Search results for: rainfall harvesting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1132

Search results for: rainfall harvesting

412 Traditional Farming Practices and Climate Change Adaptation among the Dumagats of Tanay, Rizal and Their Implications to the Delivery of Extension and Advisory Services

Authors: Janika Vien K. Valsorable, Filma C. Calalo

Abstract:

Climate change is one of the most damaging and serious environmental threats worldwide being faced today. While almost everyone highly depends and puts their trust on what technology, innovations, and initiatives from hard-core science can do to cope with the changing climate, there are still people who find hope on indigenous knowledge systems. The study aimed to analyze the traditional farming practices of the Dumagats in Tanay, Rizal and how these relate to their adaptation and mitigation of climate change. The analysis is based on interviews with 17 members of the Dumagat tribe specifically residing in Barangay Cuyambay, San Andres, and Mamuyao, and supported by Key Informant Interview and Focus Group Discussion as well as document reviews. Results of the study showed that the Dumagats adopt indigenous knowledge systems and their high sensitivity and resilience to climate change aid them in their farming system and activities. These traditional farming practices are exemplified from land preparation to planting, fertilizer application, weed and pest management, harvesting and post-harvest activities. Owing to their dependence upon, and close relationship with the environment and its resources, the Dumagats have learned to interpret and react to the impacts of climate change in creative ways, drawing on their traditional knowledge to cope with the impending changes. With the increasing trend at all levels of government to service the needs of rural communities, there is the need for the extension to contextualize advisory service delivery for indigenous communities.

Keywords: climate change, Dumagat tribe, indigenous knowledge systems, traditional farming practices

Procedia PDF Downloads 264
411 Hybridization and Evaluation of Jatropha to Improve High Yield Varieties in Indonesia

Authors: Rully D. Purwati, Tantri D.A. Anggraeni, Bambang Heliyanto, M. Machfud, Joko Hartono

Abstract:

The availability of fuel in the world will be reduced in next few years, it is necessary to find alternative energy sources. Jatropha curcas L. is one of oil crops producing non-edible oil which is potential for bio-diesel. Jatropha cultivation and development program in Indonesia is facing several problems especially low seed yield resulting in inefficient crop cultivation cost. To cope with the problem, development of high yielding varieties is necessary. Development of new varieties to improve seed yield was conducted by hybridization and selection and resulted in fourteen potential genotypes. The yield potential of the fourteen genotypes were evaluated and compared with two check varieties. The objective of the evaluation was to find Jatropha hybrids with some characters i.e. their productivity was higher than check varieties, oil content > 40% and harvesting age ≤ 110 days. Hybridization and individual plant selection were carried out from 2010 to 2014. Evaluation of high yield was conducted in Asembagus experimental station, Situbondo, East Java in three years (2015-2017). The experimental designed was Randomized Complete Block Design with three replication, and plot size 10 m x 8 m. The characters observed were number of capsules per plant, dry seed yield (kg/ha) and seed oil content (%). The results of this experiment indicated that all the hybrids evaluated have higher productivity than check variety IP-3A. There were two superior hybrids i.e. HS-49xSP-65/32 and HS-49xSP-19/28 with highest seed yield per hectare and number of capsules per plant for three years.

Keywords: Jatropha, bio energy, hybrid, high seed yield

Procedia PDF Downloads 145
410 Nitrogen Uptake of Different Safflower (Carthamus tinctorius L.) Genotypes at Different Growth Stages in Semi-Arid Conditions

Authors: Zehra Aytac, Nurdilek Gulmezoglu

Abstract:

Safflower has been grown for centuries for many purposes worldwide. Especially it is important for the orange-red dye from its petal and for its high-quality oil obtained from the seeds. The crop is high adaptable to areas with insufficient rainfall and poor soil conditions. The plant has a deep taproot that can draw moisture and plant nutrients from deep to the subsoil. The research was carried out to study the nitrogen (N) uptake of different safflower cultivars and lines at different stages of growth and different plant parts in the experimental field of Faculty of Agriculture, Eskişehir Osmangazi University under semi-arid conditions. Different safflower cultivars and lines of varied origins were used as the material. The cultivars and lines were planted in a Randomized Complete Block Design with three replications. Two different growth stages (flowering and harvest) and three different plant parts (head, stem+leaf and seed) were determined. The nitrogen concentration of different plant parts was determined by the Kjeldahl method. Statistical analysis were performed by analysis of variance for each growth stage and plant parts taking a level of p < 0.05 and p < 0.01 as significant according to the LSD test. As a result, N concentration showed significant differences among different plant parts and different growth stages for different safflower genotypes of varied origins.

Keywords: Carthamus tinctorius L., growth stages, head N, leaf N, N uptake, seed N, Safflower

Procedia PDF Downloads 224
409 Typhoon Disaster Risk Assessment of Mountain Village: A Case Study of Shanlin District in Kaohsiung

Authors: T. C. Hsu, H. L. Lin

Abstract:

Taiwan is mountainous country, 70% of land is covered with mountains. Because of extreme climate, the mountain villages with sensitive and fragile environment often get easily affected by inundation and debris flow from typhoon which brings huge rainfall. Due to inappropriate development, overuse and fewer access roads, occurrence of disaster becomes more frequent through downpour and rescue actions are postponed. However, risk map is generally established through administrative boundaries, the difference of urban and rural area is ignored. The neglect of mountain village characteristics eventually underestimates the importance of factors related to vulnerability and reduces the effectiveness. In disaster management, there are different strategies and actions at each stage. According to different tasks, there will be different risk indices and weights to analyze disaster risk for each stage and then it will contribute to confront threat and reduce impact appropriately on right time. Risk map is important in mitigation, but also in response stage because some factors such as road network will be changed by disaster. This study will use risk assessment to establish risk map of Shanlin District which is mountain village in Kaohsiung as a case study in mitigation and response stage through Analytic Hierarchy Process (AHP). AHP helps to recognize the composition and weights of risk factors in mountain village by experts’ opinions through survey design and is combined with present potential hazard map to produce risk map.

Keywords: risk assessment, mountain village, risk map, analytic hierarchy process

Procedia PDF Downloads 399
408 Low Impact Development Strategies Applied in the Water System Planning in the Coastal Eco-Green Campus

Authors: Ying Li, Zaisheng Hong, Weihong Wang

Abstract:

With the rapid enlargement of the size of Chinese universities, newly built campuses are springing up everywhere in recent years. It is urged to build eco-green campus because the role of higher education institutions in the transition to a more sustainable society has been highlighted for almost three decades. On condition that a new campus is usually built on an undeveloped site, where the basic infrastructure is not completed, finding proper strategies in planning and design of the campus becomes a primary concern. Low Impact Development (LID) options have been proposed as an alternative approach to make better use of rainwater in planning and design of an undeveloped site. On the basis of analyzing the natural circumstance, geographic condition, and other relative information, four main LID approaches are coordinated in this study of Hebei Union University, which are ‘Storage’, ‘Retaining’, ‘Infiltration’ and ‘Purification’. ‘Storage’ refers to a big central lake in the campus for rainwater harvesting. ‘Retaining’ means rainwater gardens scattered in the campus, also being known as bioretention areas which mimic the naturally created pools of water, to decrease surface flow runoff. ‘Infiltration’ is designed of grassed swales, which also play a part of floodway channel. ‘Purification’ is known as either natural or artificial wetland to reduce pollutants such as nitrogen and phosphorous in the waterbody. With above mentioned measures dealing with the synthetic use of rainwater in the acid & alkali area in the coastal district, an eco-green campus construction and an ecological sustainability will be realized, which will give us more enlightenment and reference.

Keywords: newly built campus, low impact development, planning design, rainwater reuse

Procedia PDF Downloads 248
407 The Automated Soil Erosion Monitoring System (ASEMS)

Authors: George N. Zaimes, Valasia Iakovoglou, Paschalis Koutalakis, Konstantinos Ioannou, Ioannis Kosmadakis, Panagiotis Tsardaklis, Theodoros Laopoulos

Abstract:

The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of an innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholder's and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece.

Keywords: soil management, climate change, new technologies, conservation practices

Procedia PDF Downloads 345
406 Evaluation of Electro-Flocculation for Biomass Production of Marine Microalgae Phaodactylum tricornutum

Authors: Luciana C. Ramos, Leandro J. Sousa, Antônio Ferreira da Silva, Valéria Gomes Oliveira Falcão, Suzana T. Cunha Lima

Abstract:

The commercial production of biodiesel using microalgae demands a high-energy input for harvesting biomass, making production economically unfeasible. Methods currently used involve mechanical, chemical, and biological procedures. In this work, a flocculation system is presented as a cost and energy effective process to increase biomass production of Phaeodactylum tricornutum. This diatom is the only species of the genus that present fast growth and lipid accumulation ability that are of great interest for biofuel production. The algae, selected from the Bank of Microalgae, Institute of Biology, Federal University of Bahia (Brazil), have been bred in tubular reactor with photoperiod of 12 h (clear/dark), providing luminance of about 35 μmol photons m-2s-1, and temperature of 22 °C. The medium used for growing cells was the Conway medium, with addition of silica. The seaweed growth curve was accompanied by cell count in Neubauer camera and by optical density in spectrophotometer, at 680 nm. The precipitation occurred at the end of the stationary phase of growth, 21 days after inoculation, using two methods: centrifugation at 5000 rpm for 5 min, and electro-flocculation at 19 EPD and 95 W. After precipitation, cells were frozen at -20 °C and, subsequently, lyophilized. Biomass obtained by electro-flocculation was approximately four times greater than the one achieved by centrifugation. The benefits of this method are that no addition of chemical flocculants is necessary and similar cultivation conditions can be used for the biodiesel production and pharmacological purposes. The results may contribute to improve biodiesel production costs using marine microalgae.

Keywords: biomass, diatom, flocculation, microalgae

Procedia PDF Downloads 330
405 Study and GIS Development of Geothermal Potential in South Algeria (Adrar Region)

Authors: A. Benatiallah, D. Benatiallah, F. Abaidi, B. Nasri, A. Harrouz, S. Mansouri

Abstract:

The region of Adrar is located in the south-western Algeria and covers a total area of 443.782 km², occupied by a population of 432,193 inhabitants. The main activity of population is agriculture, mainly based on the date palm cultivation occupies a total area of 23,532 ha. Adrar region climate is a continental desert characterized by a high variation in temperature between months (July, August) it exceeds 48°C and coldest months (December, January) with 16°C. Rainfall is very limited in frequency and volume with an aridity index of 4.6 to 5 which corresponds to a type of arid climate. Geologically Adrar region is located on the edge North West and is characterized by a Precambrian basement cover stolen sedimentary deposit of Phanerozoic age transgressive. The depression is filled by Touat site Paleozoic deposits (Cambrian to Namurian) of a vast sedimentary basin extending secondary age of the Saharan Atlas to the north hamada Tinhirt Tademaït and the plateau of south and Touat Gourara west to Gulf of Gabes in the Northeast. In this work we have study geothermal potential of Adrar region from the borehole data eatable in various sites across the area of 400,000 square kilometres; from these data we developed a GIS (Adrar_GIS) that plots data on the various points and boreholes in the region specifying information on available geothermal potential has variable depths.

Keywords: sig, geothermal, potenteil, temperature

Procedia PDF Downloads 465
404 Impact of Climate on Sugarcane Yield Over Belagavi District, Karnataka Using Statistical Mode

Authors: Girish Chavadappanavar

Abstract:

The impact of climate on agriculture could result in problems with food security and may threaten the livelihood activities upon which much of the population depends. In the present study, the development of a statistical yield forecast model has been carried out for sugarcane production over Belagavi district, Karnataka using weather variables of crop growing season and past observed yield data for the period of 1971 to 2010. The study shows that this type of statistical yield forecast model could efficiently forecast yield 5 weeks and even 10 weeks in advance of the harvest for sugarcane within an acceptable limit of error. The performance of the model in predicting yields at the district level for sugarcane crops is found quite satisfactory for both validation (2007 and 2008) as well as forecasting (2009 and 2010).In addition to the above study, the climate variability of the area has also been studied, and hence, the data series was tested for Mann Kendall Rank Statistical Test. The maximum and minimum temperatures were found to be significant with opposite trends (decreasing trend in maximum and increasing in minimum temperature), while the other three are found in significant with different trends (rainfall and evening time relative humidity with increasing trend and morning time relative humidity with decreasing trend).

Keywords: climate impact, regression analysis, yield and forecast model, sugar models

Procedia PDF Downloads 71
403 Climate Teleconnections and Their Influence on the Spread of Dengue

Authors: Edilene Machado, Carolina Karoly, Amanda Britz, Luciane Salvi, Claudineia Brazil

Abstract:

Climate teleconnections refer to the climatic relationships between geographically distant regions, where changes in one location can influence weather patterns in another. These connections can occur through atmospheric and oceanic processes, leading to variations in temperature, precipitation, and other climatic elements. Studying teleconnections is crucial for better understanding the mechanisms that govern global climate and the potential consequences of climate change. A notable example of a teleconnection is the El Niño-Southern Oscillation (ENSO), which involves the interaction between the Equatorial Pacific Ocean and the atmosphere. During El Niño episodes, there is anomalous warming of the surface waters in the Equatorial Pacific, resulting in significant changes in global climate patterns. These changes can affect rainfall distribution, wind patterns, and temperatures in different parts of the world. The cold phase of ENSO, known as La Niña, is often associated with reduced precipitation and below-average temperatures in the state of Rio Grande do Sul, Brazil. Therefore, the objective of this research is to identify patterns between El Niño-Southern Oscillation (ENSO) events in their different phases and dengue transmission. Meteorological data and dengue case records for the city of Porto Alegre, in the southern region of Brazil, were used for the development of this research. The study highlighted that the highest incidence of dengue cases occurred during the cold phase of the El Niño-Southern Oscillation (ENSO).

Keywords: climate patterns, climate teleconnections, climate variability, dengue, El Niño-Southern oscillation

Procedia PDF Downloads 94
402 Climate Change Vulnerability and Agrarian Communities: Insights from the Composite Vulnerability Index of Indian States of Andhra Pradesh and Karnataka

Authors: G. Sridevi, Amalendu Jyotishi, Sushanta Mahapatra, G. Jagadeesh, Satyasiba Bedamatta

Abstract:

Climate change is a main challenge for agriculture, food security and rural livelihoods for millions of people in India. Agriculture is the sector most vulnerable to climate change due to its high dependence on climate and weather conditions. Among India’s population of more than one billion people, about 68% are directly or indirectly involved in the agricultural sector. This sector is particularly vulnerable to present-day climate variability. In this contest this paper examines the Socio-economic and climate analytical study of the vulnerability index in Indian states of Andhra Pradesh and Karnataka. Using secondary data; it examines the vulnerability through five different sub-indicator of socio-demographic, agriculture, occupational, common property resource (CPR), and climate in respective states among different districts. Data used in this paper has taken from different sources, like census in India 2011, Directorate of Economics and Statistics of respective states governments. Rainfall data was collected from the India Meteorological Department (IMD). In order to capture the vulnerability from two different states the composite vulnerability index (CVI) was developed and used. This indicates the vulnerability situation of different districts under two states. The study finds that Adilabad district in Andhra Pradesh and Chamarajanagar in Karnataka had highest level of vulnerability while Hyderabad and Bangalore in respective states have least level of vulnerability.

Keywords: vulnerability, agriculture, climate change, global warming

Procedia PDF Downloads 458
401 The Application of Karonda Friuts (Carissa carandas Linn.) for Ice Cream-Making

Authors: A. Pornpitakdumrong

Abstract:

The aim of this research study was to develop recipe of Karanda ice cream as healthy promoting ice cream by high protein, low fat and naturally raw material, which found in local area. The results were found that appropriate condition for Karanda ice cream including incubation period, temperature and frozen time, which were 8-12 hours, -20 to -25 °C and 2-4 hours, respectively. Small fruit variety Karanda should selected only ripe fruits for Karanda ice cream made. Because of unripe fruits were contained resin and need to be air dried for reducing level of resin. Therefore, large fruit variety Karanda can be use both ripe and unripe fruits for Karanda ice cream made by without any astringent and bitter taste. However, small fruit variety Karanda was proper to made ice cream for trade, because occurring of industry to select the ripe fruits and commercially frozen, which be providing for the whole year compared with large variety fruits were rarely, low harvesting amount and short shelf life. Karanda ice cream produced from flesh part was attractive but was not accepted by consumers. It may due to resin contained with Karanda pulp, which led to be rough texture of ice cream. We were choose only Karanda juice, which was more appropriated and used Karanda juice with water by 1:1 ratio, because undiluted juice was sour taste. Most acceptance recipe of karanda ice cream product was sixth recipe by 91% of consumers, which was contained soy protein to made ice cream was delicate and swell, milk powder (little amount) to made ice cream was greasy, corn powder as stabilizer and undiluted coconut milk (little amount) to improve ice cream odor and similar to apricot odor.

Keywords: karonda fruits, Carissa carandas Linn, ice cream, healthy ice cream

Procedia PDF Downloads 410
400 Climate Change and Global Warming: Effect on Indian Agriculture and Legal Control

Authors: Aman Guru, Chiron Singhi

Abstract:

The Earth’s climate is being changed at an unrivalled rate since beginning of the evolution of the Earth, 4–5 billion years back, but presently it gained pace due to unintentional anthropogenic disturbances and also increased global warming since the mid-20th century, and these incessant changes in the climatic pattern may bring unpropitious effect on global health and security. Today, however, it is not only the air, or water that are polluted, but the whole atmosphere is prone to pollution and this resulted in other cascading ramification in the form of change in the pattern of rainfall, melting of ice, the rise in the sea level etc. Human activities like production, transport, burning of fuels are adding umpteen dangerous pollutants to the atmosphere which in turn gives rise to global warming. Agriculture plays an imperative part in India's economy. Agriculture, along with fisheries and forestry, is one of the largest contributors to the Gross Domestic Product in India. Research on the effect of climate change and vulnerability of agriculture is a high need in India. A steady increase of CO2 is a primary cause of climate change and global warming and which in turn have a great impact on Indian agriculture. The research focuses on the effect of climate change on Indian agriculture and the proceedings and legal control of legislative measures on such issues and the ways to implement such laws which can help to provide a solution to these problems which can prove beneficial to Indian farmers and their agricultural produce.

Keywords: agriculture, climate change, global warming, India laws, legislative measures

Procedia PDF Downloads 314
399 Application of Distributed Value Property Zones Approach on the Hydraulic Conductivity for Real Site Located in Al-Najaf Region, Iraq to Investigate the Groundwater Resources

Authors: Hayder H. Kareem, Ayad K. Hussein, Aseel A. Alkatib

Abstract:

Groundwater accumulated at geological formations constitutes a worldwide vital water resource component which can be used to supply agriculture, industry, and domestic uses. The subsurface environment is affected by human activities; consequently, planning and sustainable management of aquifers require serious attention, especially as the world is exposed to the problem of global warming. Establishing accurate and efficient groundwater models will provide confident results for the behavior of the aquifer's system. The new approach, 'Distributed Value Property Zones,' available in Visual MODFLOW, is used to reconstruct the subsurface zones of the Al-Najaf region aquifer, and then its effect is compared with those manual and automated (PEST) approaches. Results show that the model has become more accurate with the use of the new approach, as the calibration and results analyses revealed. The assessment of the Al-Najaf region groundwater aquifer has revealed a degree of insufficiency of the required pumping demand, which reflects dry areas in both of the aquifer's layers. In addition, with pumping, the Euphrates River loses water of 7458 m³/day to the aquifer, while without pumping, it gains 28837 m³/day from the rainfall's recharge. The distributed value property zones approach achieves a precise groundwater model to assess the state of the Al-Najaf region aquifer.

Keywords: Al-Najaf region, distributed value property zones approach, hydraulic conductivity, groundwater modelling using visual MODFLOW

Procedia PDF Downloads 172
398 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data

Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim

Abstract:

Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.

Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth

Procedia PDF Downloads 317
397 Evaluation of Different High Tunnel Protection Methods for Quality Banana Production in Bangladesh

Authors: Shormin Choudhury, Nazrul Islam, Atiqur Rahman Shaon

Abstract:

High tunnels can provide several benefits to horticultural crops, including environmental stress protection such as hail, frost, excessive rainfall, and high wind. In hot and sunny areas, high tunnel is one of the cooling ways for modifying the microclimate and maximizing crop development. Present study was carried out to assess the effect of different type of high tunnels on banana growth, yield, and fruit quality characteristics. Net houses, poly net houses, UV poly shed houses, and open field (control) conditions are among the experimental treatments. The results revealed that the plants produced in the poly net house condition had maximum pseudo stem height (171.00cm), stem girth (68.66 cm), chlorophyll content (57.63), number of fruits (140), number of hands (9.66), individual fruit weight (125.00) and pulp: peel ratio (3.35) of bananas as compared to the other treatments. Quality parameters like total soluble solid (21.78°Brix), ascorbic acid (10.24 mg/100g), total sugar (25.44%), and reducing sugar (15.75%) were higher in fruits grown in poly net house. The study revealed that the poly net house is the best growing environment for bananas in terms of growth, yield, and quality attributes.

Keywords: shed houses, banana, chlorophyll content, fruit yield, quality

Procedia PDF Downloads 86
396 Seed Quality Aspects of Nightshade (Solanum Nigrum) as Influenced by Gibberellins (GA3) on Seed

Authors: Muga Moses

Abstract:

Plant growth regulators are actively involved in the growth and yield of plants. However, limited information is available on the combined effect of gibberellic acid (GA3) on growth attributes and yield of African nightshade. This experiment will be designed to fill this gap by studying the performance of African nightshade under the application of hormones. Gibberellic acid is a plant growth hormone that promotes cell expansion and division. A greenhouse and laboratory experiment will be conducted at the University of Sussex biotechnology greenhouse and Agriculture laboratory using a growth chamber to study the effect of GA3 on the growth and development attributes of African nightshade. The experiment consists of three replications and 5 treatments and is laid out in a randomized complete block design consisting of various concentrations of GA3. 0ppm, 50ppm, 100ppm, 150ppm and 200ppm. local farmer seed was grown in plastic pots, 6 seeds then hardening off to remain with four plants per pot at the greenhouse to attain purity of germplasm, proper management until maturity of berries then harvesting and squeezing to get seeds, paper dry on the sun for 7 days. In a laboratory, place 5 Whatman filter paper on glass petri-dish subject to different concentrations of stock solution, count 50 certified and clean, healthy seeds, then arrange on the moist filter paper and mark respectively. Spray with the stock solution twice a day and protrusion of radicle termed as germination count and discard to increase the accuracy of precision. Data will be collected on the application of GA3 to compare synergistic effects on the growth, yield, and nutrient contents on African nightshade.

Keywords: African nightshade, growth, yield, shoot, gibberellins

Procedia PDF Downloads 88
395 Daily Probability Model of Storm Events in Peninsular Malaysia

Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain

Abstract:

Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.

Keywords: daily probability model, monsoon seasons, regions, storm events

Procedia PDF Downloads 343
394 Understanding Regional Circulations That Modulate Heavy Precipitations in the Kulfo Watershed

Authors: Tesfay Mekonnen Weldegerima

Abstract:

Analysis of precipitation time series is a fundamental undertaking in meteorology and hydrology. The extreme precipitation scenario of the Kulfo River watershed is studied using wavelet analysis and atmospheric transport, a lagrangian trajectory model. Daily rainfall data for the 1991-2020 study periods are collected from the office of the Ethiopian Meteorology Institute. Meteorological fields on a three-dimensional grid at 0.5o x 0.5o spatial resolution and daily temporal resolution are also obtained from the Global Data Assimilation System (GDAS). Wavelet analysis of the daily precipitation processed with the lag-1 coefficient reveals some high power recurred once every 38 to 60 days with greater than 95% confidence for red noise. The analysis also identified inter-annual periodicity in the periods 2002 - 2005 and 2017 - 2019. Back trajectory analysis for 3-day periods up to May 19/2011, indicates the Indian Ocean source; trajectories crossed the eastern African escarpment to arrive at the Kulfo watershed. Atmospheric flows associated with the Western Indian monsoon redirected by the low-level Somali winds and Arabian ridge are responsible for the moisture supply. The time-localization of the wavelet power spectrum yields valuable hydrological information, and the back trajectory approaches provide useful characterization of air mass source.

Keywords: extreme precipitation events, power spectrum, back trajectory, kulfo watershed

Procedia PDF Downloads 70
393 Site Suitability Analysis for Multipurpose Dams Using Geospatial Technologies

Authors: Saima Iftikhar Rida Shabbir, Zeeshan Hassan

Abstract:

Water shortage, energy crisis and natural misfortunes are the glitches which reduce the efficacy of agricultural ecosystems especially in Pakistan where these are more frequent besides being intense. Accordingly, the agricultural water resources, food security and country’s economy are at risk. To address this, we have used Geospatial techniques incorporating ASTER Global DEM, Geological map, rainfall data, discharge data, Landsat 5 image of Swat valley in order to assess the viability of selected sites. The sites have been studied via GIS tools, Hydrological investigation and multiparametric analysis for their potentialities of collecting and securing the rain water; regulating floods by storing the surplus water bulks by check dams and developing them for power generation. Our results showed that Siat1-1 was very useful for low-cost dam with main objective of as Debris dam; Site-2 and Site 3 were check dams sites having adequate storing reservoir so as to arrest the inconsistent flow accompanied by catering the sedimentation effects and the debris flows; Site 4 had a huge reservoir capacity but it entails enormous edifice cost over very great flood plain. Thus, there is necessity of active Hydrological developments to estimate the flooded area using advanced and multifarious GIS and remote sensing approaches so that the sites could be developed for harnessing those sites for agricultural and energy drives.

Keywords: site suitability, check dams, SHP, terrain analysis, volume estimation

Procedia PDF Downloads 313
392 Effect of Spontaneous Ripening and Drying Techniques on the Bioactive Activities Peel of Plantain (Musa paradisiaca) Fruit

Authors: Famuwagun A. A., Abiona O. O., Gbadamosi S.O., Adeboye O. A., Adebooye O. C.

Abstract:

The need to provide more information on the perceived bioactive status of the peel of plantain fruit informed the design of this research. Matured Plantain fruits were harvested, and fruits were allowed to ripen spontaneously. Samples of plantain fruit were taken every fortnight, and the peels were removed. The peels were dried using two different drying techniques (Oven drying and sun drying) and milled into powdery forms. Other samples were picked and processed in a similar manner on the first, third, seventh and tenth day until the peels of the fruits were fully ripped, resulting in eight different samples. The anti-oxidative properties of the samples using different assays (DPPH, FRAP, MCA, HRSA, SRSA, ABTS, ORAC), inhibitory activities against enzymes related to diabetes (alpha-amylase and glucosidase) and inhibition against angiotensin-converting enzymes (ACE) were evaluated. The result showed that peels of plantain fruits on the 7th day of ripening and sundried exhibited greater inhibitions against free radicals, which enhanced its antioxidant activities, resulting in greater inhibitions against alpha-amylase and alpha-glucosidase enzymes. Also, oven oven-dried sample of the peel of plantain fruit on the 7th day of ripening had greater phenolic contents than the other samples, which also resulted in higher inhibition against angiotensin converting enzymes when compared with other samples. The results showed that even though the unripe peel of plantain fruit is assumed to contain excellent bioactive activities, consumption of the peel should be allowed to ripen for seven days after maturity and harvesting so as to derive maximum benefit from the peel.

Keywords: functional ingredient, diabetics, hypertension, functional foods

Procedia PDF Downloads 51
391 Distribution and Densities of Anopheles Mosquito in El Obied Town, Sudan

Authors: Adam Musa Adam Eissa

Abstract:

Environmental and weather changes especially rainfall affects the distribution and densities of mosquitoes. This work was carried out to study the distribution and densities of mosquitoes adults and larvae in a total of five selected stations in El Obied Town. A cross-sectional survey of Anopheline mosquito larval habitats was conducted. The survey was conducted during the dry season (January 2013). Larvae were collected by using the standard dipping technique, while adult stages were collected by rearing larvae in cage, because the density of adults Anopheles mosquito per room was zero by using spray sheet method by using Permethrin pesticide 25%E.C, during the study period. The results revealed that (2347) Anopheline mosquito larvae were found and collected from only one station. All of which (2347) larvae (100%) were classified as probably Anopheles Squamosus. The study also showed that, a number of 81 adults (100%) Anopheline mosquito were classified as probably Anopheles Squamosus. Anopheles Squamosus were found only in the shallow pond water habitat in Alrahma west area of El Obied, the mean Anopheline density in the study area for larvae was 0.313 per dip while the mean density of adult was 0 per room. The high mosquito larval density in Alrahma west area indicated that, this part of El Obied Town is at risk of mosquito-borne diseases including malaria. This study recommended to apply the control program against mosquito at this part of the Town.

Keywords: anopheles, squamosus, Alrahma, distribution

Procedia PDF Downloads 285
390 Estimation of the Effectiveness of Tasik Kemajuan and Tasik Inovasi as Flood Detention Pond at UTHM Campus

Authors: Noor Aliza Binti Ahmad, Azra Munirah Mat Daud, Sabariah Musa, Mohamad Azhar MK

Abstract:

Flooding is a common natural disaster in Malaysia triggered by heavy rainfall. Urbanization that increases the construction of paved areas, subsequently raise surface runoff and reduce time of concentration. It increases flood magnitude and so that leads to greater flood problems as what has happened at Universiti Tun Hussein Onn Malaysia (UTHM) area in December 2006 and earlier 2007. Tasik Kemajuan and Tasik Inovasi were constructed as recreation ponds and have also functioned as flood ponds. Unfortunately, the flood problem still occurs persistently. Thus, the effectiveness of Tasik Kemajuan and Tasik Inovasi in reducing the flood problems need to be investigated and the causes of flood events at UTHM Campus need to be evaluated. The results from this study show that the conditions of Tasik Kemajuan and Tasik Inovasi are effective in reducing the flood water levels. It also can be concluded that increasing water level in both lakes in UTHM Campus are significantly influenced by presence of the grass and rubbish. During dry condition, the flow rates with three different days are 59.38m3/s, 60.71m3/s and 59.08m3/s and while for wet condition in two different days are 89.59 m3/s and 86.61m3/s. In conclusion, this system should be improved to prevent future flooding either widened or reduced drainage floor, and also perform maintenance on the plants that live around the lake.

Keywords: drainage system, flood detention, lakes, storm water

Procedia PDF Downloads 323
389 Adsorption Mechanism of Heavy Metals and Organic Pesticide on Industrial Construction and Demolition Waste and Its Runoff Behaviors

Authors: Sheng Huang, Xin Zhao, Xiaofeng Gao, Tao Zhou, Shijin Dai, Youcai Zhao

Abstract:

Adsorption of heavy metal pollutants (Zn, Cd, Pb, Cr, Cu) and organic pesticide (phorate, dithiophosphate diethyl, triethyl phosphorothioate), along with their multi-contamination on the surface of industrial construction & demolition waste (C&D waste) was investigated. Brick powder was selected as the appropriate waste while its maximum equilibrium adsorption amount of heavy metal under single controlled contamination matrix reached 5.41, 0.81, 0.45, 1.13 and 0.97 mg/g, respectively. Effects of pH and spiking dose of ICDW was also investigated. Equilibrium adsorption amount of organic pesticide varied from 0.02 to 0.97 mg/g, which was negatively correlated to the size distribution and hydrophilism. Existence of organic pesticide on surface of ICDW caused various effects on the heavy metal adsorption, mainly due to combination of metal ions and the floccule formation along with wrapping behaviors by pesticide pollutants. Adsorption of Zn was sharply decreased from 7.1 to 0.15 mg/g compared with clean ICDW and phorate contaminated ICDW, while that of Pb, Cr and Cd experienced an increase- then decrease procedure. On the other hand, runoff of pesticide contaminants was investigated under 25 mm/h simulated rainfall. Results showed that the cumulative runoff amount fitted well with curve obtained from a power function, of which r2=0.95 and 0.91 for 1DAA (1 day between contamination and runoff) and 7DAA, respectively. This study helps provide evaluation of industrial construction and demolition waste contamination into aquatic systems.

Keywords: adsorption mechanism, industrial construction waste, metals, pesticide, runoff

Procedia PDF Downloads 467
388 Stubble and Senesced Leaves Are the Primary Sites of Ice Nucleation Activity in Wheat

Authors: Amanuel Bekuma, Rebecca Swift, Sarah Jackson, Ben Biddulph

Abstract:

Economic loss to frost damage is increasing over the past years in the Western Australian Wheatbelt. Agronomic, genetic, and climatic works have still found a weak correlation between temperature and frost damage. One possibility that has not been explored within the Australian cropping system is whether ice nucleation active bacteria (INB) either present in situ on crop residue or introduced by rainfall could be responsible for the increased sensitivity of cereal plants to frost at different stages of development. This study investigated upper and lower leaf canopy, stubble, and soil as a potential site of ice nucleation activity (INA) and tracked the changes in INA during the plant development. We found that older leaves of wheat are the primary sites of ice nucleation (-4.7 to -6.3°C) followed by stubble (-5.7 to -6.7°C) which increases the risk of frost damage during heading and flowering (the most susceptible stages). However, healthy and green upper canopy leaves (flag and flag-2) and the soil have lower INA (< -11°C) during the frost-sensitive stage of wheat. We anticipate the higher INA on the stubble and older leaves to be due to the presence of biologically active ice-nucleating bacteria (INB), known to cause frost injury to sensitive plants at -5°C. Stubble retained or applied during the growing season further exacerbates additional frost risk by potentially increasing the INB load. The implications of the result for stubble and frost risk management in a frost-prone landscape will be discussed.

Keywords: frost, ice-nucleation-activity, stubble, wheat

Procedia PDF Downloads 135
387 An Integrated Experimental and Numerical Approach to Develop an Electronic Instrument to Study Apple Bruise Damage

Authors: Paula Pascoal-Faria, Rúben Pereira, Elodie Pinto, Miguel Belbut, Ana Rosa, Inês Sousa, Nuno Alves

Abstract:

Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in loss of profits for the entire fruit industry. The three factors which can physically cause fruit bruising are vibration, compression load and impact, the latter being the most common source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important challenge. In this study, experimental and numerical methods were used to better understand the impact caused when an apple is dropped from different heights onto a plastic surface and a conveyor belt. Results showed that the extent of fruit damage is significantly higher for plastic surface, being dependent on the height. In order to support the development of a biomimetic electronic device for the determination of fruit damage, the mechanical properties of the apple fruit were determined using mechanical tests. Preliminary results showed different values for the Young’s modulus according to the zone of the apple tested. Along with the mechanical characterization of the apple fruit, the development of the first two prototypes is discussed and the integration of the results obtained to construct the final element model of the apple is presented. This work will help to reduce significantly the bruise damage of fruits or vegetables during the entire processing which will allow the introduction of exportation destines and consequently an increase in the economic profits in this sector.

Keywords: apple, fruit damage, impact during crop and post-crop, mechanical characterization of the apple, numerical evaluation of fruit damage, electronic device

Procedia PDF Downloads 305
386 Flood Disaster Prevention and Mitigation in Nigeria Using Geographic Information System

Authors: Dinebari Akpee, Friday Aabe Gaage, Florence Fred Nwaigwu

Abstract:

Natural disasters like flood affect many parts of the world including developing countries like Nigeria. As a result, many human lives are lost, properties damaged and so much money is lost in infrastructure damages. These hazards and losses can be mitigated and reduced by providing reliable spatial information to the generality of the people through about flood risks through flood inundation maps. Flood inundation maps are very crucial for emergency action plans, urban planning, ecological studies and insurance rates. Nigeria experience her worst flood in her entire history this year. Many cities were submerged and completely under water due to torrential rainfall. Poor city planning, lack of effective development control among others contributes to the problem too. Geographic information system (GIS) can be used to visualize the extent of flooding, analyze flood maps to produce flood damaged estimation maps and flood risk maps. In this research, the under listed steps were taken in preparation of flood risk maps for the study area: (1) Digitization of topographic data and preparation of digital elevation model using ArcGIS (2) Flood simulation using hydraulic model and integration and (3) Integration of the first two steps to produce flood risk maps. The results shows that GIS can play crucial role in Flood disaster control and mitigation.

Keywords: flood disaster, risk maps, geographic information system, hazards

Procedia PDF Downloads 227
385 Biological Treatment of Corn Stover with Pleurotus ostreatus, Pleurotus eryngii and Lentinula edudes to Improve Digestibility

Authors: Aydan Atalar, Nurcan Cetinkaya

Abstract:

Corn stover is leftover of the leaves, stalk, husks and tassels in the field after harvesting the grain combined. Corn stover is a low-quality roughage but has mostly been used as roughage source for feeding ruminant animals in developing countries including Turkey; however, it can also be used to make biofuels as in developed countries. The objectives of the present study were to improve the digestibility of corn stover by the treatment of white rod fungus mainly Pleurotus osteritus (PO), Pleurotus eryingii (PE) and Lantinula edudes (LE) at different incubation times and also to determine the most effective fungus and incubation time to prepare fermeted corn stover for ruminant nutrition. The choped corn stover was treated with PO, PE and LE and incubated for 10, 20, 30 and 40 days in incubator at 26 0C. After each incubation time dry matter(DM), organic matter(OM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), neutral detergent lignin (ADL), in-vitro true dry matter digestibility (IVTDMD) and organic matter digestibility (IVTOMD) were determined. The mean IVTDMD and IVTOMD levels were increased by PO, PE and LE treatments in increasing order of incubation times. The obtained IVTDM values were 59.45, 60.51, 60.82 and 60.18 %; 59.45, 70.55, 67.18 and 66.96 %; 59.45, 70.55, 67.18 and 66,96 %; 59.45, 74.90, 69.18 % ; 59.45, 76.50, 71.24 and 73.04 for control, PO, PE and LE treatments at 0, 10, 20, 30 and 40 days incubation times respectively. The obtained IVTOMD values were 56.45,60.26,60.82and 60.18 %; 56.45, 68.70, 67.18 and 66.96 %; 56.45, 71.26, 69.18 and 69.28 %; 56.45, 73.23, 71.24 and 73.04 % for control, PO, PE and LE treatments at 0, 10, 20, 30 and 40 days incubation times respectively. The most effective fungus was PO and the incubation time was 30 days. In conclusion, PO treatment of corn stover with 30 days incubation may be used to prepare fermented corn stover for ruminant nutrition.

Keywords: biological treatment, corn stover, digestibility, Lantinula edudes, Pleurotus eryingii, Pleurotus osteritus

Procedia PDF Downloads 245
384 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank

Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang

Abstract:

Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

Keywords: stormwater runoff, stormwater storage tank, real-time control, fuzzy control

Procedia PDF Downloads 204
383 Disaggregation of Coarser Resolution Radiometer Derived Soil Moisture to Finer Scales

Authors: Gurjeet Singh, Rabindra K. Panda

Abstract:

Soil moisture is a key hydrologic state variable and is intrinsically linked to the Earth's water, climate and carbon cycles. On ecological point of view, the soil moisture is a fundamental natural resource providing the transpirable water for plants. Soil moisture varies both temporally and spatially due to spatiotemporal variation in rainfall, vegetation cover, soil properties and topography. Satellite derived soil moisture provides spatio-temporal extensive data. However, the spatial resolution of a typical satellite (L-band radiometry) is of the order of tens of kilometers, which is not good enough for developing efficient agricultural water management schemes at the field scale. In the present study, the soil moisture from radiometer data has been disaggregated using blending approach to achieve higher resolution soil moisture data. The radiometer estimates of soil moisture at a 40 km resolution have been disaggregated to 10 km, 5 km and 1 km resolutions. The disaggregated soil moisture was compared with the observed data, consisting of continuous sensor based soil moisture profile measurements, at three monitoring sites and extensive spatial near-surface soil moisture measurements, concurrent with satellite monitoring in the 500 km2 study watershed in the Eastern India. The estimated soil moisture status at different spatial scales can help in developing efficient agricultural water management schemes to increase the crop production and water use efficiency.

Keywords: disaggregation, eastern India, radiometers, soil moisture, water use efficiency

Procedia PDF Downloads 276