Search results for: remote photoplethysmography
472 Estimation of Carbon Sequestration and Air Quality of Terrestrial Ecosystems Using Remote Sensing Techniques
Authors: Kanwal Javid, Shazia Pervaiz, Maria Mumtaz, Muhammad Ameer Nawaz Akram
Abstract:
Forests and grasslands ecosystems play an important role in the global carbon cycle. Land management activities influence both ecosystems and enable them to absorb and sequester carbon dioxide (CO2). Similarly, in Pakistan, these terrestrial ecosystems are well known to mitigate carbon emissions and have a great source to supply a variety of services such as clean air and water, biodiversity, wood products, wildlife habitat, food, recreation and carbon sequestration. Carbon sequestration is the main agenda of developed and developing nations to reduce the impacts of global warming. But the amount of carbon storage within these ecosystems can be affected by many factors related to air quality such as land management, land-use change, deforestation, over grazing and natural calamities. Moreover, the long-term capacity of forests and grasslands to absorb and sequester CO2 depends on their health, productivity, resilience and ability to adapt to changing conditions. Thus, the main rationale of this study is to monitor the difference in carbon amount of forests and grasslands of Northern Pakistan using MODIS data sets and map results using Geographic Information System. Results of the study conclude that forests ecosystems are more effective in reducing the CO2 level and play a key role in improving the quality of air.Keywords: carbon sequestration, grasslands, global warming, climate change.
Procedia PDF Downloads 186471 Geomorphological Features and their Significance Along Dhauli Ganga River Valley in North-Eastern Kumaun Himalaya in Pithauragah District, Uttarakhand, India
Authors: Puran Chandra Joshi
Abstract:
The Himalaya is the newest mountain system on this earth. This highest as well as fragile mountain system is still rising up. The tectonic activities have been experienced by this entire area, so the geomorphology of the region is affected by it. As we know, geomorphology is the study of landforms and their processes on the earth surface. These landforms are very important for human beings and other creatures on this planet. Present paper traces out the geomorphological features and their significance along Dhauli Ganga river valley in the Himalaya. Study area falls in higher Himalaya, which has experienced glacial and fluvial processes. Dhauli Ganga river is a considerable tributary of river kali, which is the part of huge Gangetic system. Dhauli originates in the form of two tributaries from valley glaciers of the southern slopes of Kumaun-Tibbet water divide. The upper catchment of this river has been carved by the glacial activity. The area of investigation is a remote regionin, Kumaun Himalaya. The native people do seasonal migration due to harsh winters. In summers, they return back with their cattle. In this season, they also grow potatoes and pulses, especiallybeanson river terraces. This study is important for making policies in the entire area. Area has witnessed big landslide in the recent past. So, the present study becomes more important.Keywords: himalaya, geomorphology, glacial, tectonics
Procedia PDF Downloads 121470 Space Debris Mitigation: Solutions from the Dark Skies of the Remote Australian Outback Using a Proposed Network of Mobile Astronomical Observatories
Authors: Muhammad Akbar Hussain, Muhammad Mehdi Hussain, Waqar Haider
Abstract:
There are tens of thousands of undetected and uncatalogued pieces of space debris in the Low Earth Orbit (LEO). They are not only difficult to be detected and tracked, their sheer number puts active satellites and humans in orbit around Earth into danger. With the entry of more governments and private companies into harnessing the Earth’s orbit for communication, research and military purposes, there is an ever-increasing need for not only the detection and cataloguing of these pieces of space debris, it is time to take measures to take them out and clean up the space around Earth. Current optical and radar-based Space Situational Awareness initiatives are useful mostly in detecting and cataloguing larger pieces of debris mainly for avoidance measures. Smaller than 10 cm pieces are in a relatively dark zone, yet these are deadly and capable of destroying satellites and human missions. A network of mobile observatories, connected to each other in real time and working in unison as a single instrument, may be able to detect small pieces of debris and achieve effective triangulation to help create a comprehensive database of their trajectories and parameters to the highest level of precision. This data may enable ground-based laser systems to help deorbit individual debris. Such a network of observatories can join current efforts in detection and removal of space debris in Earth’s orbit.Keywords: space debris, low earth orbit, mobile observatories, triangulation, seamless operability
Procedia PDF Downloads 164469 The Challenge of Characterising Drought Risk in Data Scarce Regions: The Case of the South of Angola
Authors: Natalia Limones, Javier Marzo, Marcus Wijnen, Aleix Serrat-Capdevila
Abstract:
In this research we developed a structured approach for the detection of areas under the highest levels of drought risk that is suitable for data-scarce environments. The methodology is based on recent scientific outcomes and methods and can be easily adapted to different contexts in successive exercises. The research reviews the history of drought in the south of Angola and characterizes the experienced hazard in the episode from 2012, focusing on the meteorological and the hydrological drought types. Only global open data information coming from modeling or remote sensing was used for the description of the hydroclimatological variables since there is almost no ground data in this part of the country. Also, the study intends to portray the socioeconomic vulnerabilities and the exposure to the phenomenon in the region to fully understand the risk. As a result, a map of the areas under the highest risk in the south of the country is produced, which is one of the main outputs of this work. It was also possible to confirm that the set of indicators used revealed different drought vulnerability profiles in the South of Angola and, as a result, several varieties of priority areas prone to distinctive impacts were recognized. The results demonstrated that most of the region experienced a severe multi-year meteorological drought that triggered an unprecedent exhaustion of the surface water resources, and that the majority of their socioeconomic impacts started soon after the identified onset of these processes.Keywords: drought risk, exposure, hazard, vulnerability
Procedia PDF Downloads 190468 Optimum Irrigation System Management for Climate Resilient and Improved Productivity of Flood-based Livelihood Systems
Authors: Mara Getachew Zenebe, Luuk Fleskens, Abdu Obieda Ahmed
Abstract:
This paper seeks to advance our scientific understanding of optimizing flood utilization in regions impacted by climate change, with a focus on enhancing agricultural productivity through effective irrigation management. The study was conducted as part of a three-year (2021 to 2023) USAID-supported initiative aimed at promoting Economic Growth and Peace in the Gash Agricultural Scheme (GAS), situated in Sudan's water-stressed Eastern region. GAS is the country's largest flood-irrigated scheme, covering 100,800 hectares of cultivable land, with a potential to provide the food security needs of over a quarter of a million agro-pastoral community members. GAS relies on the Gash River, which sources its water from high-intensity rainfall events in the highlands of Ethiopia and Eritrea. However, climate change and variations in these highlands have led to increased variability in the Gash River's flow. The study conducted water balance analyses based on a ten-year dataset of the annual Gash River flow, irrigated area; as well as the evapotranspiration demand of the major sorghum crop. Data collection methods included field measurements, surveys, remote sensing, and CropWat modelling. The water balance assessment revealed that the existing three-year rotation-based irrigation system management, capping cultivated land at 33,000 hectares annually, is excessively risk-averse. While this system reduced conflicts among the agro-pastoral communities by consistently delivering on the land promised to be annually cultivated, it also increased GAS's vulnerability to flood damage due to several reasons. The irrigation efficiency over the past decade was approximately 30%, leaving significant unharnessed floodwater that caused damage to infrastructure and agricultural land. The three-year rotation resulted in inadequate infrastructural maintenance, given the destructive nature of floods. Additionally, it led to infrequent land tillage, allowing the encroachment of mesquite trees hindering major sorghum crop growth. Remote sensing data confirmed that mesquite trees have overtaken 70,000 hectares in the past two decades, rendering them unavailable for agriculture. The water balance analyses suggest shifting to a two-year rotation, covering approximately 50,000 hectares annually while maintaining risk aversion. This shift could boost GAS's annual sorghum production by two-thirds, exceeding 850,000 tons. The scheme's efficiency can be further enhanced through low-cost on-farm interventions. Currently, large irrigation plots that range from 420 to 756 hectares are irrigated with limited water distribution guidance, leading to uneven irrigation. As demonstrated through field trials, implementing internal longitudinal bunds and horizontal deflector bunds can increase adequately irrigated parts of the irrigation plots from 50% to 80% and thus nearly double the sorghum yield to 2 tons per hectare while reducing the irrigation duration from 30 days to a maximum of 17 days. Flow measurements in 2021 and 2022 confirmed that these changes sufficiently meet the sorghum crop's water requirements, even with a conservative 60% field application efficiency assumption. These insights and lessons from the GAS on enhancing agricultural resilience and sustainability in the face of climate change are relevant to flood-based livelihood systems globally.Keywords: climate change, irrigation management and productivity, variable flood flows, water balance analysis
Procedia PDF Downloads 72467 Global Navigation Satellite System and Precise Point Positioning as Remote Sensing Tools for Monitoring Tropospheric Water Vapor
Authors: Panupong Makvichian
Abstract:
Global Navigation Satellite System (GNSS) is nowadays a common technology that improves navigation functions in our life. Additionally, GNSS is also being employed on behalf of an accurate atmospheric sensor these times. Meteorology is a practical application of GNSS, which is unnoticeable in the background of people’s life. GNSS Precise Point Positioning (PPP) is a positioning method that requires data from a single dual-frequency receiver and precise information about satellite positions and satellite clocks. In addition, careful attention to mitigate various error sources is required. All the above data are combined in a sophisticated mathematical algorithm. At this point, the research is going to demonstrate how GNSS and PPP method is capable to provide high-precision estimates, such as 3D positions or Zenith tropospheric delays (ZTDs). ZTDs combined with pressure and temperature information allows us to estimate the water vapor in the atmosphere as precipitable water vapor (PWV). If the process is replicated for a network of GNSS sensors, we can create thematic maps that allow extract water content information in any location within the network area. All of the above are possible thanks to the advances in GNSS data processing. Therefore, we are able to use GNSS data for climatic trend analysis and acquisition of the further knowledge about the atmospheric water content.Keywords: GNSS, precise point positioning, Zenith tropospheric delays, precipitable water vapor
Procedia PDF Downloads 196466 Analyzing of the Urban Landscape Configurations and Expansion of Dire Dawa City, Ethiopia Using Satellite Data and Landscape Metrics Approaches
Authors: Berhanu Keno Terfa
Abstract:
To realize the consequences of urbanization, accurate, and up-to-date representation of the urban landscape patterns is critical for urban planners and policymakers. Thus, the study quantitatively characterized the spatiotemporal composition and configuration of the urban landscape and urban expansion process in Dire Dawa City, Ethiopia, form the year 2006 to 2018. The integrated approaches of various sensors satellite data, Spot (2006) and Sentinel 2 (2018) combined with landscape metrics analysis was employed to explore the pattern, process, and overall growth status in the city. The result showed that the built-up area had increased by 62% between 2006 and 2018, at an average annual increment of 3.6%, while the other land covers were lost significantly due to urban expansion. The highest urban expansion has occurred in the northwest direction, whereas the most fragmented landscape pattern was recorded in the west direction. Overall, the analysis showed that Dire Dawa City experienced accelerated urban expansion with a fragmented and complicated spatiotemporal urban landscape patterns, suggesting a strong tendency towards sprawl over the past 12 years. The findings in the study could help planners and policy developers to insight the historical dynamics of the urban region for sustainable development.Keywords: zonal metrics, multi-temporal, multi-resolution, urban growth, remote sensing data
Procedia PDF Downloads 199465 Site Suitability Analysis for Multipurpose Dams Using Geospatial Technologies
Authors: Saima Iftikhar Rida Shabbir, Zeeshan Hassan
Abstract:
Water shortage, energy crisis and natural misfortunes are the glitches which reduce the efficacy of agricultural ecosystems especially in Pakistan where these are more frequent besides being intense. Accordingly, the agricultural water resources, food security and country’s economy are at risk. To address this, we have used Geospatial techniques incorporating ASTER Global DEM, Geological map, rainfall data, discharge data, Landsat 5 image of Swat valley in order to assess the viability of selected sites. The sites have been studied via GIS tools, Hydrological investigation and multiparametric analysis for their potentialities of collecting and securing the rain water; regulating floods by storing the surplus water bulks by check dams and developing them for power generation. Our results showed that Siat1-1 was very useful for low-cost dam with main objective of as Debris dam; Site-2 and Site 3 were check dams sites having adequate storing reservoir so as to arrest the inconsistent flow accompanied by catering the sedimentation effects and the debris flows; Site 4 had a huge reservoir capacity but it entails enormous edifice cost over very great flood plain. Thus, there is necessity of active Hydrological developments to estimate the flooded area using advanced and multifarious GIS and remote sensing approaches so that the sites could be developed for harnessing those sites for agricultural and energy drives.Keywords: site suitability, check dams, SHP, terrain analysis, volume estimation
Procedia PDF Downloads 312464 Elemental and Magnetic Properties of Bed Sediment of Siang River, a Major River of Brahmaputra Basin
Authors: Abhishek Dixit, Sandip S. Sathe, Chandan Mahanta
Abstract:
The Siang river originates in Angsi glacier in southern Tibet (there known as the Yarlung Tsangpo). After traveling through Indus-Tsangpo suture zone and deep gorges near Namcha Barwa peak, it takes a south-ward turn and enters India, where it is known as Siang river and becomes a major tributary of the Brahmaputra in Assam plains. In this study, we have analyzed the bed sediment of the Siang river at two locations (one at extreme upstream near the India-China border and one downstream before Siang Brahmaputra confluence). We have also sampled bed sediment at the remote location of Yammeng river, an eastern tributary of Siang. The magnetic hysteresis properties show the combination of paramagnetic and weak ferromagnetic behavior with a multidomain state. Moreover, curie temperature analysis shows titanomagnetite solid solution series, which is causing the weak ferromagnetic signature. Given that the magnetic mineral was in a multidomain state, the presence of Ti, Fe carrying heave mineral, may be inferred. The Chemical index of alteration shows less weathered sediment. However, the Yammeng river sample being close to source shows fresh grains subjected to physical weathering and least chemically alteration. Enriched Ca and K and depleted Na and Mg with respect to upper continental crust concentration also points toward the less intense chemical weathering along with the dominance of calcite weathering.Keywords: bed sediment, magnetic properties, Siang, weathering
Procedia PDF Downloads 119463 Poverty Status and Determinants of Income Diversification among Rural Households of Pakistan
Authors: Saba Javed, Abdul Majeed Nadeem, Imran Qaiser, Muhammad Asif Kamran, Azka Amin
Abstract:
This study is designed to determine the poverty status and determinants of income diversification in rural areas of Pakistan using cross sectional data of Pakistan Social and Living Standards Measurement (PSLM) for 2010-2011. The variables used for measuring income diversification are demographic indicators, poverty status, and income of households. Foster-Greer-Thorbecke (FGT) poverty measures show that 43.1% poor and 56.9% non-poor resided in rural areas of Pakistan. A Tobit model was employed to examine the determinants of livelihood diversification among households. The result showed that age, gender, marital status, household size and province have significant impact on income diversification. The data show that non-poor and female headed household with higher family size diversify more as compared to poor, male headed household with small size of family members. The place of residence (province used as proxy for place) also plays important role for income diversification as Sindh Province was found more diversified as compared to Punjab and Khyber Pakhtoon Kha (KPK). It is recommended to improve the ways of income diversification among rural household to reduce poverty among them. This can be done by more investment in education with universal access for poor and remote localities households.Keywords: poverty, income diversification, rural Pakistan, Tobit regression model, FGT
Procedia PDF Downloads 353462 IOT Based Process Model for Heart Monitoring Process
Authors: Dalyah Y. Al-Jamal, Maryam H. Eshtaiwi, Liyakathunisa Syed
Abstract:
Connecting health services with technology has a huge demand as people health situations are becoming worse day by day. In fact, engaging new technologies such as Internet of Things (IOT) into the medical services can enhance the patient care services. Specifically, patients suffering from chronic diseases such as cardiac patients need a special care and monitoring. In reality, some efforts were previously taken to automate and improve the patient monitoring systems. However, the previous efforts have some limitations and lack the real-time feature needed for chronic kind of diseases. In this paper, an improved process model for patient monitoring system specialized for cardiac patients is presented. A survey was distributed and interviews were conducted to gather the needed requirements to improve the cardiac patient monitoring system. Business Process Model and Notation (BPMN) language was used to model the proposed process. In fact, the proposed system uses the IOT Technology to assist doctors to remotely monitor and follow-up with their heart patients in real-time. In order to validate the effectiveness of the proposed solution, simulation analysis was performed using Bizagi Modeler tool. Analysis results show performance improvements in the heart monitoring process. For the future, authors suggest enhancing the proposed system to cover all the chronic diseases.Keywords: IoT, process model, remote patient monitoring system, smart watch
Procedia PDF Downloads 330461 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab
Procedia PDF Downloads 89460 Design, Construction, Technical and Economic Evaluation of a Solar Water Desalination Device with Two Heat Exchangers and a Photovoltaic System
Authors: Mehdi Bakhtiarzadeh, Reza Efatnejad, Kambiz Rezapour Rezapour
Abstract:
Due to the limited resources of fossil fuels and their harmful effects on the environment and human health, research on renewable energy applications in industrial and scientific communities has become particularly important. Only one percent of freshwater resources are available for use in the domestic, agricultural, and industrial sectors. On the other hand, the rapid growth of industry and the increase of population in most countries of the world, including Iran, have led to an increase in demand for freshwater. Among renewable energies, there is the potential of solar energy in Iran. As a result, solar distillation systems can be used as a solution to supply fresh water in remote rural areas. Therefore, in the present study, a solar water desalination device was designed and manufactured using two heat exchangers and a photovoltaic system. Its evaluation was done during September and October of 2020. During the evaluation of the device, environmental variables such as total solar radiation, ambient temperature and cooling tower temperature were recorded at intervals of one hour from 9 am to 5 pm. The effect of these variables on solar concentrator performance, heat exchanger, and daily freshwater production was evaluated. The results showed that using two heat exchangers and a photovoltaic system has led to the daily production of 5 liters of fresh water and 46% economic efficiency.Keywords: solar water desalination, heat exchanger, photovoltaic system, technical and economic evaluation
Procedia PDF Downloads 169459 Intensity Analysis to Link Changes in Land-Use Pattern in the Abuakwa North and South Municipalities, Ghana, from 1986 to 2017
Authors: Isaac Kwaku Adu, Jacob Doku Tetteh, John Joseph Puthenkalam, Kwabena Effah Antwi
Abstract:
The continuous increase in population implies increase in food demand. There is, therefore, the need to increase agricultural production and other forest products to ensure food security and economic development. This paper employs the three-level intensity analysis to assess the total change of land-use in two-time intervals (1986-2002 and 2002-2017), the net change and swap as well as gross gains and losses in the two intervals. The results revealed that the overall change in the 31-year period was greater in the second period (2002-2017). Agriculture and forest categories lost in the first period while the other land class gained. However, in the second period agriculture and built-up increased greatly while forest, water bodies and thick bushes/shrubland experienced loss. An assessment revealed a reduction of forest in both periods but was greater in the second period and expansion of agricultural land was recorded as population increases. The pixels gaining built-up targeted agricultural land in both intervals, it also targeted thick bushes/shrubland and waterbody in the second period only. Built-up avoided forest in both intervals as well as waterbody and thick bushes/shrubland. To help in developing the best land-use strategies/policies, a further validation of the social factors is necessary.Keywords: agricultural land, forest, Ghana, land-use, intensity analysis, remote sensing
Procedia PDF Downloads 152458 Physics Recitations for College Physics Courses Using Breakout Rooms during COVID Pandemic
Authors: Pratheesh Jakkala
Abstract:
This paper addresses the use of breakout sessions to conduct successful weekly physics recitations for College Physics I and II at a large University in remote teaching method during COVID-19 pandemic. All breakout sessions are synchronous, conducted live, and handled by teaching assistants. A two-prong approach is used to maintain the integrity of recitations. Three different conference platforms WebEx, Zoom, and Canvas conferences, were tested, and BigBlue button using Canvas was adopted. The results and experiences of all three learning platforms are presented in this paper. Recitation questions were assigned on WebAssign learning platform and a standard five-question template developed by the instructor was used for group discussions and active peer-peer engagement. Breakout sessions feature of BigBlueButton in Canvas conferences was successfully implemented. Each breakout session consists of a team of 4 students. An online whiteboard, chat window options were used for live teamwork. Student peer-peer interactions, Teaching Assistants’ interaction with students were video and audio recorded. A total of 72 students in College Physics II and 55 students in College Physics I was enrolled. 82% of students agreed that method under study is better than previous methods. The study addressed the quality of student teamwork, student attitude towards problem-solving, and student performance in the exams.Keywords: recitations, breakout rooms, online learning platforms, COVID pandemic
Procedia PDF Downloads 109457 Improved Classification Procedure for Imbalanced and Overlapped Situations
Authors: Hankyu Lee, Seoung Bum Kim
Abstract:
The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.Keywords: classification, imbalanced data with class overlap, split data space, support vector machine
Procedia PDF Downloads 307456 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation
Authors: Feng Yin
Abstract:
Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation
Procedia PDF Downloads 276455 Public Art and Public Space in an Emerging Knowledge Economy: The Case of Doha
Authors: Grichting Anna, Al Sada Sara, Caccayam Angelica, Khan Urshi
Abstract:
The Qatar Museums Authority recently announced a series of public art initiatives in Doha with the purpose of 'bringing art out of the walls of the museum' to make it accessible to the public on a daily basis and to encourage discussion and debate. While the installation of sculptures in public spaces is not new in Doha, the practice of integrating art in public spaces and architectural projects is reaching a new dimension as internationally renowned artists – such as Damien Hirst and Richard Serra - are being commissioned to install their works in the public spaces and buildings of the city of Doha as well as in more remote desert locations. This research discusses the changing presence, role and context of public art in Doha, both from a historical and cultural overview, and the different forms and media as well as the typologies of urban and public spaces in which the art is installed. It examines the process of implementing site-specific artworks, looking at questions of scale, history, social meaning and formal aesthetics. The methodologies combine theoretical research on the understanding of public art and its role and placement in public space, as well as empirical research on contemporary public art projects in Doha, based on documentation and interviews and as well as site and context analysis of the urban or architectural spaces within which the art is situated. Surveys and interviews – using social media - in different segments of the contemporary Qatari society, including all nationalities and social groups, are used to measure and qualify the impacts and effects on the population.Keywords: public space, public art, urban design, knowledge economy
Procedia PDF Downloads 519454 Valuing Public Urban Street Trees and Their Environmental Spillover Benefits
Authors: Sofia F. Franco, Jacob Macdonald
Abstract:
This paper estimates the value of urban public street trees and their complementary and substitution value with other broader urban amenities and dis-amenities via the residential housing market. We estimate a lower bound value on a city’s tree amenities under instrumental variable and geographic regression discontinuity approaches with an application to Lisbon, Portugal. For completeness, we also explore how urban trees and in particular public street trees impact house prices across the city. Finally, we jointly analyze the planting and maintenance costs and benefits of urban street trees. The estimated value of all public trees in Lisbon is €8.84M. When considering specifically trees planted alongside roads and in public squares, the value is €6.06M or €126.64 per tree. This value is conditional on the distribution of trees in terms of their broader density, with higher effects coming from the overall greening of larger areas of the city compared to the greening of the direct neighborhood. Detrimental impacts are found when the number of trees is higher near street canyons, where they may exacerbate the stagnation of air pollution from traffic. Urban street trees also have important spillover benefits due to pollution mitigation around €6.21 million, or an additional €129.93 per tree. There are added benefits of €26.32 and €28.58 per tree in terms of flooding and heat mitigation, respectively. With significant resources and policies aimed at urban greening, the value obtained is shown to be important for discussions on the benefits of urban trees as compared to mitigation and abatement costs undertaken by a municipality.Keywords: urban public goods, urban street trees, spatial boundary discontinuities, geospatial and remote sensing methods
Procedia PDF Downloads 176453 Development of an Omaha System-Based Remote Intervention Program for Work-Related Musculoskeletal Disorders (WMSDs) Among Front-Line Nurses
Authors: Tianqiao Zhang, Ye Tian, Yanliang Yin, Yichao Tian, Suzhai Tian, Weige Sun, Shuhui Gong, Limei Tang, Ruoliang Tang
Abstract:
Introduction: Healthcare workers, especially the nurses all over the world, are highly vulnerable to work-related musculoskeletal disorders (WMSDs), experiencing high rates of neck, shoulder, and low back injuries, due to the unfavorable working conditions. To reduce WMSDs among nursing personnel, many workplace interventions have been developed and implemented. Unfortunately, the ongoing Covid-19 (SARS-CoV-2) pandemic has posed great challenges to the ergonomic practices and interventions in healthcare facilities, particularly the hospitals, since current Covid-19 mitigation measures, such as social distancing and working remotely, has substantially minimized in-person gatherings and trainings. On the other hand, hospitals throughout the world have been short-staffed, resulting in disturbance of shift scheduling and more importantly, the increased job demand among the available caregivers, particularly the doctors and nurses. With the latest development in communication technology, remote intervention measures have been developed as an alternative, without the necessity of in-person meetings. The Omaha System (OS) is a standardized classification system for nursing practices, including a problem classification system, an intervention system, and an outcome evaluation system. This paper describes the development of an OS-based ergonomic intervention program. Methods: First, a comprehensive literature search was performed among worldwide electronic databases, including PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), between journal inception to May 2020, resulting in a total of 1,418 scientific articles. After two independent screening processes, the final knowledge pool included eleven randomized controlled trial studies to develop the draft of the intervention program with Omaha intervention subsystem as the framework. After the determination of sample size needed for statistical power and the potential loss to follow-up, a total of 94 nurses from eight clinical departments agreed to provide written, informed consent to participate in the study, which were subsequently assigned into two random groups (i.e., intervention vs. control). A subgroup of twelve nurses were randomly selected to participate in a semi-structured interview, during which their general understanding and awareness of musculoskeletal disorders and potential interventions was assessed. Then, the first draft was modified to reflect the findings from these interviews. Meanwhile, the tentative program schedule was also assessed. Next, two rounds of consultation were conducted among experts in nursing management, occupational health, psychology, and rehabilitation, to further adjust and finalize the intervention program. The control group had access to all the information and exercise modules at baseline, while an interdisciplinary research team was formed and supervised the implementation of the on-line intervention program through multiple social media groups. Outcome measures of this comparative study included biomechanical load assessed by the Quick Exposure Check and stresses due to awkward body postures. Results and Discussion: Modification to the draft included (1) supplementing traditional Chinese medicine practices, (2) adding the use of assistive patient handling equipment, and (3) revising the on-line training method. Information module should be once a week, lasting about 20 to 30 minutes, for a total of 6 weeks, while the exercise module should be 5 times a week, each lasting about 15 to 20 minutes, for a total of 6 weeks.Keywords: ergonomic interventions, musculoskeletal disorders (MSDs), omaha system, nurses, Covid-19
Procedia PDF Downloads 180452 Geoplanology Modeling and Applications Engineering of Earth in Spatial Planning Related with Geological Hazard in Cilegon, Banten, Indonesia
Authors: Muhammad L. A. Dwiyoga
Abstract:
The condition of a spatial land in the industrial park needs special attention to be studied more deeply. Geoplanology modeling can help arrange area according to his ability. This research method is to perform the analysis of remote sensing, Geographic Information System, and more comprehensive analysis to determine geological characteristics and the ability to land on the area of research and its relation to the geological disaster. Cilegon is part of Banten province located in western Java, and the direction of the north is the Strait of Borneo. While the southern part is bordering the Indian Ocean. Morphology study area is located in the highlands to low. In the highlands of identified potential landslide prone, whereas in low-lying areas of potential flooding. Moreover, in the study area has the potential prone to earthquakes, this is due to the proximity of enough research to Mount Krakatau and Subdcution Zone. From the results of this study show that the study area has a susceptibility to landslides located around the District Waringinkurung. While the region as a potential flood areas in the District of Cilegon and surrounding areas. Based on the seismic data, this area includes zones with a range of magnitude 1.5 to 5.5 magnitude at a depth of 1 to 60 Km. As for the ability of its territory, based on the analyzes and studies carried out the need for renewal of the map Spatial Plan that has been made, considering the development of a fairly rapid Cilegon area.Keywords: geoplanology, spatial plan, geological hazard, cilegon, Indonesia
Procedia PDF Downloads 502451 Deliberation of Daily Evapotranspiration and Evaporative Fraction Based on Remote Sensing Data
Authors: J. Bahrawi, M. Elhag
Abstract:
Estimation of evapotranspiration is always a major component in water resources management. Traditional techniques of calculating daily evapotranspiration based on field measurements are valid only for local scales. Earth observation satellite sensors are thus used to overcome difficulties in obtaining daily evapotranspiration measurements on regional scale. The Surface Energy Balance System (SEBS) model was adopted to estimate daily evapotranspiration and relative evaporation along with other land surface energy fluxes. The model requires agro-climatic data that improve the model outputs. Advance Along Track Scanning Radiometer (AATSR) and Medium Spectral Resolution Imaging Spectrometer (MERIS) imageries were used to estimate the daily evapotranspiration and relative evaporation over the entire Nile Delta region in Egypt supported by meteorological data collected from six different weather stations located within the study area. Daily evapotranspiration maps derived from SEBS model show a strong agreement with actual ground-truth data taken from 92 points uniformly distributed all over the study area. Moreover, daily evapotranspiration and relative evaporation are strongly correlated. The reliable estimation of daily evapotranspiration supports the decision makers to review the current land use practices in terms of water management, while enabling them to propose proper land use changes.Keywords: daily evapotranspiration, relative evaporation, SEBS, AATSR, MERIS, Nile Delta
Procedia PDF Downloads 258450 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network
Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson
Abstract:
The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0
Procedia PDF Downloads 176449 Wireless Information Transfer Management and Case Study of a Fire Alarm System in a Residential Building
Authors: Mohsen Azarmjoo, Mehdi Mehdizadeh Koupaei, Maryam Mehdizadeh Koupaei, Asghar Mahdlouei Azar
Abstract:
The increasing prevalence of wireless networks in our daily lives has made them indispensable. The aim of this research is to investigate the management of information transfer in wireless networks and the integration of renewable solar energy resources in a residential building. The focus is on the transmission of electricity and information through wireless networks, as well as the utilization of sensors and wireless fire alarm systems. The research employs a descriptive approach to examine the transmission of electricity and information on a wireless network with electric and optical telephone lines. It also investigates the transmission of signals from sensors and wireless fire alarm systems via radio waves. The methodology includes a detailed analysis of security, comfort conditions, and costs related to the utilization of wireless networks and renewable solar energy resources. The study reveals that it is feasible to transmit electricity on a network cable using two pairs of network cables without the need for separate power cabling. Additionally, the integration of renewable solar energy systems in residential buildings can reduce dependence on traditional energy carriers. The use of sensors and wireless remote information processing can enhance the safety and efficiency of energy usage in buildings and the surrounding spaces.Keywords: renewable energy, intelligentization, wireless sensors, fire alarm system
Procedia PDF Downloads 53448 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery
Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori
Abstract:
The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS
Procedia PDF Downloads 187447 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013
Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran
Abstract:
Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.Keywords: ALOS/AVNIR-2, dengue, space-time clustering analysis, Sri Lanka
Procedia PDF Downloads 476446 An Application of Remote Sensing for Modeling Local Warming Trend
Authors: Khan R. Rahaman, Quazi K. Hassan
Abstract:
Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).Keywords: local warming, climate change, urban area, Alberta, Canada
Procedia PDF Downloads 338445 Change Detection and Analysis of Desertification Processes in Semi Arid Land in Algeria Using Landsat Data
Authors: Zegrar Ahmed, Ghabi Mohamed
Abstract:
The degradation of arid and semi-arid ecosystems in Algeria has become a palpable fact that only hinders progress and rural development. In these exceptionally fragile environments, the decline of vegetation is done according to an alarming increase and wind erosion dominates. The ecosystem is subjected to a long hot dry season and low annual average rainfall. The urgency of the fight against desertification is imposed by the very nature of the process that tends to self-accelerate, resulting when human intervention is not forthcoming the irreversibility situations, preventing any possibility of restoration state of these zones. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. we used Landsat data with two different dates March 2010 and November 2014 in order to determine the changes in land cover, sand moving and land degradation for the diagnosis of the desertification Phenomenon. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the steppe formations to determine changes in land use.Keywords: remote sensing, SIG, ecosystem, degradation, desertification
Procedia PDF Downloads 337444 Estimation of Soil Moisture at High Resolution through Integration of Optical and Microwave Remote Sensing and Applications in Drought Analyses
Authors: Donglian Sun, Yu Li, Paul Houser, Xiwu Zhan
Abstract:
California experienced severe drought conditions in the past years. In this study, the drought conditions in California are analyzed using soil moisture anomalies derived from integrated optical and microwave satellite observations along with auxiliary land surface data. Based on the U.S. Drought Monitor (USDM) classifications, three typical drought conditions were selected for the analysis: extreme drought conditions in 2007 and 2013, severe drought conditions in 2004 and 2009, and normal conditions in 2005 and 2006. Drought is defined as negative soil moisture anomaly. To estimate soil moisture at high spatial resolutions, three approaches are explored in this study: the universal triangle model that estimates soil moisture from Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST); the basic model that estimates soil moisture under different conditions with auxiliary data like precipitation, soil texture, topography, and surface types; and the refined model that uses accumulated precipitation and its lagging effects. It is found that the basic model shows better agreements with the USDM classifications than the universal triangle model, while the refined model using precipitation accumulated from the previous summer to current time demonstrated the closest agreements with the USDM patterns.Keywords: soil moisture, high resolution, regional drought, analysis and monitoring
Procedia PDF Downloads 133443 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 87