Search results for: spatial lag models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8833

Search results for: spatial lag models

8113 A Study of the Interactions between the Inter-City Traffic System and the Spatial Structure Evolution in the Yangtze River Delta from Time and Space Dimensions

Authors: Zhang Cong, Cai Runlin, Jia Fengjiao

Abstract:

The evolution of the urban agglomeration spatial structure requires strong support of the inter-city traffic system. And the inter-city traffic system can not only meet the demand of the urban agglomeration transportation but also guide the economic development. To correctly understand the relationship between inter-city traffic planning and urban agglomeration can help the urban agglomeration coordinated developing with the inter-city traffic system. The Yangtze River Delta is one of the most representative urban agglomerations in China with strong economic vitality, high city levels, diversified urban space form, and improved transport infrastructure. With the promotion of industrial division in the Yangtze River Delta and the regional travel facilitation brought by inter-city traffic, the urban agglomeration is characterized by highly increasing of inter-city transportation demand, the urbanization of regional traffic, adjacent regional transportation links breaking administrative boundaries, the networked channels and so on. Therefore, the development of inter-city traffic system presents new trends and challenges. This paper studies the interactions between inter-city traffic system and regional economic growth, regional factor flow, and regional spatial structure evolution in the Yangtze River Delta from two dimensions of time and space. On this basis, the adaptability of inter-city traffic development mode and urban agglomeration space structure is analyzed. First of all, the coordination between urban agglomeration planning and inter-city traffic planning is judged from the planning level. Secondly, the coordination between inter-city traffic elements and industries and population distributions is judged from the perspective of space. Finally, the coordination of the cross-regional planning and construction of inter-city traffic system is judged. The conclusions can provide an empirical reference for intercity traffic planning in Yangtze River Delta region and other urban agglomerations, and it is also of great significance to optimize the allocation of urban agglomerations and the overall operational efficiency.

Keywords: evolution, interaction, inter-city traffic system, spatial structure

Procedia PDF Downloads 310
8112 Evaluation of Newly Synthesized Steroid Derivatives Using In silico Molecular Descriptors and Chemometric Techniques

Authors: Milica Ž. Karadžić, Lidija R. Jevrić, Sanja Podunavac-Kuzmanović, Strahinja Z. Kovačević, Anamarija I. Mandić, Katarina Penov-Gaši, Andrea R. Nikolić, Aleksandar M. Oklješa

Abstract:

This study considered selection of the in silico molecular descriptors and the models for newly synthesized steroid derivatives description and their characterization using chemometric techniques. Multiple linear regression (MLR) models were established and gave the best molecular descriptors for quantitative structure-retention relationship (QSRR) modeling of the retention of the investigated molecules. MLR models were without multicollinearity among the selected molecular descriptors according to the variance inflation factor (VIF) values. Used molecular descriptors were ranked using generalized pair correlation method (GPCM). In this method, the significant difference between independent variables can be noticed regardless almost equal correlation between dependent variable. Generated MLR models were statistically and cross-validated and the best models were kept. Models were ranked using sum of ranking differences (SRD) method. According to this method, the most consistent QSRR model can be found and similarity or dissimilarity between the models could be noticed. In this study, SRD was performed using average values of experimentally observed data as a golden standard. Chemometric analysis was conducted in order to characterize newly synthesized steroid derivatives for further investigation regarding their potential biological activity and further synthesis. This article is based upon work from COST Action (CM1105), supported by COST (European Cooperation in Science and Technology).

Keywords: generalized pair correlation method, molecular descriptors, regression analysis, steroids, sum of ranking differences

Procedia PDF Downloads 346
8111 Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model

Authors: Navid Daryasafar, Nima Farshidfar

Abstract:

In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared.

Keywords: error steganography, unidirectional estimation, bidirectional estimation, AR linear estimation

Procedia PDF Downloads 536
8110 Validating Condition-Based Maintenance Algorithms through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning

Procedia PDF Downloads 125
8109 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 335
8108 Learning Predictive Models for Efficient Energy Management of Exhibition Hall

Authors: Jeongmin Kim, Eunju Lee, Kwang Ryel Ryu

Abstract:

This paper addresses the problem of predictive control for energy management of large-scaled exhibition halls, where a lot of energy is consumed to maintain internal atmosphere under certain required conditions. Predictive control achieves better energy efficiency by optimizing the operation of air-conditioning facilities with not only the current but also some future status taken into account. In this paper, we propose to use predictive models learned from past sensor data of hall environment, for use in optimizing the operating plan for the air-conditioning facilities by simulating future environmental change. We have implemented an emulator of an exhibition hall by using EnergyPlus, a widely used building energy emulation tool, to collect data for learning environment-change models. Experimental results show that the learned models predict future change highly accurately on a short-term basis.

Keywords: predictive control, energy management, machine learning, optimization

Procedia PDF Downloads 269
8107 Empirical Roughness Progression Models of Heavy Duty Rural Pavements

Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed

Abstract:

Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.

Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement

Procedia PDF Downloads 167
8106 The Development of the Spatial and Hierarchic Urban Structure of the Ultra-Orthodox Jewish Population in Israel

Authors: Lee Cahaner, Nissim Leon

Abstract:

The segregation of populations is one of the main axes in the research of urban geography, which refers to the spatial and functional relationships between settlements. In Israel, this phenomenon has its unique expression in the spatial processes concerning the ultra-orthodox population. This population holds a set of interactions within itself as well as with the non-orthodox surrounding population because of historical and contemporary motivations on its which strength depends on its homogeneousness and separation. Its demographic growth rate and the internal social processes that the ultra-orthodox society undergoes create a new image of the ultra-orthodox concentration and its location in the Israeli space. The goals of the present study have also been defined with the express intention of filling the scholarly vacuum noted above: firstly, to discuss the development of the Israeli ultra-Orthodox sector’s hierarchical and spatial structure as of 2015, in light of the principles and mechanisms that guide it and vis-à-vis the general population’s hierarchical locality system; secondly, to map Israel’s ultra-Orthodox population, with attention to its physical boundaries, its subdivisions (Hassidic, Lithuanian, Sephardic) and the geographical and demographic processes that have characterized it in recent years; and thirdly, to shed light on the interactions between ultra-Orthodox localities via several different parameters, e.g. migration, education, transportation, employment, consumerism and community services. In order to understand the changes in ultra-Orthodox geographic distribution and the social processes that these changes have generated, a number of research activities were conducted during the course of this study− notably, gathering and assembling material from earlier academic studies, newspaper advertisements, state and private archives; in-depth interviews with major figures in the ultra-Orthodox community and others who come into contact with it; tours of the core areas of ultra-Orthodox settlement; and gathering quantitative and qualitative data from the statistical reports of governmental and other bodies. In addition, a multi-participant (2400-respondent) quantitative survey was conducted among residents of the new ultra-Orthodox cities, designed to elucidate the attributes and spatial attitudes of the residents− as a means of tracing and understanding this new settlement pattern within ultra-Orthodox space. A major portion of the quantitative and qualitative material was processed to form a system of maps that visually describe the distribution of Israel’s ultra-Orthodox population.

Keywords: migration, new cities, segregation, ultra-orthodox

Procedia PDF Downloads 400
8105 The Impact of Data Science on Geography: A Review

Authors: Roberto Machado

Abstract:

We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, analyzing 2,996 studies and synthesizing 41 of them to explore the evolution of data science and its integration into geography. By employing optimization algorithms, we accelerated the review process, significantly enhancing the efficiency and precision of literature selection. Our findings indicate that data science has developed over five decades, facing challenges such as the diversified integration of data and the need for advanced statistical and computational skills. In geography, the integration of data science underscores the importance of interdisciplinary collaboration and methodological innovation. Techniques like large-scale spatial data analysis and predictive algorithms show promise in natural disaster management and transportation route optimization, enabling faster and more effective responses. These advancements highlight the transformative potential of data science in geography, providing tools and methodologies to address complex spatial problems. The relevance of this study lies in the use of optimization algorithms in systematic reviews and the demonstrated need for deeper integration of data science into geography. Key contributions include identifying specific challenges in combining diverse spatial data and the necessity for advanced computational skills. Examples of connections between these two fields encompass significant improvements in natural disaster management and transportation efficiency, promoting more effective and sustainable environmental solutions with a positive societal impact.

Keywords: data science, geography, systematic review, optimization algorithms, supervised learning

Procedia PDF Downloads 28
8104 Influence of a High-Resolution Land Cover Classification on Air Quality Modelling

Authors: C. Silveira, A. Ascenso, J. Ferreira, A. I. Miranda, P. Tuccella, G. Curci

Abstract:

Poor air quality is one of the main environmental causes of premature deaths worldwide, and mainly in cities, where the majority of the population lives. It is a consequence of successive land cover (LC) and use changes, as a result of the intensification of human activities. Knowing these landscape modifications in a comprehensive spatiotemporal dimension is, therefore, essential for understanding variations in air pollutant concentrations. In this sense, the use of air quality models is very useful to simulate the physical and chemical processes that affect the dispersion and reaction of chemical species into the atmosphere. However, the modelling performance should always be evaluated since the resolution of the input datasets largely dictates the reliability of the air quality outcomes. Among these data, the updated LC is an important parameter to be considered in atmospheric models, since it takes into account the Earth’s surface changes due to natural and anthropic actions, and regulates the exchanges of fluxes (emissions, heat, moisture, etc.) between the soil and the air. This work aims to evaluate the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), when different LC classifications are used as an input. The influence of two LC classifications was tested: i) the 24-classes USGS (United States Geological Survey) LC database included by default in the model, and the ii) CLC (Corine Land Cover) and specific high-resolution LC data for Portugal, reclassified according to the new USGS nomenclature (33-classes). Two distinct WRF-Chem simulations were carried out to assess the influence of the LC on air quality over Europe and Portugal, as a case study, for the year 2015, using the nesting technique over three simulation domains (25 km2, 5 km2 and 1 km2 horizontal resolution). Based on the 33-classes LC approach, particular emphasis was attributed to Portugal, given the detail and higher LC spatial resolution (100 m x 100 m) than the CLC data (5000 m x 5000 m). As regards to the air quality, only the LC impacts on tropospheric ozone concentrations were evaluated, because ozone pollution episodes typically occur in Portugal, in particular during the spring/summer, and there are few research works relating to this pollutant with LC changes. The WRF-Chem results were validated by season and station typology using background measurements from the Portuguese air quality monitoring network. As expected, a better model performance was achieved in rural stations: moderate correlation (0.4 – 0.7), BIAS (10 – 21µg.m-3) and RMSE (20 – 30 µg.m-3), and where higher average ozone concentrations were estimated. Comparing both simulations, small differences grounded on the Leaf Area Index and air temperature values were found, although the high-resolution LC approach shows a slight enhancement in the model evaluation. This highlights the role of the LC on the exchange of atmospheric fluxes, and stresses the need to consider a high-resolution LC characterization combined with other detailed model inputs, such as the emission inventory, to improve air quality assessment.

Keywords: land use, spatial resolution, WRF-Chem, air quality assessment

Procedia PDF Downloads 152
8103 Wind Power Forecast Error Simulation Model

Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus

Abstract:

One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.

Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation

Procedia PDF Downloads 482
8102 Colors and Interiority - A Study on the Relationship of Colors and Interior Spaces

Authors: Mahwish Ghulam Rasool

Abstract:

The design of a space is a complex process that involves multiple stages, from conceptualization, identifying design problems to understanding the context, materiality, and functionality of the space. Out of all the design elements, color is one of the most dominant and expressive factors that affect the spatial dynamics of the interior space. Color affects aesthetic comfort in space and has a lasting impact on human perception and psychology. Using color as a tool for creating spatial experiences is a new paradigm. Color semantics in spaces are not only used for surface treatment or aesthetics, but it also has more powerful functional characteristics. As interior spaces are evolving and becoming experiential with each decade, designers are looking for new processes to enhance the spatial and experiential quality of interior spaces. The relationship between color and interior typologies is a relatively new paradigm. This paper discusses the role of colors in interior spaces from various perspectives, exploring their impact on the formation of interior typologies and the use of colors in space design. The paper analyzes interior typologies worldwide, from residential to commercial interior spaces, where color semantics plays a prominent role in the design. The paper also emphasizes the design process and the creation of design language, unveiling the possibilities of applying colors in interior spaces that can be in harmony with the building context, space functionality, or in opposition to the existing building envelope or environment. The paper aims to contribute to the field of interior design education and practices. By using experimental and various research methodologies for investigation, it aims to fill the gap in the literature regarding color semantics and the relationship between interior typologies.

Keywords: color psychology, color semantics, interior environments, interior typologies

Procedia PDF Downloads 85
8101 Spatial Transformation of Heritage Area as The Impact of Tourism Activity (Case Study: Kauman Village, Surakarta City, Central Java, Indonesia

Authors: Nafiah Solikhah Thoha

Abstract:

One area that has spatial character as Heritage area is Kauman Villages. Kauman village in The City of Surakarta, Central Java, Indonesia was formed in 1757 by Paku Buwono III as the King of Kasunanan kingdom (Mataram Kingdom) for Kasunanan kingdom courtiers and scholars of Madrasa. Spatial character of Kauman village influenced by Islamic planning and socio-cultural rules of Kasunanan Kingdom. As traditional settlements influenced by Islamic planning, the Grand Mosque is a binding part of the whole area. Circulation pattern forming network (labyrinth) with narrow streets that ended at the Grand Mosque. The outdoor space can be used for circulation. Social activity is dominated by step movement from one place to a different place. Stalemate (the fina/cul de sac) generally only passable on foot, bicycles, and motorcycles. While the pass (main and branch) can be traversed by motor, vehicles. Kauman village has an area that can not be used as a public road that penetrates and serves as a liaison between the outside world to the other. Hierarchy of hall in Kauman village shows that the existence of a space is getting into more important. Firstly, woman in Kauman make the handmade batik for themself. In 2005 many people improving batik tradisional into commercial, and developed program named "Batik Tourism village of Kauman". That program affects the spatial transformations. This study aimed to explore the influence of tourism program towards spatial transformations. The factors that studied are the organization of space, circulation patterns, hierarchical space, and orientation through the descriptive-evaluation approach methods. Based on the study, tourism activity engenders transformations on the spatial scale (macro), residential block (mezo), homes (micro). First, the Grand Mosque and madrasa (religious school) as a binding zoning; tangle of roads as forming the structure of the area developed as a liaison with outside Kauman; organization of space in the residential of batik entrepreneurs firstly just a residential, then develop into residential, factory of batik including showroom. Second, the circulation pattern forming network (labyrinth) and ends at the Grand Mosque. Third, the hierarchy in the form of public space (the shari), semi-public, and private (the fina/culdesac) is no longer to provide protection to women, only as hierarchy of circulation path. Fourth, cluster building orientation does not follow the kiblat direction or axis oriented to cosmos, but influence by the new function as the showroom. It was need the direction of the main road. Kauman grow as an appropriate area for the community. During its development, the settlement function changes according to community activities, especially economic activities. The new function areas as tourism area affect spatial pattern of Kauman village. Spatial existence and activity as a local wisdom that has been done for generations have meaning of holistic, encompassing socio-cultural sustainability, economics, and the heritage area. By reviewing the local wisdom and the way of life of that society, we can learn how to apply the culture as education for sustainable of heritage area.

Keywords: impact of tourism, Kauman village, spatial transformation, sustainable of heritage area

Procedia PDF Downloads 430
8100 Review of the Road Crash Data Availability in Iraq

Authors: Abeer K. Jameel, Harry Evdorides

Abstract:

Iraq is a middle income country where the road safety issue is considered one of the leading causes of deaths. To control the road risk issue, the Iraqi Ministry of Planning, General Statistical Organization started to organise a collection system of traffic accidents data with details related to their causes and severity. These data are published as an annual report. In this paper, a review of the available crash data in Iraq will be presented. The available data represent the rate of accidents in aggregated level and classified according to their types, road users’ details, and crash severity, type of vehicles, causes and number of causalities. The review is according to the types of models used in road safety studies and research, and according to the required road safety data in the road constructions tasks. The available data are also compared with the road safety dataset published in the United Kingdom as an example of developed country. It is concluded that the data in Iraq are suitable for descriptive and exploratory models, aggregated level comparison analysis, and evaluation and monitoring the progress of the overall traffic safety performance. However, important traffic safety studies require disaggregated level of data and details related to the factors of the likelihood of traffic crashes. Some studies require spatial geographic details such as the location of the accidents which is essential in ranking the roads according to their level of safety, and name the most dangerous roads in Iraq which requires tactic plan to control this issue. Global Road safety agencies interested in solve this problem in low and middle-income countries have designed road safety assessment methodologies which are basing on the road attributes data only. Therefore, in this research it is recommended to use one of these methodologies.

Keywords: road safety, Iraq, crash data, road risk assessment, The International Road Assessment Program (iRAP)

Procedia PDF Downloads 253
8099 Predicting Options Prices Using Machine Learning

Authors: Krishang Surapaneni

Abstract:

The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%

Keywords: finance, linear regression model, machine learning model, neural network, stock price

Procedia PDF Downloads 74
8098 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models

Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed

Abstract:

In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.

Keywords: equivalent martingale measure, European put option, girsanov theorem, martingales, monte carlo method, option price valuation formula

Procedia PDF Downloads 131
8097 The Hyperbolic Smoothing Approach for Automatic Calibration of Rainfall-Runoff Models

Authors: Adilson Elias Xavier, Otto Corrêa Rotunno Filho, Paulo Canedo De Magalhães

Abstract:

This paper addresses the issue of automatic parameter estimation in conceptual rainfall-runoff (CRR) models. Due to threshold structures commonly occurring in CRR models, the associated mathematical optimization problems have the significant characteristic of being strongly non-differentiable. In order to face this enormous task, the resolution method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final estimation solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original conceptual problem. The use of this technique, called Hyperbolic Smoothing Method (HSM), makes possible the application of the most powerful minimization algorithms, and also allows for the main difficulties presented by the original CRR problem to be overcome. A set of computational experiments is presented for the purpose of illustrating both the reliability and the efficiency of the proposed approach.

Keywords: rainfall-runoff models, automatic calibration, hyperbolic smoothing method

Procedia PDF Downloads 148
8096 Diachronic Evolution and Multifaceted Interpretation of City-Mountain Landscape Culture: From Ritualistic Divinity to Poetic Aesthetics

Authors: Junjie Fu

Abstract:

This paper explores the cultural evolution of the "city-mountain" landscape in ancient Chinese cities, tracing its origins in the regional mountain and town division within the national system. It delves into the cultural archetype of "city-mountain" landscape divine imagery and its spatial characteristics, drawing from the spatial conception of mountain worship and divine order in the model of Kunlun and Penglai. Furthermore, it examines the shift from religious to daily life influences, leading to a poetic aesthetic turn in the "city-mountain" landscape. The paper also discusses the organizational structure of the "city-mountain" poetic landscape and its role as a space for enjoyment. By studying the cultural connotations, evolving relationships, and power mechanisms of the "city-mountain" landscape, this research provides theoretical insights for the construction and development of "city-mountain" landscapes and mountain cities.

Keywords: city-mountain landscape, cultural image, divinity, landscape image, poetry

Procedia PDF Downloads 84
8095 Multiscale Modelization of Multilayered Bi-Dimensional Soils

Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur

Abstract:

Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.

Keywords: multiscale, bidimensional, wavelets, backscattering, multilayer, SPM, air pockets

Procedia PDF Downloads 122
8094 Developing Location-allocation Models in the Three Echelon Supply Chain

Authors: Mehdi Seifbarghy, Zahra Mansouri

Abstract:

In this paper a few location-allocation models are developed in a multi-echelon supply chain including suppliers, manufacturers, distributors and retailers. The objectives are maximizing demand coverage, minimizing the total distance of distributors from suppliers, minimizing some facility establishment costs and minimizing the environmental effects. Since nature of the given models is multi-objective, we suggest a number of goal-based solution techniques such L-P metric, goal programming, multi-choice goal programming and goal attainment in order to solve the problems.

Keywords: location, multi-echelon supply chain, covering, goal programming

Procedia PDF Downloads 558
8093 Study of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans Dispersion in the Environment of a Municipal Solid Waste Incinerator

Authors: Gómez R. Marta, Martín M. Jesús María

Abstract:

The general aim of this paper identifies the areas of highest concentration of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) around the incinerator through the use of dispersion models. Atmospheric dispersion models are useful tools for estimating and prevent the impact of emissions from a particular source in air quality. These models allow considering different factors that influence in air pollution: source characteristics, the topography of the receiving environment and weather conditions to predict the pollutants concentration. The PCDD/Fs, after its emission into the atmosphere, are deposited on water or land, near or far from emission source depending on the size of the associated particles and climatology. In this way, they are transferred and mobilized through environmental compartments. The modelling of PCDD/Fs was carried out with following tools: Atmospheric Dispersion Model Software (ADMS) and Surfer. ADMS is a dispersion model Gaussian plume, used to model the impact of air quality industrial facilities. And Surfer is a program of surfaces which is used to represent the dispersion of pollutants on a map. For the modelling of emissions, ADMS software requires the following input parameters: characterization of emission sources (source type, height, diameter, the temperature of the release, flow rate, etc.) meteorological and topographical data (coordinate system), mainly. The study area was set at 5 Km around the incinerator and the first population center nearest to focus PCDD/Fs emission is about 2.5 Km, approximately. Data were collected during one year (2013) both PCDD/Fs emissions of the incinerator as meteorology in the study area. The study has been carried out during period's average that legislation establishes, that is to say, the output parameters are taking into account the current legislation. Once all data required by software ADMS, described previously, are entered, and in order to make the representation of the spatial distribution of PCDD/Fs concentration and the areas affecting them, the modelling was proceeded. In general, the dispersion plume is in the direction of the predominant winds (Southwest and Northeast). Total levels of PCDD/Fs usually found in air samples, are from <2 pg/m3 for remote rural areas, from 2-15 pg/m3 in urban areas and from 15-200 pg/m3 for areas near to important sources, as can be an incinerator. The results of dispersion maps show that maximum concentrations are the order of 10-8 ng/m3, well below the values considered for areas close to an incinerator, as in this case.

Keywords: atmospheric dispersion, dioxin, furan, incinerator

Procedia PDF Downloads 215
8092 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 105
8091 Role of Urban-Rural Partnership in the Generation of Socio-Economic Success in Polish Metropolitan Areas

Authors: Jerzy Bański

Abstract:

The purpose of the paper is to describe the role of urban-rural partnership in social and economic development. The concept of urban-rural collaboration is relatively new and assumes the need to link large metropolitan areas with surrounding rural areas in a number of ways. It is strongly related to the existing concept of polycentric spatial development. At the European Union level, the first document to address the need for urban-rural partnerships was the European Spatial Development Perspective from 1999. The paper focuses on factors that generate social and economic success on examples of several metropolitan territories in Poland (Warsaw, Poznan, Wroclaw, Krakow). A survey focused on rural communes made it possible to assess key success factors (location, social and economic, technological and organizational) that could be later used to determine the right course of action in the area of urban-rural cooperation, with the desired outcome being effective metropolitan area development. The main challenges to urban-rural partnership are issues associated with spatial planning, infrastructure and public services. These are areas of the greatest conflict of interest, too. Any analysis of urban-rural cooperation in metropolitan areas really needs to focus on the unique nature of this type of relationship. This includes issues such as commuting to work in the urban core and vice versa, complementarity of technical infrastructure, and joint strategic planning. Other forms of cooperation should focus on the tourist and recreational aspects of areas surrounding the urban core.

Keywords: partnership, rural areas, urbanization, metropolitan areas, Poland

Procedia PDF Downloads 366
8090 Evaluating the Terrace Benefits of Erosion in a Terraced-Agricultural Watershed for Sustainable Soil and Water Conservation

Authors: Sitarrine Thongpussawal, Hui Shao, Clark Gantzer

Abstract:

Terracing is a conservation practice to reduce erosion and widely used for soil and water conservation throughout the world but is relatively expensive. A modification of the Soil and Water Assessment Tool (called SWAT-Terrace or SWAT-T) explicitly aims to improve the simulation of the hydrological process of erosion from the terraces. SWAT-T simulates erosion from the terraces by separating terraces into three segments instead of evaluating the entire terrace. The objective of this work is to evaluate the terrace benefits on erosion from the Goodwater Creek Experimental Watershed (GCEW) at watershed and Hydrologic Response Unit (HRU) scales using SWAT-T. The HRU is the smallest spatial unit of the model, which lumps all similar land uses, soils, and slopes within a sub-basin. The SWAT-T model was parameterized for slope length, steepness and the empirical Universal Soil Erosion Equation support practice factor for three terrace segments. Data from 1993-2010 measured at the watershed outlet were used to evaluate the models for calibration and validation. Results of SWAT-T calibration showed good performance between measured and simulated erosion for the monthly time step, but poor performance for SWAT-T validation. This is probably because of large storms in spring 2002 that prevented planting, causing poorly simulated scheduling of actual field operations. To estimate terrace benefits on erosion, models were compared with and without terraces. Results showed that SWAT-T showed significant ~3% reduction in erosion (Pr <0.01) at the watershed scale and ~12% reduction in erosion at the HRU scale. Studies using the SWAT-T model indicated that the terraces have advantages to reduce erosion from terraced-agricultural watersheds. SWAT-T can be used in the evaluation of erosion to sustainably conserve the soil and water.

Keywords: Erosion, Modeling, Terraces, SWAT

Procedia PDF Downloads 205
8089 Intensive Use of Software in Teaching and Learning Calculus

Authors: Nodelman V.

Abstract:

Despite serious difficulties in the assimilation of the conceptual system of Calculus, software in the educational process is used only occasionally, and even then, mainly for illustration purposes. The following are a few reasons: The non-trivial nature of the studied material, Lack of skills in working with software, Fear of losing time working with software, The variety of the software itself, the corresponding interface, syntax, and the methods of working with the software, The need to find suitable models, and familiarize yourself with working with them, Incomplete compatibility of the found models with the content and teaching methods of the studied material. This paper proposes an active use of the developed non-commercial software VusuMatica, which allows removing these restrictions through Broad support for the studied mathematical material (and not only Calculus). As a result - no need to select the right software, Emphasizing the unity of mathematics, its intrasubject and interdisciplinary relations, User-friendly interface, Absence of special syntax in defining mathematical objects, Ease of building models of the studied material and manipulating them, Unlimited flexibility of models thanks to the ability to redefine objects, which allows exploring objects characteristics, and considering examples and counterexamples of the concepts under study. The construction of models is based on an original approach to the analysis of the structure of the studied concepts. Thanks to the ease of construction, students are able not only to use ready-made models but also to create them on their own and explore the material studied with their help. The presentation includes examples of using VusuMatica in studying the concepts of limit and continuity of a function, its derivative, and integral.

Keywords: counterexamples, limitations and requirements, software, teaching and learning calculus, user-friendly interface and syntax

Procedia PDF Downloads 80
8088 Planning for Cities in Transition: Urban Conservation and Urban Development in Potchefstroom, South Africa as a Case Study

Authors: Fortune Mangara

Abstract:

The world is undergoing the largest wave of urban growth in history due to rapid urbanization. Africa’s fast rate of urbanization is being driven by several factors such as population growth and migration. Urbanization results in development pressure on existing infrastructure, and numerous existing buildings are being destroyed in the process. Many of these buildings are built by environmental heritage resources which are part of the city's heritage and are therefore valuable. Many built environment heritage resources are currently being destroyed due to development pressure, while others are facing the risk of destruction or abandonment. There are different approaches that inform urban development and urban conservation. The modernist and post-modernist dichotomy has played an influencing role on how development or conservation of built environment heritage resources are approached. The fragmented nature of historical urban conservation paradigms and theories are also reflected in the evolution of policy and legislation that guide urban development and conservation of built heritage resources. Urban development and conservation have a long history of being guided by separated policies and legislation. However, recent international and South African policy and legislation had started to acknowledge the importance of integrating urban development and urban conservation. Spatial planning guides urban development and can be used as an integrative tool. With the aforementioned in mind, the main research question that guides this study is: What role does spatial planning play in the coexistence of urban development and urban conservation in a city in transition? The main purpose of this research is to use spatial planning as a tool for integrating urban conservation and urban development with reference to built environmental heritage resources. A qualitative research methodology is going to be employed in which a singular case study will be used as the research design. A qualitative document analysis will be used to collect data. Potchefstroom is going to be used as a case study as it is the oldest town in the North West province therefore is rich in built environmental heritage resources.

Keywords: built environmental heritage resources, document analysis, spatial planning, urban conservation, urban development

Procedia PDF Downloads 128
8087 Nanoparticles on Biological Biomarquers Models: Paramecium Tetraurelia and Helix aspersa

Authors: H. Djebar, L. Khene, M. Boucenna, M. R. Djebar, M. N. Khebbeb, M. Djekoun

Abstract:

Currently in toxicology, use of alternative models permits to understand the mechanisms of toxicity at different levels of cells. Objectives of our research concern the determination of NPs ZnO, TiO2, AlO2, and FeO2 effect on ciliate protist freshwater Paramecium sp and Helix aspersa. The result obtained show that NPs increased antioxidative enzyme activity like catalase, glutathione –S-transferase and level GSH. Also, cells treated with high concentrations of NPs showed a high level of MDA. In conclusion, observations from growth and enzymatic parameters suggest on one hand that treatment with NPs provokes an oxidative stress and on the other that snale and paramecium are excellent alternatives models for ecotoxicological studies.

Keywords: NPs, GST, catalase, GSH, MDA, toxicity, snale and paramecium

Procedia PDF Downloads 280
8086 Research on the Updating Strategy of Public Space in Small Towns in Zhejiang Province under the Background of New-Style Urbanization

Authors: Chen Yao, Wang Ke

Abstract:

Small towns are the most basic administrative institutions in our country, which are connected with cities and rural areas. Small towns play an important role in promoting local urban and rural economic development, providing the main public services and maintaining social stability in social governance. With the vigorous development of small towns and the transformation of industrial structure, the changes of social structure, spatial structure, and lifestyle are lagging behind, causing that the spatial form and landscape style do not belong to both cities and rural areas, and seriously affecting the quality of people’s life space and environment. The rural economy in Zhejiang Province has started, the society and the population are also developing in relative stability. In September 2016, Zhejiang Province set out the 'Technical Guidelines for Comprehensive Environmental Remediation of Small Towns in Zhejiang Province,' so as to comprehensively implement the small town comprehensive environmental remediation with the main content of strengthening the plan and design leading, regulating environmental sanitation, urban order and town appearance. In November 2016, Huzhou City started the comprehensive environmental improvement of small towns, strived to use three years to significantly improve the 115 small towns, as well as to create a number of high quality, distinctive and beautiful towns with features of 'clean and livable, rational layout, industrial development, poetry and painting style'. This paper takes Meixi Town, Zhangwu Town and Sanchuan Village in Huzhou City as the empirical cases, analyzes the small town public space by applying the relative theory of actor-network and space syntax. This paper also analyzes the spatial composition in actor and social structure elements, as well as explores the relationship of actor’s spatial practice and public open space by combining with actor-network theory. This paper introduces the relevant theories and methods of spatial syntax, carries out research analysis and design planning analysis of small town spaces from the perspective of quantitative analysis. And then, this paper proposes the effective updating strategy for the existing problems in public space. Through the planning and design in the building level, the dissonant factors produced by various spatial combination of factors and between landscape design and urban texture during small town development will be solved, inhabitant quality of life will be promoted, and town development vitality will be increased.

Keywords: small towns, urbanization, public space, updating

Procedia PDF Downloads 227
8085 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 127
8084 A Large Language Model-Driven Method for Automated Building Energy Model Generation

Authors: Yake Zhang, Peng Xu

Abstract:

The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.

Keywords: artificial intelligence, building energy modelling, building simulation, large language model

Procedia PDF Downloads 24