Search results for: residential electricity demand
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4679

Search results for: residential electricity demand

3959 The Use of PD and Tanδ Characteristics as Diagnostic Technique for the Insulation Integrity of XLPE Insulated Cable Joints

Authors: Mazen Al-Bulaihed, Nissar Wani, Abdulrahman Al-Arainy, Yasin Khan

Abstract:

Partial Discharge (PD) measurements are widely used for diagnostic purposes in electrical equipment used in power systems. The main cause of these measurements is to prevent large power failures as cables are prone to aging, which usually results in embrittlement, cracking and eventual failure of the insulating and sheathing materials, exposing the conductor and risking a potential short circuit, a likely cause of the electrical fire. Many distribution networks rely heavily on medium voltage (MV) power cables. The presence of joints in these networks is a vital part of serving the consumer demand for electricity continuously. Such measurements become even more important when the extent of dependence increases. Moreover, it is known that the partial discharge in joints and termination are difficult to track and are the most crucial point of failures in large power systems. This paper discusses the diagnostic techniques of four samples of XLPE insulated cable joints, each included with a different type of defect. Experiments were carried out by measuring PD and tanδ at very low frequency applied high voltage. The results show the importance of combining PD and tanδ for effective cable assessment.

Keywords: partial discharge, tan delta, very low frequency, XLPE cable

Procedia PDF Downloads 163
3958 Measuring Output Multipliers of Energy Consumption and Manufacturing Sectors in Malaysia during the Global Financial Crisis

Authors: Hussain Ali Bekhet, Tuan Ab. Rashid Bin Tuan Abdullah, Tahira Yasmin

Abstract:

The strong relationship between energy consumption and economic growth is widely recognised. Most countries’ energy demand declined during the economic depression known as the Global Financial Crisis (GFC) of 2008–2009. The objective of the current study is to investigate the energy consumption and performance of Malaysia’s manufacturing sectors during the GFC. We applied the output multiplier approach, which is based on the input-output model. Two input-output tables of Malaysia covering 2005 and 2010 were used. The results indicate significant changes in the output multipliers of the manufacturing sectors between 2005 and 2010. Moreover, the energy-to-manufacturing sectors’ output multipliers also decreased during the GFC due to a decline in export-oriented industries during the crisis. The increasing importance of the manufacturing sector to the development of Malaysian trade resulted in a noticeable decrease in the consumption of each energy sector’s output, especially the electricity and gas sector. Based on the research findings, the Malaysian government released several policy implementations in the form of stimulus packages to enhance these sectors’ performance and generally improve the Malaysian economy.

Keywords: global financial crisis, input-output model, manufacturing, output multipliers, energy, Malaysia

Procedia PDF Downloads 726
3957 District 10 in Tehran: Urban Transformation and the Survey Evidence of Loss in Place Attachment in High Rises

Authors: Roya Morad, W. Eirik Heintz

Abstract:

The identity of a neighborhood is inevitably shaped by the architecture and the people of that place. Conventionally the streets within each neighborhood served as a semi-public-private extension of the private living spaces. The street as a design element formed a hybrid condition that was neither totally public nor private, and it encouraged social interactions. Thus through creating a sense of community, one of the most basic human needs of belonging was achieved. Similar to major global cities, Tehran has undergone serious urbanization. Developing into a capital city of high rises has resulted in an increase in urban density. Although allocating more residential units in each neighborhood was a critical response to the population boom and the limited land area of the city, it also created a crisis in terms of social communication and place attachment. District 10 in Tehran is a neighborhood that has undergone the most urban transformation among the other 22 districts in the capital and currently has the highest population density. This paper will explore how the active streets in district 10 have changed into their current condition of high rises with a lack of meaningful social interactions amongst its inhabitants. A residential building can be thought of as a large group of people. One would think that as the number of people increases, the opportunities for social communications would increase as well. However, according to the survey, there is an indirect relationship between the two. As the number of people of a residential building increases, the quality of each acquaintance reduces, and the depth of relationships between people tends to decrease. This comes from the anonymity of being part of a crowd and the lack of social spaces characterized by most high-rise apartment buildings. Without a sense of community, the attachment to a neighborhood is decreased. This paper further explores how the neighborhood participates to fulfill ones need for social interaction and focuses on the qualitative aspects of alternative spaces that can redevelop the sense of place attachment within the community.

Keywords: high density, place attachment, social communication, street life, urban transformation

Procedia PDF Downloads 127
3956 Analysis on the Building Energy Performance of a Retrofitted Residential Building with RETScreen Expert Software

Authors: Abdulhameed Babatunde Owolabi, Benyoh Emmanuel Kigha Nsafon, Jeung-Soo Huh

Abstract:

Energy efficiency measures for residential buildings in South Korea is a national issue because most of the apartments built in the last decades were constructed without proper energy efficiency measures making the energy performance of old buildings to be very poor when compared with new buildings. However, the adoption of advanced building technologies and regulatory building codes are effective energy efficiency strategies for new construction. There is a need to retrofits the existing building using energy conservation measures (ECMs) equipment’s in order to conserve energy and reduce GHGs emissions. To achieve this, the Institute for Global Climate Change and Energy (IGCCE), Kyungpook National University (KNU), Daegu, South Korea employed RETScreen Expert software to carry out measurement and verification (M&V) analysis on an existing building in Korea by using six years gas consumption data collected from Daesung Energy Co., Ltd in order to determine the building energy performance after the introduction of ECM. Through the M&V, energy efficiency is attained, and the resident doubt was reduced. From the analysis, a total of 657 Giga Joules (GJ) of liquefied natural gas (LNG) was consumed at the rate of 0.34 GJ/day having a peak in the year 2015, which cost the occupant the sum of $10,821.

Keywords: energy efficiency, measurement and verification, performance analysis, RETScreen experts

Procedia PDF Downloads 138
3955 The Impact of Public Charging Infrastructure on the Adoption of Electric Vehicles

Authors: Shaherah Jordan, Paula Vandergert

Abstract:

The discussion on public charging infrastructure is usually framed around the ‘chicken-egg’ challenge of consumers feeling reluctant to purchase without the necessary infrastructure and policymakers reluctant to invest in the infrastructure without the demand. However, public charging infrastructure may be more crucial to electric vehicle (EV) adoption than previously thought. Historically, access to residential charging was thought to be a major factor in potential for growth in the EV market as it offered a guaranteed place for a vehicle to be charged. The purpose of this study is to understand how the built environment may encourage uptake of EVs by seeking a correlation between EV ownership and public charging points in an urban and densely populated city such as London. Using a statistical approach with data from the Department for Transport and Zap-Map, a statistically significant correlation was found between the total (slow, fast and rapid) number of public charging points and a number of EV registrations per borough – with the strongest correlation found between EV registrations and rapid chargers. This research does not explicitly prove that there is a cause and effect relationship between public charging points EVs but challenges some of the previous literature which indicates that public charging infrastructure is not as important as home charging. Furthermore, the study provides strong evidence that public charging points play a functional and psychological role in the adoption of EVs and supports the notion that the built environment can influence human behaviour.

Keywords: behaviour change, electric vehicles, public charging infrastructure, transportation

Procedia PDF Downloads 215
3954 Risk Analysis of Flood Physical Vulnerability in Residential Areas of Mathare Nairobi, Kenya

Authors: James Kinyua Gitonga, Toshio Fujimi

Abstract:

Vulnerability assessment and analysis is essential to solving the degree of damage and loss as a result of natural disasters. Urban flooding causes a major economic loss and casualties, at Mathare residential area in Nairobi, Kenya. High population caused by rural-urban migration, Unemployment, and unplanned urban development are among factors that increase flood vulnerability in Mathare area. This study aims to analyse flood risk physical vulnerabilities in Mathare based on scientific data, research data that includes the Rainfall data, River Mathare discharge rate data, Water runoff data, field survey data and questionnaire survey through sampling of the study area have been used to develop the risk curves. Three structural types of building were identified in the study area, vulnerability and risk curves were made for these three structural types by plotting the relationship between flood depth and damage for each structural type. The results indicate that the structural type with mud wall and mud floor is the most vulnerable building to flooding while the structural type with stone walls and concrete floor is least vulnerable. The vulnerability of building contents is mainly determined by the number of floors, where households with two floors are least vulnerable, and households with a one floor are most vulnerable. Therefore more than 80% of the residential buildings including the property in the building are highly vulnerable to floods consequently exposed to high risk. When estimating the potential casualties/injuries we discovered that the structural types of houses were major determinants where the mud/adobe structural type had casualties of 83.7% while the Masonry structural type had casualties of 10.71% of the people living in these houses. This research concludes that flood awareness, warnings and observing the building codes will enable reduce damage to the structural types of building, deaths and reduce damage to the building contents.

Keywords: flood loss, Mathare Nairobi, risk curve analysis, vulnerability

Procedia PDF Downloads 239
3953 Assessment of Multi-Domain Energy Systems Modelling Methods

Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell

Abstract:

Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.

Keywords: CHPV, thermal storage, control, dynamic simulation

Procedia PDF Downloads 240
3952 Ozonation as an Effective Method to Remove Pharmaceuticals from Biologically Treated Wastewater of Different Origin

Authors: Agne Jucyte Cicine, Vytautas Abromaitis, Zita Rasuole Gasiunaite, I. Vybernaite-Lubiene, D. Overlinge, K. Vilke

Abstract:

Pharmaceutical pollution in aquatic environments has become a growing concern. Various active pharmaceutical ingredient (API) residues, hormones, antibiotics, or/and psychiatric drugs, have already been discovered in different environmental compartments. Due to existing ineffective wastewater treatment technologies to remove APIs, an underestimated amount can enter the ecosystem by discharged treated wastewater. Especially, psychiatric compounds, such as carbamazepine (CBZ) and venlafaxine (VNX), persist in effluent even post-treatment. Therefore, these pharmaceuticals usually exceed safe environmental levels and pose risks to the aquatic environment, particularly to sensitive ecosystems such as the Baltic Sea. CBZ, known for its chemical stability and long biodegradation time, accumulates in the environment, threatening aquatic life and human health through the food chain. As the use of medication rises, there is an urgent need for advanced wastewater treatment to reduce pharmaceutical contamination and meet future regulatory requirements. In this study, we tested advanced oxidation technology using ozone to remove two commonly used psychiatric drugs (carbamazepine and venlafaxine) from biologically treated wastewater effluent. Additionally, general water quality parameters (suspended matter (SPM), dissolved organic carbon (DOC), chemical oxygen demand (COD), and bacterial presence were analyzed. Three wastewater treatment plants (WWTPs) representing different anthropogenic pressures were selected: 1) resort, 2) resort and residential, and 3) residential, industrial, and resort. Wastewater samples for the experiment were collected during the summer season after mechanical and biological treatment and ozonated for 5, 10, and 15 minutes. The initial dissolved ozone concentration of 7,3±0,7 mg/L was held constant during all the experiments. Pharmaceutical levels in this study exceeded the predicted no-effect concentration (PNEC) of 500 and 90 ng L⁻¹ for CBZ and VNX, respectively, in all WWTPs, except CBZ in WWTP 1. Initial CBZ contamination was found to be lower in WWTP 1 (427.4 ng L⁻¹), compared with WWTP 2 (1266.5 ng L⁻¹) and 3 (119.2 ng L⁻¹). VNX followed a similar trend with concentrations of 341.2 ng L⁻¹, 361.4 ng L⁻¹, and 390.0 ng L⁻¹, respectively, for WWTPs 1, 2, and 3. It was determined that CBZ was not detected in the effluent after 5 minutes of ozonation in any of the WWTPs. Contrarily, VNX was still detected after 5, 10, and 15 minutes of treatment with ozone, however, under the limits of quantification (LOD) (<5ng L⁻¹). Additionally, general pollution of SPM, DOC, COD, and bacterial contamination was reduced notably after 5 minutes of treatment with ozone, while no bacterial growth was obtained. Although initial pharmaceutical levels exceeded PNECs, indicating ongoing environmental risks, ozonation demonstrated high efficiency in reducing pharmaceutical and general contamination in wastewater with different pollution matrices.

Keywords: Baltic Sea, ozonation, pharmaceuticals, wastewater treatment plants

Procedia PDF Downloads 19
3951 Using IoT on Single Input Multiple Outputs (SIMO) DC–DC Converter to Control Smart-home

Authors: Auwal Mustapha Imam

Abstract:

The aim of the energy management system is to monitor and control utilization, access, optimize and manage energy availability. This can be realized through real-time analyses and energy sources and loads data control in a predictive way. Smart-home monitoring and control provide convenience and cost savings by controlling appliances, lights, thermostats and other loads. There may be different categories of loads in the various homes, and the homeowner may wish to control access to solar-generated energy to protect the storage from draining completely. Controlling the power system operation by managing the converter output power and controlling how it feeds the appliances will satisfy the residential load demand. The Internet of Things (IoT) provides an attractive technological platform to connect the two and make home automation and domestic energy utilization easier and more attractive. This paper presents the use of IoT-based control topology to monitor and control power distribution and consumption by DC loads connected to single-input multiple outputs (SIMO) DC-DC converter, thereby reducing leakages, enhancing performance and reducing human efforts. A SIMO converter was first developed and integrated with the IoT/Raspberry Pi control topology, which enables the user to monitor and control power scheduling and load forecasting via an Android app.

Keywords: flyback, converter, DC-DC, photovoltaic, SIMO

Procedia PDF Downloads 46
3950 Techno-Economic Analysis of Offshore Hybrid Energy Systems with Hydrogen Production

Authors: Anna Crivellari, Valerio Cozzani

Abstract:

Even though most of the electricity produced in the entire world still comes from fossil fuels, new policies are being implemented in order to promote a more sustainable use of energy sources. Offshore renewable resources have become increasingly attractive thanks to the huge entity of power potentially obtained. However, the intermittent nature of renewables often limits the capacity of the systems and creates mismatches between supply and demand. Hydrogen is foreseen to be a promising vector to store and transport large amounts of excess renewable power by using existing oil and gas infrastructure. In this work, an offshore hybrid energy system integrating wind energy conversion with hydrogen production was conceptually defined and applied to offshore gas platforms. A techno-economic analysis was performed by considering two different locations for the installation of the innovative power system, i.e., the North Sea and the Adriatic Sea. The water depth, the distance of the platform from the onshore gas grid, the hydrogen selling price and the green financial incentive were some of the main factors taken into account in the comparison. The results indicated that the use of well-defined indicators allows to capture specifically different cost and revenue features of the analyzed systems, as well as to evaluate their competitiveness in the actual and future energy market.

Keywords: cost analysis, energy efficiency assessment, hydrogen production, offshore wind energy

Procedia PDF Downloads 126
3949 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Egypt: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), CO2 emissions and gross domestic product (GDP) for Egypt using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests some negative impacts of the CO2 emissions and the coal and natural gas use on the GDP. Conversely, a positive long-run causality from the electricity consumption to the GDP is found to be significant in Egypt during the period. In the short-run, some positive unidirectional causalities exist, running from the coal consumption to the GDP, and the CO2 emissions and the natural gas use. Further, the GDP and the electricity use are positively influenced by the consumption of petroleum products and the direct combustion of crude oil. Overall, the results support arguments that there are relationships among environmental quality, energy use, and economic output in both the short term and long term; however, the effects may differ due to the sources of energy, such as in the case of Egypt for the period of 1980-2010.

Keywords: CO2 emissions, Egypt, energy consumption, GDP, time series analysis

Procedia PDF Downloads 615
3948 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 15
3947 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia

Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.

Abstract:

Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.

Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy

Procedia PDF Downloads 135
3946 Modification of a Human Powered Lawn Mower

Authors: Akinwale S. O., Koya O. A.

Abstract:

The need to provide ecologically-friendly and effective lawn mowing solution is crucial for the well-being of humans. This study involved the modification of a human-powered lawn mower designed to cut tall grasses in residential areas. This study designed and fabricated a reel-type mower blade system and a pedal-powered test rig for the blade system. It also evaluated the performance of the machine. The machine was tested on some overgrown grass plots at College of Education Staff School Ilesa. Parameters such as theoretical field capacity, field efficiency and effective field capacity were determined from the data gathered. The quality of cut achieved by the unit was also documented. Test results showed that the fabricated cutting system produced a theoretical field capacity of 0.11 ha/h and an effective field capacity of 0.08ha/h. Moreover, the unit’s cutting system showed a substantial improvement over existing reel mower designs in its ability to cut on both the forward and reverse phases of its motion. This study established that the blade system described herein has the capacity to cut tall grasses. Hence, this device can therefore eliminate the need for powered mowers entirely on small residential lawns.

Keywords: effective field capacity, field efficiency, theoretical field capacity, quality of cut

Procedia PDF Downloads 147
3945 Changes in the Demand of Waterway Passengers During COVID-19 Pandemic: Case Study of Belém-Marajó Island, in Brazil

Authors: Maisa Sales Gama Tobias, Humberto de Paiva Junior, Luciano Silva Brito, Rui António Rodrigues Ramos

Abstract:

Waterway transport in the Amazon was the first means of access and occupation in the region. For the economic and social matter of high importance, still nowadays one of the main transport modes to several places in the region. To some places, still the only transport mode. With the advent of the pandemic, transport companies that already faced management challenges began to experience unprecedented structural changes and trends in trade and global supply chains. Thus, companies need operational reorganization to maintain the sustainability of the service under the penalty of loss of demand. Allied to this fact, it was observed that the demand presented behavior changes to adapt to this new moment. However, the lack of information about these changes makes it difficult to find solutions to maintain the quality of service. This work aimed to characterize the changes in the demand of waterway passengers through an empirical study with field research involving interviews with users and crew, on-board journeys, and visits to the waterway service company. The case study is the route Belém-Camara, on Marajó Island, in the state of Pará. This line is traditionally the only means of transport for this route, besides air transport on a much smaller scale. The collected data had a descriptive and analytical statistical treatment presented in this work. As the main result, the COVID-19 pandemic has caused significant changes, mainly in trip time and motives and, in the perception itself on service quality by part of the demand, with the increase of trip time and the feeling of insecurity. In conclusion, the service operator must review cost management and business survival strategies and tactics. The viability of the service and the social guarantee of transport proved to be threatened, putting at risk the service to the riverside populations.

Keywords: demand of waterway transport passengers, data analysis, COVID-19, amazonia

Procedia PDF Downloads 113
3944 The Development of the First Inter-Agency Residential Rehabilitation Service for Gambling Disorder with Complex Clinical Needs

Authors: Dragos Dragomir-Stanciu, Leon Marsh

Abstract:

Background As a response to the gaps identified in recent research in the provision of residential care to address co-occurring health needs, including mental health problems and complexities Gamble Aware has facilitated the possibility to provide a new service which would extend the NGTS provision of residential rehabilitation for gambling disorder with complex and co-morbid presentation. Gordon Moody, together with Adferiad have been successful in securing the tender for this service and this presentation aims to introduce FOLD, the resulting model of treatment developed for the delivery of the service. Setting As a partnership, we have come together to coproduce a model which allows us to share our clinical and industry knowledge and build on our reputations as trusted treatment providers. The presentation will outline our expertise share in development of a unified approach to recovery-oriented models of care, clinical governance, risk assessment and management and aftercare and continuous recovery. We will also introduce our innovative specialist referral portal which will offer referring partners the ability to include the service user in planning their own recovery journey. Outcomes Our collaboration has resulted in the development of the FOLD model which includes three agile and flexible treatment packages aimed at offering the most enhanced and comprehensive treatment in UK, to date, for those most affected by gambling harm. The paper will offer insight into each treatment package and all recovery model stages involved, as well as into the partnership work with NGST providers, local mental health and social care providers and lived experience organisation that will enable us to offer support to more 100 people a year who would otherwise get “lost in the system”. Conclusion FOLD offers a great opportunity to develop, implement and evaluate a new, much needed, whole-person and whole-system approach to counter gambling related harms.

Keywords: gambling treatment, partnership working, integrated care pathways, NGTS, complex needs

Procedia PDF Downloads 134
3943 Design of Solar Charge Controller and Power Converter with the Multisim

Authors: Sohal Latif

Abstract:

Solar power is in the form of photovoltaic, also known as PV, which is a form of renewable energy that applies solar panels in producing electricity from the sun. It has a vital role in fulfilling the present need for clean and renewable energy to get rid of conventional and non-renewable energy sources that emit high levels of greenhouse gases. Solar energy is embraced because of its availability, easy accessibility, and effectiveness in the provision of power, chiefly in country areas. In solar charging, device charge entails a change of light power into electricity using photovoltaic or PV panels, which supply direct current electric power or DC. Here, the solar charge controller has a very crucial role to play regarding the voltages and the currents coming from the solar panels to take up the changing needs of a battery without overcharging the same. Certain devices, such as inverters, are required to transform the DC power produced by the solar panels into an AC to serve the normal electrical appliances and the current power network. This project was initiated for a project of a solar charge controller and power converter with the MULTISIM. The formation of this project begins with a literature survey to obtain basic knowledge about power converters, charge controllers, and photovoltaic systems. Fundamentals of the operation of solar panels include the process by which light is converted into electricity and a comparison of PWM and MPPT chargers with controllers. Knowledge of rectifiers is built to help achieve AC-to-DC and DC-AC change. Choosing a resistor, capacitance, MOSFET, and OP-AMP is done by the need of the system. The circuit diagrams of converters and charge controllers are designed using the Multisim program. Pulse width modulation, Bubba oscillator circuit, and inverter circuits are modeled and simulated. In the subsequent steps, the analysis of the simulation outcomes indicates the efficiency of the intended converter systems. The various outputs from the different configurations, with the transformer incorporated as well as without it, are then monitored for effective power conversion as well as power regulation.

Keywords: solar charge controller, MULTISIM, converter, inverter

Procedia PDF Downloads 22
3942 Analysis of Experimentally Designed Soundproof Gypsum Partition Wall's Sections in Terms of Structural Engineering

Authors: Abdulkerim Ilgun, Ahmad Javid Zia

Abstract:

In developing countries, the urban populations are increasing rapidly and with this increment the residential areas are experiencing major problems. Construction of high-rise buildings in confined spaces is one of the most practical solutions for this problem. However, by living in high-rise buildings and sharing common residential areas, residents will face many problems. Irritating sound problem which is known as noise is one of the major problems mentioned above. The second most important problem is the weight of the high-rise buildings which makes the structure more vulnerable to earthquakes. To decrease earthquake loads it’s very important to decrease the weight of the buildings. To solve the problem of noise and keep the building weight at minimum level, experimentally designed soundproof gypsum partition wall which has optimum thickness has been used in high-rise story building and the results have been compared with ordinary brick partition walls. In this compression the effect of weights of soundproof gypsum walls and ordinary brick walls in accordance to structural engineering have been investigated.

Keywords: cellubor, gypsum board, gypsum partition walls, light partition walls, noise, sound

Procedia PDF Downloads 307
3941 Estimating Housing Prices Using Automatic Linear Modeling in the Metropolis of Mashhad, Iran

Authors: Mohammad Rahim Rahnama

Abstract:

Market-transaction price for housing is the main criteria for determining municipality taxes and is determined and announced on an annual basis. Of course, there is a discrepancy between the actual value of transactions in the Bureau of Finance (P for short) or municipality (P´ for short) and the real price on the market (P˝). The present research aims to determine the real price of housing in the metropolis of Mashhad and to pinpoint the price gap with those of the aforementioned apparatuses and identify the factors affecting it. In order to reach this practical objective, Automatic Linear Modeling, which calls for an explanatory research, was utilized. The population of the research consisted of all the residential units in Mashhad, from which 317 residential units were randomly selected. Through cluster sampling, out of the 170 income blocks defined by the municipality, three blocks form high-income (Kosar), middle-income (Elahieh), and low-income (Seyyedi) strata were surveyed using questionnaires during February and March of 2015 and the information regarding the price and specifications of residential units were gathered. In order to estimate the effect of various factors on the price, the relationship between independent variables (8 variables) and the dependent variable of the housing price was calculated using Automatic Linear Modeling in SPSS. The results revealed that the average for housing price index is 788$ per square meter, compared to the Bureau of Finance’s prices which is 10$ and that of municipality’s which is 378$. Correlation coefficient among dependent and independent variables was calculated to be R²=0.81. Out of the eight initial variables, three were omitted. The most influential factor affecting the housing prices is the quality of Quality of construction (Ordinary, Full, Luxury). The least important factor influencing the housing prices is the variable of number of sides. The price gap between low-income (Seyyedi) and middle-income (Elahieh) districts was not confirmed via One-Way ANOVA but their gap with the high-income district (Kosar) was confirmed. It is suggested that city be divided into two low-income and high-income sections, as opposed three, in terms of housing prices.

Keywords: automatic linear modeling, housing prices, Mashhad, Iran

Procedia PDF Downloads 255
3940 Development of One-Axis Didactic Solar Tracker for Photovoltaic Panels

Authors: L. J. de Bessa Neto, M. R. B. Guerra Vale, F. K. O. M. Varella Guerra

Abstract:

In recent years, solar energy has established itself as one of the main sources of renewable energy, gaining a large space in electricity generation around the world. However, due to the low performance of photovoltaic panels, technologies need to be sought to maximize the production of electricity. In this regard, the present study aims to develop a prototype of solar tracker for didactics applications, controlled with the Arduino® platform, that enables the movement of photovoltaic plates in relation to the sun positions throughout the day through an electromechanical system, optimizing, thus, the efficiency of solar photovoltaic generation and improvements for the photovoltaic effect. The solar tracking technology developed in this work was presented of the shape oral and practical in two middle schools in the municipality of Mossoró/RN, being one of the public network and other of the private network, always keeping the average age of the students, in the case, around 16 years, contemplating an average of 60 students in each of the visits. Thus, it is concluded that the present study contributed substantially to the dissemination of knowledge concerning the photovoltaic solar generation, as well as the study of solar trackers, thus arousing the interest and curiosity of the students regarding the thematic approached.

Keywords: alternative energy, solar tracker, energy efficiency, photovoltaic panels

Procedia PDF Downloads 147
3939 Implementation of Enterprise Asset Management (E-AM) System at Oman Electricity Transmission Company

Authors: Omran Al Balushi, Haitham Al Rawahi

Abstract:

Enterprise Asset Management (eAM) has been implemented across different Generation, Transmission and Distribution subsidiaries in Nama Group companies. As part of Nama group, Oman Electricity Transmission Company (OETC) was the first company to implement this system. It was very important for OETC to implement and maintain such a system to achieve its business objectives and for effective operations, which will also support the delivery of the asset management strategy. Enterprise Asset Management (eAM) addresses the comprehensive asset maintenance requirements of Oman Electricity Transmission Company (OETC). OETC needs to optimize capacity and increase utilization, while lowering unit production. E-AM will enable OETC to adopt this strategy. Implementation of e-AM has improved operation performance with preventive and scheduled maintenance as well as it increased safety. Implementation of e-AM will also enable OETC to create optimal asset management strategy which will increase revenue and decrease cost by effectively monitoring operational data such as maintenance history and operation conditions. CMMS (Computerised Maintenance Management System) is the main software and the back-bone of e-AM system. It is used to provide an improved working practice to properly establish information and data flow related to maintenance activities. Implementation of e-AM system was one of the factors that supported OETC to achieve ISO55001 Certificate on fourth quarter of 2016. Also, full implementation of e-AM system will result in strong integration between CMMS and Geographical Information Systems (GIS) application and it will improve OETC to build a reliable maintenance strategy for all asset classes in its Transmission network. In this paper we will share our experience and knowledge of implementing such a system and how it supported OETC’s management to make decisions. Also we would highlight the challenges and difficulties that we encountered during the implementation of e-AM. Also, we will list some features and advantages of e-AM in asset management, preventive maintenance and maintenance cost management.

Keywords: CMMS, Maintenance Management, Asset Management, Maintenance Strategy

Procedia PDF Downloads 144
3938 Increasing Productivity through Lean Manufacturing Principles and Tools: A Successful Rail Welding Plant Case

Authors: T. A. Faria, C. C. Toniolo, L. F. Ribeiro

Abstract:

In order to satisfy the costumer’s needs, many sectors of industry and services has been spending major effort to make its processes more efficient. Facing a situation, when its production cannot cover the demand, the traditional way to achieve the production required involves, mostly, adding shifts, workforce, or even more machines. This paper narrates how lean manufacturing supported a dramatic increase of productivity at a rail welding plant in Brazil in order to meet the demand for the next years.

Keywords: productivity, lean manufacturing, rail welding, value stream mapping

Procedia PDF Downloads 364
3937 Changes in When and Where People Are Spending Time in Response to COVID-19

Authors: Nicholas Reinicke, Brennan Borlaug, Matthew Moniot

Abstract:

The COVID-19 pandemic has resulted in a significant change in driving behavior as people respond to the new environment. However, existing methods for analyzing driver behavior, such as travel surveys and travel demand models, are not suited for incorporating abrupt environmental disruptions. To address this, we analyze a set of high-resolution trip data and introduce two new metrics for quantifying driving behavioral shifts as a function of time, allowing us to compare the time periods before and after the pandemic began. We apply these metrics to the Denver, Colorado metropolitan statistical area (MSA) to demonstrate the utility of the metrics. Then, we present a case study for comparing two distinct MSAs, Louisville, Kentucky, and Des Moines, Iowa, which exhibit significant differences in the makeup of their labor markets. The results indicate that although the regions of study exhibit certain unique driving behavioral shifts, emerging trends can be seen when comparing between seemingly distinct regions. For instance, drivers in all three MSAs are generally shown to have spent more time at residential locations and less time in workplaces in the time period after the pandemic started. In addition, workplaces that may be incompatible with remote working, such as hospitals and certain retail locations, generally retained much of their pre-pandemic travel activity.

Keywords: COVID-19, driver behavior, GPS data, signal analysis, telework

Procedia PDF Downloads 111
3936 Adapting Inclusive Residential Models to Match Universal Accessibility and Fire Protection

Authors: Patricia Huedo, Maria José Ruá, Raquel Agost-Felip

Abstract:

Ensuring sustainable development of urban environments means guaranteeing adequate environmental conditions, being resilient and meeting conditions of safety and inclusion for all people, regardless of their condition. All existing buildings should meet basic safety conditions and be equipped with safe and accessible routes, along with visual, acoustic and tactile signals to protect their users or potential visitors, and regardless of whether they undergo rehabilitation or change of use processes. Moreover, from a social perspective, we consider the need to prioritize buildings occupied by the most vulnerable groups of people that currently do not have specific regulations tailored to their needs. Some residential models in operation are not only outside the scope of application of the regulations in force; they also lack a project or technical data that would allow knowing the fire behavior of the construction materials. However, the difficulty and cost involved in adapting the entire building stock to current regulations can never justify the lack of safety for people. Hence, this work develops a simplified model to assess compliance with the basic safety conditions in case of fire and its compatibility with the specific accessibility needs of each user. The purpose is to support the designer in decision making, as well as to contribute to the development of a basic fire safety certification tool to be applied in inclusive residential models. This work has developed a methodology to support designers in adapting Social Services Centers, usually intended to vulnerable people. It incorporates a checklist of 9 items and information from sources or standards that designers can use to justify compliance or propose solutions. For each item, the verification system is justified, and possible sources of consultation are provided, considering the possibility of lacking technical documentation of construction systems or building materials. The procedure is based on diagnosing the degree of compliance with fire conditions of residential models used by vulnerable groups, considering the special accessibility conditions required by each user group. Through visual inspection and site surveying, the verification model can serve as a support tool, significantly streamlining the diagnostic phase and reducing the number of tests to be requested by over 75%. This speeds up and simplifies the diagnostic phase. To illustrate the methodology, two different buildings in the Valencian Region (Spain) have been selected. One case study is a mental health facility for residential purposes, located in a rural area, on the outskirts of a small town; the other one, is a day care facility for individuals with intellectual disabilities, located in a medium-sized city. The comparison between the case studies allow to validate the model in distinct conditions. Verifying compliance with a basic security level can allow a quality seal and a public register of buildings adapted to fire regulations to be established, similarly to what is being done with other types of attributes such as energy performance.

Keywords: fire safety, inclusive housing, universal accessibility, vulnerable people

Procedia PDF Downloads 22
3935 The Analysis of Thermal Conductivity in Porcine Meat Due to Electricity by Finite Element Method

Authors: Orose Rugchati, Sarawut Wattanawongpitak

Abstract:

This research studied the analysis of the thermal conductivity and heat transfer in porcine meat due to the electric current flowing between the electrode plates in parallel. Hot-boned pork sample was prepared in 2*1*1 cubic centimeter. The finite element method with ANSYS workbench program was applied to simulate this heat transfer problem. In the thermal simulation, the input thermoelectric energy was calculated from measured current that flowing through the pork and the input voltage from the dc voltage source. The comparison of heat transfer in pork according to two voltage sources: DC voltage 30 volts and dc pulsed voltage 60 volts (pulse width 50 milliseconds and 50 % duty cycle) were demonstrated. From the result, it shown that the thermal conductivity trends to be steady at temperature 40C and 60C around 1.39 W/mC and 2.65 W/mC for dc voltage source 30 volts and dc pulsed voltage 60 volts, respectively. For temperature increased to 50C at 5 minutes, the appearance color of porcine meat at the exposer point has become to fade. This technique could be used for predicting of thermal conductivity caused by some meat’s characteristics.

Keywords: thermal conductivity, porcine meat, electricity, finite element method

Procedia PDF Downloads 140
3934 A Predictive Model of Supply and Demand in the State of Jalisco, Mexico

Authors: M. Gil, R. Montalvo

Abstract:

Business Intelligence (BI) has become a major source of competitive advantages for firms around the world. BI has been defined as the process of data visualization and reporting for understanding what happened and what is happening. Moreover, BI has been studied for its predictive capabilities in the context of trade and financial transactions. The current literature has identified that BI permits managers to identify market trends, understand customer relations, and predict demand for their products and services. This last capability of BI has been of special concern to academics. Specifically, due to its power to build predictive models adaptable to specific time horizons and geographical regions. However, the current literature of BI focuses on predicting specific markets and industries because the impact of such predictive models was relevant to specific industries or organizations. Currently, the existing literature has not developed a predictive model of BI that takes into consideration the whole economy of a geographical area. This paper seeks to create a predictive model of BI that would show the bigger picture of a geographical area. This paper uses a data set from the Secretary of Economic Development of the state of Jalisco, Mexico. Such data set includes data from all the commercial transactions that occurred in the state in the last years. By analyzing such data set, it will be possible to generate a BI model that predicts supply and demand from specific industries around the state of Jalisco. This research has at least three contributions. Firstly, a methodological contribution to the BI literature by generating the predictive supply and demand model. Secondly, a theoretical contribution to BI current understanding. The model presented in this paper incorporates the whole picture of the economic field instead of focusing on a specific industry. Lastly, a practical contribution might be relevant to local governments that seek to improve their economic performance by implementing BI in their policy planning.

Keywords: business intelligence, predictive model, supply and demand, Mexico

Procedia PDF Downloads 123
3933 Design Manufacture and Testing of a Combined Alpha-Beta Double Piston Stirling Engine

Authors: A. Calvin Antony, Sakthi Kumar Arul Prakash, V. R. Sanal Kumar

Abstract:

In this paper a unique alpha-beta double piston 'stirling engine' is designed, manufactured and conducted laboratory test to ameliorate the efficiency of the stirling engine. The paper focuses on alpha and beta type engines, capturing their benefits and eradicating their short comings; along with the output observed from the flywheel. In this model alpha engine is kinematically with a piston cylinder arrangement which works quite like a beta engine. The piston of the new cylinder is so designed that it replicates a glued displacer and power piston as similar to that of beta engine. The bigger part of the piston is the power piston, which has a gap around it, while the smaller part of the piston is tightly fit in the cylinder and acts like the displacer piston. We observed that the alpha-beta double piston stirling engine produces 25% increase in power compare to a conventional alpha stirling engine. This working model is a pointer towards for the design and development of an alpha-beta double piston Stirling engine for industrial applications for producing electricity from the heat producing exhaust gases.

Keywords: alpha-beta double piston stirling engine , alpha stirling engine , beta double piston stirling engine , electricity from stirling engine

Procedia PDF Downloads 533
3932 Visualization of Quantitative Thresholds in Stocks

Authors: Siddhant Sahu, P. James Daniel Paul

Abstract:

Technical analysis comprised by various technical indicators is a holistic way of representing price movement of stocks in the market. Various forms of indicators have evolved from the primitive ones in the past decades. There have been many attempts to introduce volume as a major determinant to determine strong patterns in market forecasting. The law of demand defines the relationship between the volume and price. Most of the traders are familiar with the volume game. Including the time dimension to the law of demand provides a different visualization to the theory. While attempting the same, it was found that there are different thresholds in the market for different companies. These thresholds have a significant influence on the price. This article is an attempt in determining the thresholds for companies using the three dimensional graphs for optimizing the portfolios. It also emphasizes on the magnitude of importance of volumes as a key factor for determining of predicting strong price movements, bullish and bearish markets. It uses a comprehensive data set of major companies which form a major chunk of the Indian automotive sector and are thus used as an illustration.

Keywords: technical analysis, expert system, law of demand, stocks, portfolio analysis, Indian automotive sector

Procedia PDF Downloads 316
3931 Architects Lens on Afrocentric Cultural Approach to Housing

Authors: Aisha Abdulkarim Aliyu, Alice Sabrina Ismail, Fadhlina Binti Ahmad

Abstract:

The study's main goal is to improve Afrocentric cultural approaches in Nigerian residential environments (Kano) in terms of physical, aesthetical, and socio-cultural factors. Kano's fast-changing residential settings and city image have been subjected to a significant neoliberal restructuring process in recent decades. Architects have evolved in lockstep with the society they serve, first as an art form, then as a science, and finally as a business that designs structures. Design values have always emphasized a certain building style throughout history. Architects and architectural critics have a different perspective on them than the general public. In fact, a popular style among the general public was taken into consideration. When it comes to the current design, this study examines the values and viewpoints of architects on the usage of an Afrocentric cultural approach to housing. The qualitative data analysis of surveys conducted with Kano housing and planning professionals is used to determine the criteria for using an Afrocentric cultural approach in housing development in order to preserve and restore our cultural heritage, as well as to rank these criteria according to their importance. The professional lens on this subject differs insignificantly across Nigeria, although they do vary to some amount based on the sector of the housing industry, according to the study.

Keywords: architects lens, Afrocentric culture, housing, northern Nigeria

Procedia PDF Downloads 155
3930 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 64