery), or representing a highly-valuable and vulnerable natural insular pocket (Mali Lošinj – health tourism, dolphin wildlife refuge, fragrant gardens programme, etc.). After targeted workshops and interviews had been organised in those communities, the results of the obtained insights were combined with experts' opinion and a list of around hundred “bioethical standards” was formed. "Bioethical standards" represent a set of principles and measures of the correct attitude of people towards their own health, animals, plants, and the eco-system as a whole. "Bioethical standards" charter might improve the level of local community environmental consciousness, and provide direct guidance for its sustainable development (including its tourism-advertising ace card). The present paper discusses the standards' potential benefits and some implementational risks.Keywords: bioethical standards, croatia, European bioethics, local communities
Procedia PDF Downloads 1502169 Modelling and Optimization of Geothermal Energy in the Gulf of Suez
Authors: Amira Abdelhafez, Rufus Brunt
Abstract:
Geothermal energy in Egypt represents a significant untapped renewable resource that can reduce reliance on conventional power generation. Exploiting these geothermal resources depends on depth, temperature range, and geological characteristics. The intracontinental rift setting of the Gulf of Suez (GoS)-Red Sea rift is a favourable tectonic setting for convection-dominated geothermal plays. The geothermal gradient across the GoS ranges from 24.9 to 86.66 °C/km, with a heat flow of 31-127.2 mW/m². Surface expressions of convective heat loss emerge along the gulf flanks as hot springs (e.g., Hammam Faraun) accompanying deeper geothermal resources. These thermal anomalies are driven mainly by the local tectonic configuration. Characterizing the structural framework of major faults and their control on reservoir properties and subsurface hydrothermal fluid circulation is vital for geothermal applications in the gulf. The geothermal play systems of the GoS depend on structural and lithological properties that contribute to heat storage and vertical transport. Potential geothermal reservoirs include the Nubia sandstones, which, due to their thickness, continuity, and contact with hot basement rocks at a mean depth of 3 km, create an extensive reservoir for geothermal fluids. To develop these geothermal resources for energy production, defining the permeability anisotropy of the reservoir due to faults and facies variation is a crucial step in our study, particularly the evaluation of influence on thermal breakthrough and production rates.Keywords: geothermal, October field, site specific study, reservoir modelling
Procedia PDF Downloads 72168 The Impact of Childhood Cancer on Young Adult Survivors: A Life Course Perspective
Authors: Bridgette Merriman, Wen Fan
Abstract:
Background: Existing cancer survivorship literature explores varying physical, psychosocial, and psychological late effects experienced by survivors of childhood cancer. However, adolescent and young adult (AYA) survivors of childhood cancer are understudied compared to their adult and pediatric cancer counterparts. Furthermore, existing quality of life (QoL) research fails to account for how cancer survivorship affects survivors across the lifespan. Given that prior research suggests positive cognitive appraisals of adverse events - such as cancer - mitigate detrimental psychosocial symptomologies later in life; it is crucial to understand cancer’s impacts on AYA survivors of childhood malignancies across the life course in order to best support these individuals and prevent maladaptive psychosocial outcomes. Methods: This qualitative study adopted the life-course perspective to investigate the experiences of AYA survivors of childhood malignancies. Eligible patients included AYA 21-30 years old who were diagnosed with cancer <18 years old and off active treatment for >2 years. Participants were recruited through social media posts. Study fulfillment included taking part in one semi-structured video interview to explore areas of survivorship previously identified as being specific to AYA survivors. Interviews were transcribed, coded, and analyzed in accordance with narrative analysis and life-course theory. This study was approved by the Boston College Institutional Review Board. Results: Of 28 individuals who met inclusion criteria and expressed interest in the study, nineteen participants (12 women, 7 men, mean age 25.4 years old) completed the study. Life course theory analysis revealed that events relating to childhood cancer are interconnected throughout the life course rather than isolated events. This “trail of survivorship” includes age at diagnosis, transitioning to life after cancer, and relationships with other childhood survivors. Despite variability in objective characteristics surrounding these events, participants recalled positive experiences regarding at least one checkpoint, ultimately finding positive meaning from their cancer experience. Conclusions: These findings suggest that favorable subjective experiences at these checkpoints are critical in fostering positive conceptions of childhood malignancy for AYA survivors of childhood cancer. Ultimately, healthcare professionals and communities may use these findings to guide support resources and interventions for childhood cancer patients and AYA survivors, therein minimizing detrimental psychosocial effects and maximizing resiliency.Keywords: medical sociology, pediatric oncology, survivorship, qualitative, life course perspective
Procedia PDF Downloads 69