Search results for: sags voltage
538 An Experimental Study to Control Single Droplet by Actuating Waveform with Preliminary and Suppressing Vibration
Authors: Oke Oktavianty, Tadayuki Kyoutani, Shigeyuki Haruyama, Ken Kaminishi
Abstract:
For advancing the experiment system standard of Inkjet printer that is being developed, the actual natural period, fire limitation number in droplet weight measurement and observation distance in droplet velocity measurement was investigated. In another side, the study to control the droplet volume in inkjet printer with negative actuating waveform method is still limited. Therefore, the effect of negative waveform with preliminary and suppressing vibration addition on the droplet formation process, droplet shape, volume and velocity were evaluated. The different voltage and print-head temperature were exerted to obtain the optimum preliminary and suppressing vibration. The mechanism of different phenomenon from each waveform was also discussed.
Keywords: inkjet printer, DoD, waveform, preliminary and suppressing vibration
Procedia PDF Downloads 239537 Numerical Analyze of Corona Discharge on HVDC Transmission Lines
Authors: H. Nouri, A. Tabbel, N. Douib, H. Aitsaid, Y. Zebboudj
Abstract:
This study and the field test comparisons were carried out on the Algerian Derguna-Setif transmission systems. The transmission line of normal voltage 225 kV is 65 km long, transported and uses twin bundle conductors protected with two shield wires of transposed galvanized steel. An iterative finite-element method is used to solve Poisons equation. Two algorithms are proposed for satisfying the current continuity condition and updating the space-charge density. A new approach to the problem of corona discharge in transmission system has been described in this paper. The effect of varying the configurations and wires number is also investigated. The analysis of this steady is important in the design of HVDC transmission lines. The potential and electric field have been calculating in locations singular points of the system.Keywords: corona discharge, finite element method, electric field, HVDC
Procedia PDF Downloads 414536 Filter for the Measurement of Supraharmonics in Distribution Networks
Authors: Sivaraman Karthikeyan
Abstract:
Due to rapidly developing power electronics devices and technologies such as power line communication or self-commutating converters, voltage and current distortion, as well as interferences, have increased in the frequency range of 2 kHz to 150 kHz; there is an urgent need for regulation of electromagnetic compatibility (EMC) standards in this frequency range. Measuring or testing compliance with emission and immunity limitations necessitates the use of precise, repeatable measuring methods. Appropriate filters to minimize the fundamental component and its harmonics below 2 kHz in the measuring signal would improve the measurement accuracy in this frequency range leading to better analysis. This paper discusses filter suggestions in the current measurement standard and proposes an infinite impulse response (IIR) filter design that is optimized for a low number of poles, strong fundamental damping, and high accuracy above 2 kHz. The new filter’s transfer function is delivered as a result. An analog implementation is derived from the overall design.Keywords: supraharmonics, 2 kHz, 150 kHz, filter, analog filter
Procedia PDF Downloads 146535 High Capacity SnO₂/Graphene Composite Anode Materials for Li-Ion Batteries
Authors: Hilal Köse, Şeyma Dombaycıoğlu, Ali Osman Aydın, Hatem Akbulut
Abstract:
Rechargeable lithium-ion batteries (LIBs) have become promising power sources for a wide range of applications, such as mobile communication devices, portable electronic devices and electrical/hybrid vehicles due to their long cycle life, high voltage and high energy density. Graphite, as anode material, has been widely used owing to its extraordinary electronic transport properties, large surface area, and high electrocatalytic activities although its limited specific capacity (372 mAh g-1) cannot fulfil the increasing demand for lithium-ion batteries with higher energy density. To settle this problem, many studies have been taken into consideration to investigate new electrode materials and metal oxide/graphene composites are selected as a kind of promising material for lithium ion batteries as their specific capacities are much higher than graphene. Among them, SnO₂, an n-type and wide band gap semiconductor, has attracted much attention as an anode material for the new-generation lithium-ion batteries with its high theoretical capacity (790 mAh g-1). However, it suffers from large volume changes and agglomeration associated with the Li-ion insertion and extraction processes, which brings about failure and loss of electrical contact of the anode. In addition, there is also a huge irreversible capacity during the first cycle due to the formation of amorphous Li₂O matrix. To obtain high capacity anode materials, we studied on the synthesis and characterization of SnO₂-Graphene nanocomposites and investigated the capacity of this free-standing anode material in this work. For this aim, firstly, graphite oxide was obtained from graphite powder using the method described by Hummers method. To prepare the nanocomposites as free-standing anode, graphite oxide particles were ultrasonicated in distilled water with SnO2 nanoparticles (1:1, w/w). After vacuum filtration, the GO-SnO₂ paper was peeled off from the PVDF membrane to obtain a flexible, free-standing GO paper. Then, GO structure was reduced in hydrazine solution. Produced SnO2- graphene nanocomposites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD) analyses. CR2016 cells were assembled in a glove box (MBraun-Labstar). The cells were charged and discharged at 25°C between fixed voltage limits (2.5 V to 0.2 V) at a constant current density on a BST8-MA MTI model battery tester with 0.2C charge-discharge rate. Cyclic voltammetry (CV) was performed at the scan rate of 0.1 mVs-1 and electrochemical impedance spectroscopy (EIS) measurements were carried out using Gamry Instrument applying a sine wave of 10 mV amplitude over a frequency range of 1000 kHz-0.01 Hz.Keywords: SnO₂-graphene, nanocomposite, anode, Li-ion battery
Procedia PDF Downloads 227534 Fabrication of Cylindrical Silicon Nanowire-Embedded Field Effect Transistor Using Al2O3 Transfer Layer
Authors: Sang Hoon Lee, Tae Il Lee, Su Jeong Lee, Jae Min Myoung
Abstract:
In order to manufacture short gap single Si nanowire (NW) field effect transistor (FET) by imprinting and transferring method, we introduce the method using Al2O3 sacrificial layer. The diameters of cylindrical Si NW addressed between Au electrodes by dielectrophoretic (DEP) alignment method are controlled to 106, 128, and 148 nm. After imprinting and transfer process, cylindrical Si NW is embedded in PVP adhesive and dielectric layer. By curing transferred cylindrical Si NW and Au electrodes on PVP-coated p++ Si substrate with 200nm-thick SiO2, 3μm gap Si NW FET fabrication was completed. As the diameter of embedded Si NW increases, the mobility of FET increases from 80.51 to 121.24 cm2/V•s and the threshold voltage moves from –7.17 to –2.44 V because the ratio of surface to volume gets reduced.Keywords: Al2O3 sacrificial transfer layer, cylindrical silicon nanowires, dielectrophorestic alignment, field effect transistor
Procedia PDF Downloads 457533 Optimization of HfO₂ Deposition of Cu Electrode-Based RRAM Device
Authors: Min-Hao Wang, Shih-Chih Chen
Abstract:
Recently, the merits such as simple structure, low power consumption, and compatibility with complementary metal oxide semiconductor (CMOS) process give an advantage of resistive random access memory (RRAM) as a promising candidate for the next generation memory, hafnium dioxide (HfO2) has been widely studied as an oxide layer material, but the use of copper (Cu) as both top and bottom electrodes has rarely been studied. In this study, radio frequency sputtering was used to deposit the intermediate layer HfO₂, and electron beam evaporation was used. For the upper and lower electrodes (cu), using different AR: O ratios, we found that the control of the metal filament will make the filament widely distributed, causing the current to rise to the limit current during Reset. However, if the flow ratio is controlled well, the ON/OFF ratio can reach 104, and the set voltage is controlled below 3v.Keywords: RRAM, metal filament, HfO₂, Cu electrode
Procedia PDF Downloads 52532 High Efficiency ZPS-PWM Dual-Output Converters with EMI Reduction Method
Authors: Yasunori Kobori, Nobukazu Tsukiji, Nobukazu Takai, Haruo Kobayashi
Abstract:
In this paper, we study a Pulse-WidthModulation (PWM) controlled Zero-Voltage-Switching (ZVS) for single-inductor dual-output (SIDO) converters. This method can meet the industry demands for high efficiency due to ZVS and small size and low cost, thanks to single-inductor per multiple voltages. We show the single inductor single-output (SISO) ZVS buck converter with its operation and simulation and then the experimental results. Next proposed ZVS-PWM controlled SIDO converters are explained in the simulation. Finally we have proposed EMI reduction method with spread spectrum.Keywords: DC-DC switching converter, zero-oltage switching control, single-inductor dual-output converter, EMI reduction, spread spectrum
Procedia PDF Downloads 497531 Improved Photo-Active Layer Properties for Efficient Organic Solar Cells
Authors: Chahrazed Bendenia, Souhila Bendenia, Samia Moulebhar, Hanaa Merad-Dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri
Abstract:
In recent years, organic solar cells (OSCs) have become the fundamental concern of researchers thanks to their advantages in terms of flexibility, manufacturing processes and low cost. The performance of these devices is influenced by various factors, such as the layers introduced in the stacking of the solar cell realized. In our work, the modeling of a reverse OSC under AM1.5G illumination will be determined. The photo-active polymer/fullerene layer will be analyzed from the polymer variation of this layer using the SCAPS simulator to extract the J-V characteristics: open circuit voltage (Voc), short circuit current (Jsc), filling factor (FF) and power conversion efficiency (η). The results obtained indicated that the materials used have a significant impact on improving the photovoltaic parameters of the devices studied.Keywords: solar, polymer, simulator, characteristics
Procedia PDF Downloads 78530 Overhead Lines Induced Transient Overvoltage Analysis Using Finite Difference Time Domain Method
Authors: Abdi Ammar, Ouazir Youcef, Laissaoui Abdelmalek
Abstract:
In this work, an approach based on transmission lines theory is presented. It is exploited for the calculation of overvoltage created by direct impacts of lightning waves on a guard cable of an overhead high-voltage line. First, we show the theoretical developments leading to the propagation equation, its discretization by finite difference time domain method (FDTD), and the resulting linear algebraic equations, followed by the calculation of the linear parameters of the line. The second step consists of solving the transmission lines system of equations by the FDTD method. This enabled us to determine the spatio-temporal evolution of the induced overvoltage.Keywords: lightning surge, transient overvoltage, eddy current, FDTD, electromagnetic compatibility, ground wire
Procedia PDF Downloads 83529 Electricity Production from Vermicompost Liquid Using Microbial Fuel Cell
Authors: Pratthana Ammaraphitak, Piyachon Ketsuwan, Rattapoom Prommana
Abstract:
Electricity production from vermicompost liquid was investigated in microbial fuel cells (MFCs). The aim of this study was to determine the performance of vermicompost liquid as a biocatalyst for electricity production by MFCs. Chemical and physical parameters of vermicompost liquid as total nitrogen, ammonia-nitrogen, nitrate, nitrite, total phosphorus, potassium, organic matter, C:N ratio, pH, and electrical conductivity in MFCs were studied. The performance of MFCs was operated in open circuit mode for 7 days. The maximum open circuit voltage (OCV) was 0.45 V. The maximum power density of 5.29 ± 0.75 W/m² corresponding to a current density of 0.024 2 ± 0.0017 A/m² was achieved by the 1000 Ω on day 2. Vermicompost liquid has efficiency to generate electricity from organic waste.Keywords: vermicompost liquid, microbial fuel cell, nutrient, electricity production
Procedia PDF Downloads 178528 3D Electrode Carrier and its Implications on Retinal Implants
Authors: Diego Luján Villarreal
Abstract:
Retinal prosthetic devices aim to repair some vision in visual impairment patients by stimulating electrically neural cells in the visual system. In this study, the 3D linear electrode carrier is presented. A simulation framework was developed by placing the 3D carrier 1 mm away from the fovea center at the highest-density cell. Cell stimulation is verified in COMSOL Multiphysics by developing a 3D computational model which includes the relevant retinal interface elements and dynamics of the voltage-gated ionic channels. Current distribution resulting from low threshold amplitudes produces a small volume equivalent to the volume confined by individual cells at the highest-density cell using small-sized electrodes. Delicate retinal tissue is protected by excessive charge densityKeywords: retinal prosthetic devices, visual devices, retinal implants., visual prosthetic devices
Procedia PDF Downloads 113527 Fuzzy Logic Based Sliding Mode Controller for a New Soft Switching Boost Converter
Authors: Azam Salimi, Majid Delshad
Abstract:
This paper presents a modified design of a sliding mode controller based on fuzzy logic for a New ZVThigh step up DC-DC Converter . Here a proportional - integral (PI)-type current mode control is employed and a sliding mode controller is designed utilizing fuzzy algorithm. Sliding mode controller guarantees robustness against all variations and fuzzy logic helps to reduce chattering phenomenon due to sliding controller, in that way efficiency increases and error, voltage and current ripples decreases. The proposed system is simulated using MATLAB / SIMULINK. This model is tested under variations of input and reference voltages and it was found that in comparison with conventional sliding mode controllers they perform better.Keywords: switching mode power supplies, DC-DC converters, sliding mode control, robustness, fuzzy control, current mode control, non-linear behavior
Procedia PDF Downloads 539526 Synthesizing and Fabrication of Pani-(SnO₂, ZnO)/rGO by Sol-Gel Method to Develop a Biosensor Thin-Films on Top Glass Substrate
Authors: Mohammad Arifin, Huda Abdullah, Norshafadzila Mohammad Naim
Abstract:
The fabricated PANI-(SnO₂, ZnO)/rGO nanocomposite thin films for the E. coli bacteria sensor were investigated. The nanocomposite thin films were prepared by the sol-gel method and deposited on the glass substrate using the spin-coating technique. The internal structure and surface morphology of the thin films have been analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The optical properties of the films were investigated by UV-Vis spectroscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The sensitivity performance was identified by measuring the changing conductivity before and after the incubation of E. coli bacteria using current-voltage (I-V) and cyclic voltammetry (C-V) measurements.Keywords: PANI-(SnO₂, ZnO)/rGO, nanocomposite, bacteria sensor, thin films
Procedia PDF Downloads 118525 Fabrication of InGaAs P-I-N Micro-Photodiode Sensor Array
Authors: Jyun-Hao Liao, Chien-Ju Chen, Chia-Jui Yu, Meng Chyi Wu, Chia-Ching Wu
Abstract:
In this letter, we reported the fabrication of InGaAs micro-photodiode sensor array with the rapid thermal diffusion (RTD) technique. The spin-on dopant source Zn was used to form the p-type region in InP layer. Through the RTD technique, the InP/InGaAs heterostructure was formed. We improved our fabrication on the p-i-n photodiode to micro size which pixel is 7.8um, and the pitch is 12.8um. The proper SiNx was deposited to form the passivation layer. The leakage current of single pixel decrease to 3.3pA at -5V, and 35fA at -10mV. The leakage current densities of each voltage are 21uA/cm² at -5V and 0.223uA/cm² at -10mV. As we focus on the wavelength from 0.9um to 1.7um, the optimized Si/Al₂O₃ bilayers are deposited to form the AR-coating.Keywords: InGaAs, micro sensor array, p-i-n photodiode, rapid thermal diffusion, Zn diffusion
Procedia PDF Downloads 318524 Characterization of Leakage Current on the Surface of Porcelain Insulator under Contaminated Conditions
Authors: Hocine Terrab , Abdelhafid Bayadi, Adel Kara, Ayman El-Hag
Abstract:
Insulator flashover under polluted conditions has been a serious threat on the reliability of power systems. It is known that the flashover process is mainly affected by the environmental conditions such as; the pollution level and humidity. Those are the essential parameters influencing the wetting process. This paper presents an investigation of the characteristics of leakage current (LC) developed on the surface of porcelain insulator at contaminated conditions under AC voltage. The study is done in an artificial fog chamber and the LC is characterized for different stages; dry, wetted and presence of discharge activities. Time-frequency and spectral analysis are adopted to calculate the evolution of LC characteristics with various stages prior to flashover occurrence. The preliminary results could be used in analysing the LC to develop more effective diagnosis of early signs of dry band arcing as an indication for insulation washing.Keywords: flashover, harmonic components, leakage current, phase angle, statistical analysis
Procedia PDF Downloads 432523 Thickness Measurement and Void Detection in Concrete Elements through Ultrasonic Pulse
Authors: Leonel Lipa Cusi, Enrique Nestor Pasquel Carbajal, Laura Marina Navarro Alvarado, José Del Álamo Carazas
Abstract:
This research analyses the accuracy of the ultrasound and the pulse echo ultrasound technic to find voids and to measure thickness of concrete elements. These mentioned air voids are simulated by polystyrene expanded and hollow containers of thin thickness made of plastic or cardboard of different sizes and shapes. These targets are distributed strategically inside concrete at different depths. For this research, a shear wave pulse echo ultrasonic device of 50 KHz is used to scan the concrete elements. Despite the small measurements of the concrete elements and because of voids’ size are near the half of the wavelength, pre and post processing steps like voltage, gain, SAFT, envelope and time compensation were made in order to improve imaging results.Keywords: ultrasonic, concrete, thickness, pulse echo, void
Procedia PDF Downloads 331522 ANFIS Approach for Locating Faults in Underground Cables
Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat
Abstract:
This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.Keywords: ANFIS, fault location, underground cable, wavelet transform
Procedia PDF Downloads 513521 Development of a Very High Sensitivity Magnetic Field Sensor Based on Planar Hall Effect
Authors: Arnab Roy, P. S. Anil Kumar
Abstract:
Hall bar magnetic field sensors based on planar hall effect were fabricated from permalloy (Ni¬80Fe20) thin films grown by pulsed laser ablation. As large as 400% planar Hall voltage change was observed for a magnetic field sweep within ±4 Oe, a value comparable with present day TMR sensors at room temperature. A very large planar Hall sensitivity of 1200 Ω/T was measured close to switching fields, which was not obtained so far apart from 2DEG Hall sensors. In summary, a highly sensitive low magnetic field sensor has been constructed which has the added advantage of simple architecture, good signal to noise ratio and robustness.Keywords: planar hall effect, permalloy, NiFe, pulsed laser ablation, low magnetic field sensor, high sensitivity magnetic field sensor
Procedia PDF Downloads 515520 Investigation of the Effect of Pressure Changes on the Gas Proportional Detector
Authors: S. M. Golgoun, S. M. Taheri
Abstract:
Investigation of radioactive contamination of personnel working in radiation centers to identify radioactive materials and then measure the potential contamination and eliminate it has always been considered. For this purpose, various ways have been proposed so far and different devices have been designed and built. Gas sealed proportional counter has special working conditions. In this research, a gas sealed detector of proportional counter type was made and then its various parameters were investigated. Some parameters are influential on their working conditions and one of these most important parameters is the internal pressure of the proportional gas-filled detector. In this experimental research, we produced software for examination and altering high voltage, registering data, and calculating efficiency. By this, we investigated different gas pressure effects on detector efficiency and proposed optimizing working conditions of this detector. After reviewing the results, we suggested a range between 20-30 mbar pressure for this gas sealed detector.Keywords: gas sealed, proportional detector, pressure, counter
Procedia PDF Downloads 119519 Event Related Potentials in Terms of Visual and Auditory Stimuli
Authors: Seokbeen Lim, KyeongSeok Sim, DaKyeong Shin, Gilwon Yoon
Abstract:
Event-related potential (ERP) is one of the useful tools for investigating cognitive reactions. In this study, the potential of ERP components detected after auditory and visual stimuli was examined. Subjects were asked to respond upon stimuli that were of three categories; Target, Non-Target and Standard stimuli. The ERP after stimulus was measured. In the experiment of visual evoked potentials (VEPs), the subjects were asked to gaze at a center point on the monitor screen where the stimuli were provided by the reversal pattern of the checkerboard. In consequence of the VEP experiments, we observed consistent reactions. Each peak voltage could be measured when the ensemble average was applied. Visual stimuli had smaller amplitude and a longer latency compared to that of auditory stimuli. The amplitude was the highest with Target and the smallest with Standard in both stimuli.Keywords: auditory stimulus, EEG, event related potential, oddball task, visual stimulus
Procedia PDF Downloads 284518 Musical Tesla Coil Controlled by an Audio Signal Processed in Matlab
Authors: Sandra Cuenca, Danilo Santana, Anderson Reyes
Abstract:
The following project is based on the manipulation of audio signals through the Matlab software, which has an audio signal that is modified, and its resultant obtained through the auxiliary port of the computer is passed through a signal amplifier whose amplified signal is connected to a tesla coil which has a behavior like a vumeter, the flashes at the output of the tesla coil increase and decrease its intensity depending on the audio signal in the computer and also the voltage source from which it is sent. The amplified signal then passes to the tesla coil being shown in the plasma sphere with the respective flashes; this activation is given through the specified parameters that we want to give in the MATLAB algorithm that contains the digital filters for the manipulation of our audio signal sent to the tesla coil to be displayed in a plasma sphere with flashes of the combination of colors commonly pink and purple that varies according to the tone of the song.Keywords: auxiliary port, tesla coil, vumeter, plasma sphere
Procedia PDF Downloads 91517 Power Control of DFIG in WECS Using Backstipping and Sliding Mode Controller
Authors: Abdellah Boualouch, Ahmed Essadki, Tamou Nasser, Ali Boukhriss, Abdellatif Frigui
Abstract:
This paper presents a power control for a Doubly Fed Induction Generator (DFIG) using in Wind Energy Conversion System (WECS) connected to the grid. The proposed control strategy employs two nonlinear controllers, Backstipping (BSC) and sliding-mode controller (SMC) scheme to directly calculate the required rotor control voltage so as to eliminate the instantaneous errors of active and reactive powers. In this paper the advantages of BSC and SMC are presented, the performance and robustness of this two controller’s strategy are compared between them. First, we present a model of wind turbine and DFIG machine, then a synthesis of the controllers and their application in the DFIG power control. Simulation results on a 1.5MW grid-connected DFIG system are provided by MATLAB/Simulink.Keywords: backstipping, DFIG, power control, sliding-mode, WESC
Procedia PDF Downloads 594516 Analysis and Modeling of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking
Authors: Mehdi Ameur, Ahmed Essakdi, Tamou Nasser
Abstract:
The purpose of this paper is the analysis and modeling of the photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturb and observe (P&O), incremental conductance (INC) and fuzzy logic controller(FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper.Keywords: photovoltaic array, maximum power point tracking, MPPT, perturb and observe, P&O, incremental conductance, INC, hill climbing, HC, fuzzy logic controller, FLC
Procedia PDF Downloads 429515 A Study of Electrowetting-Assisted Mold Filling in Nanoimprint Lithography
Authors: Wei-Hsuan Hsu, Yi-Xuan Huang
Abstract:
Nanoimprint lithography (NIL) possesses the advantages of sub-10-nm feature and low cost. NIL patterns the resist with physical deformation using a mold, which can easily reproduce the required nano-scale pattern. However, the variation of process parameters and environmental conditions seriously affect reproduction quality. How to ensure the quality of imprinted pattern is essential for industry. In this study, the authors used the electrowetting technology to assist mold filling in the NIL process. A special mold structure was designed to cause electrowetting. During the imprinting process, when a voltage was applied between the mold and substrate, the hydrophilicity/hydrophobicity of the surface of the mold can be converted. Both simulation and experiment confirmed that the electrowetting technology can assist mold filling and avoid incomplete filling rate. The proposed method can also reduce the crack formation during the de-molding process. Therefore, electrowetting technology can improve the process quality of NIL.Keywords: electrowetting, mold filling, nano-imprint, surface modification
Procedia PDF Downloads 172514 Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect
Authors: Reza Hadjiaghaie Vafaie, Aysan Madanpasandi, Behrooz Zare Desari, Seyedmohammad Mousavi
Abstract:
High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 µm/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications.Keywords: integration, electrokinetic, on-chip, fluid pumping, microfluidic
Procedia PDF Downloads 295513 Highly Conducting Ultra Nanocrystalline Diamond Nanowires Decorated ZnO Nanorods for Long Life Electronic Display and Photo-Detectors Applications
Authors: A. Saravanan, B. R. Huang, C. J. Yeh, K. C. Leou, I. N. Lin
Abstract:
A new class of ultra-nano diamond-graphite nano-hybrid (DGH) composite materials containing nano-sized diamond needles was developed at low temperature process. Such kind of diamond- graphite nano-hybrid composite nanowires exhibit high electrical conductivity and excellent electron field emission (EFE) properties. Few earlier reports mention that addition of N2 gas to the growth plasma requires high growth temperature (800°C) to trigger the dopants to generate the conductivity in the films. High growth temperature is not familiar with the Si-based device fabrications. We have used a novel process such as bias-enhanced-grown (beg) MPECVD process to grow diamond films at low substrate temperature (450°C). We observed that the beg-N/UNCD films thus obtained possess high conductivity of σ=987 S/cm, ever reported for diamond films with excellent Electron field emission (EFE) properties. TEM investigation indicated that these films contain needle-like diamond grains about 5 nm in diameter and hundreds of nanometers in length. Each of the grains was encased in graphitic layers about tens of nano-meters in thickness. These materials properties suitable for more specific applications, such as high conductivity for electron field emitters, high robustness for microplasma cathodes and high electrochemical activity for electro-chemical sensing. Subsequently, other hand, the highly conducting DGH films were coated on vertically aligned ZnO nanorods, there is no prior nucleation or seeding process needed due to the use of BEG method. Such a composite structure provides significant enhancement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage 1.78 V/μm with high EFE current density of 3.68 mA/ cm2 (at 4.06V/μm) due to decoration of DGH material on ZnO nanorods. The DGH/ZNRs based device get stable emission for longer duration of 562min than bare ZNRs (104min) without any current degradation because the diamond coating protects the ZNRs from ion bombardment when they are used as the cathode for microplasma devices. The potential application of these materials is demonstrated by the plasma illumination measurements that ignited the plasma at the minimum voltage by 290 V. The photoresponse (Iphoto/Idark) behavior of the DGH/ZNRs based photodetectors exhibits a much higher photoresponse (1202) than bare ZNRs (229). During the process the electron transport is easy from ZNRs to DGH through graphitic layers, the EFE properties of these materials comparable to other primarily used field emitters like carbon nanotubes, graphene. The DGH/ZNRs composite also providing a possibility of their use in flat panel, microplasma and vacuum microelectronic devices.Keywords: bias-enhanced nucleation and growth, ZnO nanorods, electrical conductivity, electron field emission, photo-detectors
Procedia PDF Downloads 370512 Hierarchical Surface Inspired by Lotus-Leaf for Electrical Generators from Waterdrop
Authors: Jaewook Ha, Jin-beak Kim, Seongmin Kim
Abstract:
In order to solve global warming and climate change issues, increased efforts have been devoted towards clean and sustainable energy sources as well as new energy generating devices. Nanogenerator is a device that converts mechanical/thermal energy as produced by small-scale physical change into electricity. Here we propose that nature-leaf surface could be used for preparation of a triboelectric nanogenerator. The nature-leaf surface consists of polydimethylsiloxane microscale pillars and polytetrafluoroethylene nanoparticles. Interaction between the nature-leaf surface and water was studied and the electrical outputs from the motion of single water drop were measured. A 40-μL water drop can generate a peak voltage of 1 V and a peak current of 0.7 μA. This nanogenerator might be used to drive electric devices in the outdoor environments in a sustainable manner.Keywords: hierarchical surface, lotus-leaf, electrical generator, waterdrop
Procedia PDF Downloads 293511 Nanotechnolgy for Energy Harvesting Applications
Authors: Eiman Nour
Abstract:
The rising interest in harvesting power is because of the capabilities application of expanding self-powered systems based on nanostructures. Using renewable and self-powered sources is necessary for the growth of green electronics and could be of the capability to wireless sensor networks. The ambient mechanical power is among the ample sources for various power harvesting device configurations that are published. In this work, we design and fabricate a paper-based nanogenerator (NG) utilizing piezoelectric zinc oxide (ZnO) nanowires (NWs) grown hydrothermally on a paper substrate. The fabricated NG can harvest ambient mechanical energy from various kinds of human motions, such as handwriting. The fabricated NG from a single ZnO NWs/PVDF-TrFE NG has been used firstly as handwriting-driven NG. The mechanical pressure applied on the paper platform while handwriting is harvested by the NG to deliver electrical energy; depending on the mode of handwriting, a maximum harvested voltage of 4.8 V was obtained.Keywords: nanostructure, zinc oxide, nanogenerator, energy harvesting
Procedia PDF Downloads 63510 Characterization of Thermal Images Due to Aging of H.V Glass Insulators Using Thermographic Scanning
Authors: Nasir A. Al-Geelani, Zulkurnain Abdul-Malek, M. Afendi M. Piah
Abstract:
This research paper investigation is carried out in the laboratory on single units of transmission line glass insulator characterized by different thermal images, which aimed to find out the age of the insulators. The tests were carried out on virgin and aged insulators using the thermography scan. Various samples having different periods of aging 20, 15, and 5 years from a 132 kV transmission line which have exhibited a different degree of corrosion. The second group of insulator samples was relatively mild aged insulators, while the third group was lightly aged; finally, the fourth group was the brand new insulators. The results revealed a strong correlation between the aging and the thermal images captured by the infrared camera. This technique can be used to monitor the aging of high voltage insulators as a precaution to avoid disaster.Keywords: glass insulator, infrared camera, corona diacharge, transmission lines, thermograpy, surface discharge
Procedia PDF Downloads 160509 Experimental Analysis of Electrical Energy Producing Using the Waste Heat of Exhaust Gas by the Help of Thermoelectric Generator
Authors: Dilek Ozlem Esen, Mesut Kaya
Abstract:
The focus of this study is to analyse the results of heat recovery from exhaust gas which is produced by an internal combustion engine (ICE). To obtain a small amount of energy, an exhaust system which is suitable for recovery waste heat has been constructed. Totally 27 TEGs have been used to convert from the heat to electric energy. By producing a small amount of this energy by the help of thermoelectric generators can reduce engine loads thus decreasing pollutant emissions, fuel consumption, and CO2. This case study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. As a result of this study, 0,45 A averaged current rate, 13,02 V averaged voltage rate and 5,8 W averaged electrical energy have been produced in a five hours operation time.Keywords: thermoelectric, peltier, thermoelectric generator (TEG), exhaust, cogeneration
Procedia PDF Downloads 654