Search results for: equation model
10359 Real-Time Classification of Hemodynamic Response by Functional Near-Infrared Spectroscopy Using an Adaptive Estimation of General Linear Model Coefficients
Authors: Sahar Jahani, Meryem Ayse Yucel, David Boas, Seyed Kamaledin Setarehdan
Abstract:
Near-infrared spectroscopy allows monitoring of oxy- and deoxy-hemoglobin concentration changes associated with hemodynamic response function (HRF). HRF is usually affected by natural physiological hemodynamic (systemic interferences) which occur in all body tissues including brain tissue. This makes HRF extraction a very challenging task. In this study, we used Kalman filter based on a general linear model (GLM) of brain activity to define the proportion of systemic interference in the brain hemodynamic. The performance of the proposed algorithm is evaluated in terms of the peak to peak error (Ep), mean square error (MSE), and Pearson’s correlation coefficient (R2) criteria between the estimated and the simulated hemodynamic responses. This technique also has the ability of real time estimation of single trial functional activations as it was applied to classify finger tapping versus resting state. The average real-time classification accuracy of 74% over 11 subjects demonstrates the feasibility of developing an effective functional near infrared spectroscopy for brain computer interface purposes (fNIRS-BCI).Keywords: hemodynamic response function, functional near-infrared spectroscopy, adaptive filter, Kalman filter
Procedia PDF Downloads 16610358 Development of a Scale for Evaluating the Efficacy of Vacationing
Authors: Ju Yeon Lee, Seol Ah Oh, Hong il Kim, Hae Yong Do, Sung Won Choi
Abstract:
The purpose of this study was to develop a Well-being and Moments Scale (WAMS) for evaluating the efficacy of ‘vacationing’ as a form of mental health recuperation. ‘Vacationing’ is defined as a going outside one’s usual environment to seek refreshment and relief from one’s daily life. To develop WAMS, we followed recommended procedures for scale development, including reviewing related studies, conducting focus group interviews to elucidate the need for this assessment area, and modifying items based on expert opinion. Through this process, we developed the WAMS. The psychometric properties of the WAMS were then tested in two separate samples. Exploratory factor analysis (EFA) was conducted using 1.41 participants (mean age = 30.45 years; range: 20-50 years) to identify the underlying 3-factor structure of 'Positive Emotions', 'Life Satisfaction' and 'Self-Confidence.' The 26 items retained based on the EFA procedures were associated with excellent reliability (i.e., α = 0.93). Confirmatory factor analysis was then conducted using 200 different participants (mean age = 29.51 years; range: 20-50 years) and revealed good model fit for our hypothesized 3-factor model. Convergent validity tests also revealed correlations with other scales in the expected direction and range. Study limitations as well as the importance and utility of WMAS are also discussed.Keywords: vacationing, positive affect, life satisfaction, self-confidence, WAMS
Procedia PDF Downloads 33910357 Music Piracy Revisited: Agent-Based Modelling and Simulation of Illegal Consumption Behavior
Authors: U. S. Putro, L. Mayangsari, M. Siallagan, N. P. Tjahyani
Abstract:
National Collective Management Institute (LKMN) in Indonesia stated that legal music products were about 77.552.008 unit while illegal music products were about 22.0688.225 unit in 1996 and this number keeps getting worse every year. Consequently, Indonesia named as one of the countries with high piracy levels in 2005. This study models people decision toward unlawful behavior, music content piracy in particular, using agent-based modeling and simulation (ABMS). The classification of actors in the model constructed in this study are legal consumer, illegal consumer, and neutral consumer. The decision toward piracy among the actors is a manifestation of the social norm which attributes are social pressure, peer pressure, social approval, and perceived prevalence of piracy. The influencing attributes fluctuate depending on the majority of surrounding behavior called social network. There are two main interventions undertaken in the model, campaign and peer influence, which leads to scenarios in the simulation: positively-framed descriptive norm message, negatively-framed descriptive norm message, positively-framed injunctive norm with benefits message, and negatively-framed injunctive norm with costs message. Using NetLogo, the model is simulated in 30 runs with 10.000 iteration for each run. The initial number of agent was set 100 proportion of 95:5 for illegal consumption. The assumption of proportion is based on the data stated that 95% sales of music industry are pirated. The finding of this study is that negatively-framed descriptive norm message has a worse reversed effect toward music piracy. The study discovers that selecting the context-based campaign is the key process to reduce the level of intention toward music piracy as unlawful behavior by increasing the compliance awareness. The context of Indonesia reveals that that majority of people has actively engaged in music piracy as unlawful behavior, so that people think that this illegal act is common behavior. Therefore, providing the information about how widespread and big this problem is could make people do the illegal consumption behavior instead. The positively-framed descriptive norm message scenario works best to reduce music piracy numbers as it focuses on supporting positive behavior and subject to the right perception on this phenomenon. Music piracy is not merely economical, but rather social phenomenon due to the underlying motivation of the actors which has shifted toward community sharing. The indication of misconception of value co-creation in the context of music piracy in Indonesia is also discussed. This study contributes theoretically that understanding how social norm configures the behavior of decision-making process is essential to breakdown the phenomenon of unlawful behavior in music industry. In practice, this study proposes that reward-based and context-based strategy is the most relevant strategy for stakeholders in music industry. Furthermore, this study provides an opportunity that findings may generalize well beyond music piracy context. As an emerging body of work that systematically constructs the backstage of law and social affect decision-making process, it is interesting to see how the model is implemented in other decision-behavior related situation.Keywords: music piracy, social norm, behavioral decision-making, agent-based model, value co-creation
Procedia PDF Downloads 18710356 Behind Egypt’s Financial Crisis: Dollarization
Authors: Layal Mansour
Abstract:
This paper breaks down Egypt’s financial crisis by constructing a customized financial stress index by including the vulnerable economic indicator “dollarization” as a vulnerable indicator in the credit and exchange sector. The Financial Stress Index for Egypt (FSIE) includes informative vulnerable indicators of the main financial sectors: the banking sector, the equities market, and the foreign exchange market. It is calculated on a monthly basis from 2010 to December 2022, so to report the two recent world’s most devastating financial crises: Covid 19 crisis and Ukraine-Russia War, in addition to the local 2016 and 2022 financial crises. We proceed first by a graphical analysis then by empirical analysis in running under Vector Autoregression (VAR) Model, dynamic causality tests between foreign reserves, dollarization rate, and FSIE. The graphical analysis shows that unexpectedly, Egypt’s economy seems to be immune to internal economic/political instabilities, however it is highly exposed to the foreign and exchange market. Empirical analysis confirms the graphical observations and proves that dollarization, or more precisely debt in foreign currency seems to be the main trigger of Egypt’s current financial crisis.Keywords: egypt, financial crisis, financial stress index, dollarization, VAR model, causality tests
Procedia PDF Downloads 9410355 Impact of Contemporary Performance Measurement System and Organization Justice on Academic Staff Work Performance
Authors: Amizawati Mohd Amir, Ruhanita Maelah, Zaidi Mohd Noor
Abstract:
As part of the Malaysia Higher Institutions' Strategic Plan in promoting high-quality research and education, the Ministry of Higher Education has introduced various instrument to assess the universities performance. The aims are that university will produce more commercially-oriented research and continue to contribute in producing professional workforce for domestic and foreign needs. Yet the spirit of the success lies in the commitment of university particularly the academic staff to translate the vision into reality. For that reason, the element of fairness and justice in assessing individual academic staff performance is crucial to promote directly linked between university and individual work goals. Focusing on public research universities (RUs) in Malaysia, this study observes at the issue through the practice of university contemporary performance measurement system. Accordingly management control theory has conceptualized that contemporary performance measurement consisting of three dimension namely strategic, comprehensive and dynamic building upon equity theory, the relationships between contemporary performance measurement system and organizational justice and in turn the effect on academic staff work performance are tested based on online survey data administered on 365 academic staff from public RUs, which were analyzed using statistics analysis SPSS and Equation Structure Modeling. The findings validated the presence of strategic, comprehensive and dynamic in the contemporary performance measurement system. The empirical evidence also indicated that contemporary performance measure and procedural justice are significantly associated with work performance but not for distributive justice. Furthermore, procedural justice does mediate the relationship between contemporary performance measurement and academic staff work performance. Evidently, this study provides evidence on the importance of perceptions of justice towards influencing academic staff work performance. This finding may be a fruitful input in the setting up academic staff performance assessment policy.Keywords: comprehensive, dynamic, distributive justice, contemporary performance measurement system, strategic, procedure justice, work performance
Procedia PDF Downloads 40810354 Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media
Authors: Swati Tomar, Sunil Kumar Gupta
Abstract:
Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without the addition of external carbon sources. The present study investigated the feasibility of anammox hybrid reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. The experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of the heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.Keywords: anammox, filter media, kinetics, nitrogen removal
Procedia PDF Downloads 38210353 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs
Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu
Abstract:
This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network
Procedia PDF Downloads 6310352 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling
Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger
Abstract:
Fused deposition modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using the 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics, which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results, it was observed that increasing the chamber temperature from 25°C to 75°C lead to a decrease of 1.5% residual stress, while decreasing bed temperature from 100°C to 60°C, resulted in a 33% increase in residual stress and a significant rise of 138% in warpage. The simulated warpage data is validated by comparing it with the measured warpage values of the samples using 3D scanning.Keywords: finite element analysis, fused deposition modelling, residual stress, warpage
Procedia PDF Downloads 18710351 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture
Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko
Abstract:
Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.Keywords: classification, feature selection, texture analysis, tree algorithms
Procedia PDF Downloads 17810350 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management
Authors: Chokri Slim
Abstract:
The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines
Procedia PDF Downloads 15010349 Opportunity Integrated Assessment Facilitating Critical Thinking and Science Process Skills Measurement on Acid Base Matter
Authors: Anggi Ristiyana Puspita Sari, Suyanta
Abstract:
To recognize the importance of the development of critical thinking and science process skills, the instrument should give attention to the characteristics of chemistry. Therefore, constructing an accurate instrument for measuring those skills is important. However, the integrated instrument assessment is limited in number. The purpose of this study is to validate an integrated assessment instrument for measuring students’ critical thinking and science process skills on acid base matter. The development model of the test instrument adapted McIntire model. The sample consisted of 392 second grade high school students in the academic year of 2015/2016 in Yogyakarta. Exploratory factor analysis (EFA) was conducted to explore construct validity, whereas content validity was substantiated by Aiken’s formula. The result shows that the KMO test is 0.714 which indicates sufficient items for each factor and the Bartlett test is significant (a significance value of less than 0.05). Furthermore, content validity coefficient which is based on 8 expert judgments is obtained at 0.85. The findings support the integrated assessment instrument to measure critical thinking and science process skills on acid base matter.Keywords: acid base matter, critical thinking skills, integrated assessment instrument, science process skills, validity
Procedia PDF Downloads 32310348 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery
Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén
Abstract:
A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.Keywords: Computational Fluid Dynamics (CFD), modeling, multi-phase, transport phenomena, lithium-air battery
Procedia PDF Downloads 45110347 US Track And Field System: Examining Micro-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport
Authors: Peter Smolianov, Steven Dion, Christopher Schoen, Jaclyn Norberg, Nicholas Stone, Soufiane Rafi
Abstract:
This study assessed the micro-level elements of track and field development in the US against a model for integrating high-performance sport with mass participation. This investigation is important for the country’s international sport performance, which declined relative to other countries and wellbeing, which in its turn deteriorated as over half of the US population became overweight. A questionnaire was designed for the following elements of the model: talent identification and development as well as advanced athlete support. Survey questions were validated by 12 experts, including academics, executives from sport governing bodies, coaches, and administrators. To determine the areas for improvement, the questionnaires were completed by 102 US track and field coaches representing the country’s regions and coaching levels. Possible advancements were further identified through semi-structured discussions with 10 US track and field administrators. The study found that talent search and development is a critically important area for improvement: 49 percent of respondents had overall negative perceptions, and only 16 percent were positive regarding these US track and field practices. Both quantitative survey results and open responses revealed that the key reason for the inadequate athlete development was a shortage of well-educated and properly paid coaches: 77 percent of respondents indicated that coach expertise is never or rarely high across all participant ages and levels. More than 40 percent of the respondents were uncertain of or not familiar with world’s best talent identification and development practices, particularly methods of introducing children to track and field from outside the sport’s participation base. Millions more could be attracted to the sport by adopting best international practices. First, physical education should be offered a minimum three times a week in all school grades, and track and field together with other healthy sports, should be taught at school to all children. Second, multi-sport events, including track and field disciplines, should be organized for everyone within and among all schools, cities and regions. Three, Australian and Eastern European methods of talent search at schools should be utilized and tailored to the US conditions. Four, comprehensive long term athlete development guidelines should be used for the advancement of the American Development Model, particularly track and field tests and guidelines as part of both school education and high-performance athlete development for every age group from six to over 70 years old. These world’s best practices are to improve the country’s international performance while increasing national sport participation and positively influencing public health.Keywords: high performance, mass participation, sport development, track and field, USA
Procedia PDF Downloads 14410346 An Axiomatic Model for Development of the Allocated Architecture in Systems Engineering Process
Authors: Amir Sharahi, Reza Tehrani, Ali Mollajan
Abstract:
The final step to complete the “Analytical Systems Engineering Process” is the “Allocated Architecture” in which all Functional Requirements (FRs) of an engineering system must be allocated into their corresponding Physical Components (PCs). At this step, any design for developing the system’s allocated architecture in which no clear pattern of assigning the exclusive “responsibility” of each PC for fulfilling the allocated FR(s) can be found is considered a poor design that may cause difficulties in determining the specific PC(s) which has (have) failed to satisfy a given FR successfully. The present study utilizes the Axiomatic Design method principles to mathematically address this problem and establishes an “Axiomatic Model” as a solution for reaching good alternatives for developing the allocated architecture. This study proposes a “loss Function”, as a quantitative criterion to monetarily compare non-ideal designs for developing the allocated architecture and choose the one which imposes relatively lower cost to the system’s stakeholders. For the case-study, we use the existing design of U. S. electricity marketing subsystem, based on data provided by the U.S. Energy Information Administration (EIA). The result for 2012 shows the symptoms of a poor design and ineffectiveness due to coupling among the FRs of this subsystem.Keywords: allocated architecture, analytical systems engineering process, functional requirements (FRs), physical components (PCs), responsibility of a physical component, system’s stakeholders
Procedia PDF Downloads 40810345 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 30210344 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads
Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani
Abstract:
The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology
Procedia PDF Downloads 3510343 Investigation of Grid Supply Harmonic Effects in Wound Rotor Induction Machines
Authors: Nur Sarma, Paul M. Tuohy, Siniša Djurović
Abstract:
This paper presents an in-depth investigation of the effects of several grid supply harmonic voltages on the stator currents of an example wound rotor induction machine. The observed effects of higher order grid supply harmonics are identified using a finite element time stepping transient model, as well as a time-stepping electromagnetic model. In addition, a number of analytical equations to calculate the spectral content of the stator currents are presented in the paper. The presented equations are validated through comparison with the obtained spectra predicted using the finite element and electromagnetic models. The presented study provides a better understanding of the origin of supply harmonic effects identified in the stator currents of the example wound rotor induction machine. Furthermore, the study helps to understand the effects of higher order supply harmonics on the harmonic emissions of the wound rotor induction machine.Keywords: wound rotor induction machine, supply harmonics, current spectrum, power spectrum, power quality, harmonic emmisions, finite element analysis
Procedia PDF Downloads 17810342 Smart Polymeric Nanoparticles Loaded with Vincristine Sulfate for Applications in Breast Cancer Drug Delivery in MDA-MB 231 and MCF7 Cell Lines
Authors: Reynaldo Esquivel, Pedro Hernandez, Aaron Martinez-Higareda, Sergio Tena-Cano, Enrique Alvarez-Ramos, Armando Lucero-Acuna
Abstract:
Stimuli-responsive nanomaterials play an essential role in loading, transporting and well-distribution of anti-cancer compounds in the cellular surroundings. The outstanding properties as the Lower Critical Solution Temperature (LCST), hydrolytic cleavage and protonation/deprotonation cycle, govern the release and delivery mechanisms of payloads. In this contribution, we experimentally determine the load efficiency and release of antineoplastic Vincristine Sulfate into PNIPAM-Interpenetrated-Chitosan (PIntC) nanoparticles. Structural analysis was performed by Fourier Transform Infrared Spectroscopy (FT-IR) and Proton Nuclear Magnetic Resonance (1HNMR). ζ-Potential (ζ) and Hydrodynamic diameter (DH) measurements were monitored by Electrophoretic Mobility (EM) and Dynamic Light scattering (DLS) respectively. Mathematical analysis of the release pharmacokinetics reveals a three-phase model above LCST, while a monophasic of Vincristine release model was observed at 32 °C. Cytotoxic essays reveal a noticeable enhancement of Vincristine effectiveness at low drug concentration on HeLa cervix cancer and MDA-MB-231 breast cancer.Keywords: nanoparticles, vincristine, drug delivery, PNIPAM
Procedia PDF Downloads 15610341 Design of EV Steering Unit Using AI Based on Estimate and Control Model
Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin
Abstract:
Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system
Procedia PDF Downloads 4410340 Comparison of Unit Hydrograph Models to Simulate Flood Events at the Field Scale
Authors: Imene Skhakhfa, Lahbaci Ouerdachi
Abstract:
To ensure the overall coherence of simulated results, it is necessary to develop a robust validation process. In many applications, it is no longer content to calibrate and validate the model only in relation to the hydro graph measured at the outlet, but we try to better simulate the functioning of the watershed in space. Therefore the timing also performs compared to other variables such as water level measurements in intermediate stations or groundwater levels. As part of this work, we limit ourselves to modeling flood of short duration for which the process of evapotranspiration is negligible. The main parameters to identify the models are related to the method of unit hydro graph (HU). Three different models were tested: SNYDER, CLARK and SCS. These models differ in their mathematical structure and parameters to be calibrated while hydrological data are the same, the initial water content and precipitation. The models are compared on the basis of their performance in terms six objective criteria, three global criteria and three criteria representing volume, peak flow, and the mean square error. The first type of criteria gives more weight to strong events whereas the second considers all events to be of equal weight. The results show that the calibrated parameter values are dependent and also highlight the problems associated with the simulation of low flow events and intermittent precipitation.Keywords: model calibration, intensity, runoff, hydrograph
Procedia PDF Downloads 48610339 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network
Authors: Nasrin Bakhshizadeh, Ashkan Forootan
Abstract:
A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.Keywords: polyethylene, polymerization, density, melt index, neural network
Procedia PDF Downloads 14410338 Sustainable Design through up-Cycling Crafts in the Mainstream Fashion Industry of India
Authors: Avani Chhajlani
Abstract:
Fashion is considered to be the most destructive industry, second only to the oil rigging industry, which has a greater impact on the environment. While fashion today banks upon fast fashion to generate a higher turnover of designs and patterns in apparel and related accessories, crafts push us towards a more slow and thoughtful approach with culturally identifiably unique work and slow community-centered production. Despite this strong link between indigenous crafts and sustainability, it has not been extensively researched and explored upon. In the forthcoming years, the fashion industry will have to reinvent itself to move towards a more holistic and sustainable circular model to balance the harm already caused. And closed loops of the circular economy will help the integration of indigenous craft knowledge, which is regenerative. Though sustainability and crafts of a region go hand-in-hand, the craft still have to find its standing in the mainstream fashion world; craft practices have a strong local congruence and knowledge that has been passed down generation-to-generation through oration or written materials. This paper aims to explore ways a circular economy can be created by amalgamating fashion and craft while creating a sustainable business model and how this is slowly being created today through brands like – RaasLeela, Pero, and KaSha, to name a few.Keywords: circular economy, fashion, India, indigenous crafts, slow fashion, sustainability, up-cycling
Procedia PDF Downloads 18710337 The Savior, the Absent, and the Model: The Role Social Workers Play in Young Women’s Romantic Relationships
Authors: Tehila Wright
Abstract:
Being involved in romantic relationships is a key task in the development of identity during emerging adulthood. To date, little research has focused on romantic relationships among young women who have coped with situations of distress and are treated by social workers. Moreover, the role of social workers in young women’s romantic relations is underexplored. This paper focuses on young women’s perception of the role played by their social workers in guiding them through romantic relationships. Methodology: This qualitative-feminist study is based on semi-structured in-depth interviews with 25 young heterosexual Jewish women aged 18-25 who are currently supported by social workers in the welfare system. Findings: The findings uncover three meanings given by participants to their relations with social workers regarding the young women's romantic relationships: 1)” The social worker as role model” namely, the social worker as setting an example for healthy conduct in romantic relationships. 2) "The social worker as savior," namely, the social worker as the one who supports participants escaping abusive romantic relationships. 3) "The present-absent social worker,” namely, despite being a significant figure in their lives, the social worker is experienced as disconnected and alienated. Conclusions and practice: Social workers can have a positive and important contribution to the romantic relationships of these young women. To be a central source of support in the young women's life, the social workers must be able to establish a relationship of trust with the young women.Keywords: young women, emerging adulthood, romantic relationship, women in distress
Procedia PDF Downloads 10910336 The Role of QX-314 and Capsaicin in Producing Long-Lasting Local Anesthesia in the Animal Model of Trigeminal Neuralgia
Authors: Ezzati Givi M., Ezzatigivi N., Eimani H.
Abstract:
Trigeminal Neuralgia (TN) consists of painful attacks often triggered with general activities, which cause impairment and disability. The first line of treatment consists of pharmacotherapy. However, the occurrence of many side-effects limits its application. Acute pain relief is crucial for titrating oral drugs and making time for neurosurgical intervention. This study aimed to examine the long-term anesthetic effect of QX-314 and capsaicin in trigeminal neuralgia using an animal model. TN was stimulated by surgical constriction of the infraorbital nerve in rats. After seven days, anesthesia infiltration was done, and the duration of mechanical allodynia was compared. Thirty-five male Wistar rats were randomly divided into seven groups as follows: control (normal saline); lidocaine (2%); QX314 (30 mM); lidocaine (2%)+QX314 (15 mM); lidocaine (2%)+QX314 (22 mM); lidocaine (2%)+QX314 (30 mM); and lidocaine (2%)+QX314 (30 mM) +capsaicin (1μg). QX314 in combination with lidocaine significantly increased the duration of anesthesia, which was dose-dependent. The combination of lidocaine+QX314+capsaicin could significantly increase the duration of anesthesia in trigeminal neuralgia. In the present study, we demonstrated that the combination of QX-314 with lidocaine and capsaicin produced a long-lasting, reversible local anesthesia and was superior to lidocaine alone in the fields of the duration of trigeminal neuropathic pain blockage.Keywords: trigeminal neuralgia, capsaicin, lidocaine, long-lasting
Procedia PDF Downloads 11410335 Study of Slum Redevelopment Initiatives for Dharavi Slum, Mumbai and Its Effectiveness in Implementation in Other Cities
Authors: Anurag Jha
Abstract:
Dharavi is the largest slum in Asia, for which many redevelopment projects have been put forth, to improve the housing conditions of the locals. And yet, these projects are met with much-unexpected resistance from the locals. The research analyses the why and the how of the resistances these projects face and analyses these programs and points out the flaws and benefits of such projects, by predicting its impact on the regulars of Dharavi. The research aims to analyze various aspects of Dharavi, which affect its socio-cultural backdrops, such as its history, and eventual growth into a mega slum. Through various surveys, the research aims to analyze the life of a slum dweller, the street life, and the effect of such settlement on the urban fabric. Various development projects such as Dharavi Museum Movement, are analyzed, and a feasibility and efficiency analysis of the proposals for redevelopment of Dharavi Slums has been theorized. Flaws and benefits of such projects, by predicting its impact on the regulars of Dharavi has been the major approach to the research. Also, prediction the implementation of these projects in another prominent slum area, Anand Nagar, Bhopal, with the use of generated hypothetical model has been done. The research provides a basic framework for a comparative analysis of various redevelopment projects and the effect of implementation of such projects on the general populace. Secondly, it proposes a hypothetical model for feasibility of such projects in certain slum areas.Keywords: Anand Nagar, Bhopal slums, Dharavi, slum redevelopment programmes
Procedia PDF Downloads 33010334 Transforming Construction Companies into Full-Fledged Project-Based Organizations: Case of Ethiopia
Authors: Henok Asfaw Hailu, P. D. Rwelamila
Abstract:
Creating a suitable environment for successful projects needs a rethink of the organisational design of the parent organisations. A Project-based organisation (PBO) is a unique organizational form suitable for implementing and managing business activities around projects. A construction firm is inherently a PBO as it executes most of its activities through projects. PBO design and development require an empirical foundation. This study aimed to fill this gap by developing a conceptual model to help transform Ethiopian construction firms (ECFs) into full-fledged PBOs by assimilating the required PBO characteristics. The study used an exploratory QUAL-quant research design approach. A thematic content analysis was performed to analyse the qualitative (Interviews) research data. Means, standard deviations, frequencies, percentages, one-way ANOVA, and Pearson correlation were used to analyse the quantitative data. A transformational conceptual model was proposed and illustrated that transformation needs to begin by assessing the environment, strategic documents, and PBO characteristics. Assimilating missing PBO characteristics into ECFs is vital to realise organisations’ transformation into full-fledged PBOs.Keywords: project-based organization, organizational design, dimensions, construction firms
Procedia PDF Downloads 7410333 The Effect of a Probiotic Diet on htauE14 in a Rodent Model of Alzheimer’s Disease
Authors: C. Flynn, Q. Yuan, C. Reinhardt
Abstract:
Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder affecting broad areas of the cerebral cortex and hippocampus. More than 95% of AD cases are representative of sporadic AD, where both genetic and environmental risk factors play a role. The main pathological features of AD include the widespread deposition of amyloid-beta and neurofibrillary tau tangles in the brain. The earliest brain pathology related to AD has been defined as hyperphosphorylated soluble tau in the noradrenergic locus coeruleus (LC) neurons, characterized by Braak. However, the cause of this pathology and the ultimate progression of AD is not understood. Increasing research points to a connection between the gut microbiota and the brain, and mounting evidence has shown that there is a bidirectional interaction between the two, known as the gut-brain axis. This axis can allow for bidirectional movement of neuroinflammatory cytokines and pathogenic misfolded proteins, as seen in AD. Prebiotics and probiotics have been shown to have a beneficial effect on gut health and can strengthen the gut-barrier as well as the blood-brain barrier, preventing the spread of these pathogens across the gut-brain axis. Our laboratory has recently established a pretangle tau rat model, in which we selectively express pseudo-phosphorylated human tau (htauE14) in the LC neurons of TH-Cre rats. LC htauE14 produced pathological changes in rats resembling those of the preclinical AD pathology (reduced olfactory discrimination and LC degeneration). In this work, we will investigate the effects of pre/probiotic ingestion on AD behavioral deficits, blood inflammation/cytokines, and various brain markers in our experimental rat model of AD. Rats will be infused with an adeno-associated viral vector containing a human tau gene pseudophosphorylated at 14 sites (common in LC pretangles) into 2-3 month TH-Cre rats. Fecal and blood samples will be taken at pre-surgery, and various post-surgery time points. A collection of behavioral tests will be performed, and immunohistochemistry/western blotting techniques will be used to observe various biomarkers. This work aims to elucidate the relationship between gut health and AD progression by strengthening gut-brain relationship and aims to observe the overall effect on tau formation and tau pathology in AD brains.Keywords: alzheimer’s disease, aging, gut microbiome, neurodegeneration
Procedia PDF Downloads 13710332 Tsunami Wave Height and Flow Velocity Calculations Based on Density Measurements of Boulders: Case Studies from Anegada and Pakarang Cape
Authors: Zakiul Fuady, Michaela Spiske
Abstract:
Inundation events, such as storms and tsunamis can leave onshore sedimentary evidence like sand deposits or large boulders. These deposits store indirect information on the related inundation parameters (e.g., flow velocity, flow depth, wave height). One tool to reveal these parameters are inverse models that use the physical characteristics of the deposits to refer to the magnitude of inundation. This study used boulders of the 2004 Indian Ocean Tsunami from Thailand (Pakarang Cape) and form a historical tsunami event that inundated the outer British Virgin Islands (Anegada). For the largest boulder found in Pakarang Cape with a volume of 26.48 m³ the required tsunami wave height is 0.44 m and storm wave height are 1.75 m (for a bulk density of 1.74 g/cm³. In Pakarang Cape the highest tsunami wave height is 0.45 m and storm wave height are 1.8 m for transporting a 20.07 m³ boulder. On Anegada, the largest boulder with a diameter of 2.7 m is the asingle coral head (species Diploria sp.) with a bulk density of 1.61 g/cm³, and requires a minimum tsunami wave height of 0.31 m and storm wave height of 1.25 m. The highest required tsunami wave height on Anegada is 2.12 m for a boulder with a bulk density of 2.46 g/cm³ (volume 0.0819 m³) and the highest storm wave height is 5.48 m (volume 0.216 m³) from the same bulk density and the coral type is limestone. Generally, the higher the bulk density, volume, and weight of the boulders, the higher the minimum tsunami and storm wave heights required to initiate transport. It requires 4.05 m/s flow velocity by Nott’s equation (2003) and 3.57 m/s by Nandasena et al. (2011) to transport the largest boulder in Pakarang Cape, whereas on Anegada, it requires 3.41 m/s to transport a boulder with diameter 2.7 m for both equations. Thus, boulder equations need to be handled with caution because they make many assumptions and simplifications. Second, the physical boulder parameters, such as density and volume need to be determined carefully to minimize any errors.Keywords: tsunami wave height, storm wave height, flow velocity, boulders, Anegada, Pakarang Cape
Procedia PDF Downloads 23810331 Role of Autophagic Lysosome Reformation for Cell Viability in an in vitro Infection Model
Authors: Muhammad Awais Afzal, Lorena Tuchscherr De Hauschopp, Christian Hübner
Abstract:
Introduction: Autophagy is an evolutionarily conserved lysosome-dependent degradation pathway, which can be induced by extrinsic and intrinsic stressors in living systems to adapt to fluctuating environmental conditions. In the context of inflammatory stress, autophagy contributes to the elimination of invading pathogens, the regulation of innate and adaptive immune mechanisms, and regulation of inflammasome activity as well as tissue damage repair. Lysosomes can be recycled from autolysosomes by the process of autophagic lysosome reformation (ALR), which depends on the presence of several proteins including Spatacsin. Thus ALR contributes to the replenishment of lysosomes that are available for fusion with autophagosomes in situations of increased autophagic turnover, e.g., during bacterial infections, inflammatory stress or sepsis. Objectives: We aimed to assess whether ALR plays a role for cell survival in an in-vitro bacterial infection model. Methods: Mouse embryonic fibroblasts (MEFs) were isolated from wild-type mice and Spatacsin (Spg11-/-) knockout mice. Wild-type MEFs and Spg11-/- MEFs were infected with Staphylococcus aureus (multiplication of infection (MOI) used was 10). After 8 and 16 hours of infection, cell viability was assessed on BD flow cytometer through propidium iodide intake. Bacterial intake by cells was also calculated by plating cell lysates on blood agar plates. Results: in-vitro infection of MEFs with Staphylococcus aureus showed a marked decrease of cell viability in ALR deficient Spatacsin knockout (Spg11-/-) MEFs after 16 hours of infection as compared to wild-type MEFs (n=3 independent experiments; p < 0.0001) although no difference was observed for bacterial intake by both genotypes. Conclusion: Suggesting that ALR is important for the defense of invading pathogens e.g. S. aureus, we observed a marked increase of cell death in an in-vitro infection model in cells with compromised ALR.Keywords: autophagy, autophagic lysosome reformation, bacterial infections, Staphylococcus aureus
Procedia PDF Downloads 14410330 Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia
Authors: Theodrose Sisay, Kindie Tesfaye, Mengistu Ketema, Nigussie Dechassa, Mezegebu Getnet
Abstract:
Agriculture is a sector that is very vulnerable to the effects of climate change and contributes to anthropogenic greenhouse gas (GHG) emissions in the atmosphere. By lowering emissions and adjusting to the change, it can also help to reduce climate change. Utilizing Climate-Smart Agriculture (CSA) technology that can sustainably boost productivity, improve resilience, and lower GHG emissions is crucial. This study sought to identify the CSA technologies used by farmers and assess adoption levels and factors that influence them. In order to gather information from 384 smallholder farmers in the Great Rift Valley (GRV) of Ethiopia, a cross-sectional survey was carried out. Data were analysed using percentage, chi-square test, t-test, and multivariate probit model. Results showed that crop diversification, agroforestry, and integrated soil fertility management were the most widely practiced technologies. The results of the Chi-square and t-tests showed that there are differences and significant and positive connections between adopters and non-adopters based on various attributes. The chi-square and t-test results confirmed that households who were older had higher incomes, greater credit access, knowledge of the climate, better training, better education, larger farms, higher incomes, and more frequent interactions with extension specialists had a positive and significant association with CSA technology adopters. The model result showed that age, sex, and education of the head, farmland size, livestock ownership, income, access to credit, climate information, training, and extension contact influenced the selection of CSA technologies. Therefore, effective action must be taken to remove barriers to the adoption of CSA technologies, and taking these adoption factors into account in policy and practice is anticipated to support smallholder farmers in adapting to climate change while lowering emissions.Keywords: climate change, climate-smart agriculture, smallholder farmers, multivariate probit model
Procedia PDF Downloads 127