Search results for: production frontier model
22358 Land Suitability Assessment for Vineyards in Afghanistan Based on Physical and Socio-Economic Criteria
Authors: Sara Tokhi Arab, Tariq Salari, Ryozo Noguchi, Tofael Ahamed
Abstract:
Land suitability analysis is essential for table grape cultivation in order to increase its production and productivity under the dry condition of Afghanistan. In this context, the main aim of this paper was to determine the suitable locations for vineyards based on satellite remote sensing and GIS (geographical information system) in Kabul Province of Afghanistan. The Landsat8 OLI (operational land imager) and thermal infrared sensor (TIRS) and shuttle radar topography mission digital elevation model (SRTM DEM) images were processed to obtain the normalized difference vegetation index (NDVI), normalized difference moisture index (NDMI), land surface temperature (LST), and topographic criteria (elevation, aspect, and slope). Moreover, Jaxa rainfall (mm per hour), soil properties information are also used for the physical suitability of vineyards. Besides, socio-economic criteria were collected through field surveys from Kabul Province in order to develop the socio-economic suitability map. Finally, the suitable classes were determined using weighted overly based on a reclassification of each criterion based on AHP (Analytical Hierarchy Process) weights. The results indicated that only 11.1% of areas were highly suitable, 24.8% were moderately suitable, 35.7% were marginally suitable and 28.4% were not physically suitable for grapes production. However, 15.7% were highly suitable, 17.6% were moderately suitable, 28.4% were marginally suitable and 38.3% were not socio-economically suitable for table grapes production in Kabul Province. This research could help decision-makers, growers, and other stakeholders with conducting precise land assessments by identifying the main limiting factors for the production of table grapes management and able to increase land productivity more precisely.Keywords: vineyards, land physical suitability, socio-economic suitability, AHP
Procedia PDF Downloads 17122357 Identification of Classes of Bilinear Time Series Models
Authors: Anthony Usoro
Abstract:
In this paper, two classes of bilinear time series model are obtained under certain conditions from the general bilinear autoregressive moving average model. Bilinear Autoregressive (BAR) and Bilinear Moving Average (BMA) Models have been identified. From the general bilinear model, BAR and BMA models have been proved to exist for q = Q = 0, => j = 0, and p = P = 0, => i = 0 respectively. These models are found useful in modelling most of the economic and financial data.Keywords: autoregressive model, bilinear autoregressive model, bilinear moving average model, moving average model
Procedia PDF Downloads 40922356 Extracting the Failure Criterion to Evaluate the Strength of Cracked Drills under Torque Caused by Drilling
Authors: A. Falsafi, M. Dadkhah, S. Shahidi
Abstract:
The destruction and defeat of drill pipes and drill rigs in oil wells often combined with a combination of shear modulus II and III. In such a situation, the strength and load bearing capacity of the drill are evaluated based on the principles of fracture mechanics and crack growth criteria. In this paper, using the three-dimensional stress equations around the Turkish frontier, the relations of the tense-tense criterion (MTS) are extracted for the loading of the combined II and III modulus. It is shown that in crisp deflection under loading of combination II and III, the level of fracture is characterized by two different angles: the longitudinal angle of deflection θ and the angle of the deflection of the alpha. Based on the relationships obtained from the MTS criterion, the failure criteria, the longitudinal angle of the theta failure and the lateral angle of the failure of the alpha are presented. Also, the role of Poisson's coefficient on these parameters is investigated in these graphs.Keywords: most tangential tension criterion, longitudinal angle of failure, side angle of fracture, drills crack
Procedia PDF Downloads 13322355 Predicting of Hydrate Deposition in Loading and Offloading Flowlines of Marine CNG Systems
Authors: Esam I. Jassim
Abstract:
The main aim of this paper is to demonstrate the prediction of the model capability of predicting the nucleation process, the growth rate, and the deposition potential of second phase particles in gas flowlines. The primary objective of the research is to predict the risk hazards involved in the marine transportation of compressed natural gas. However, the proposed model can be equally used for other applications including production and transportation of natural gas in any high-pressure flow-line. The proposed model employs the following three main components to approach the problem: computational fluid dynamics (CFD) technique is used to configure the flow field; the nucleation model is developed and incorporated in the simulation to predict the incipient hydrate particles size and growth rate; and the deposition of the gas/particle flow is proposed using the concept of the particle deposition velocity. These components are integrated in a comprehended model to locate the hydrate deposition in natural gas flowlines. The present research is prepared to foresee the deposition location of solid particles that could occur in a real application in Compressed Natural Gas loading and offloading. A pipeline with 120 m length and different sizes carried a natural gas is taken in the study. The location of particle deposition formed as a result of restriction is determined based on the procedure mentioned earlier and the effect of water content and downstream pressure is studied. The critical flow speed that prevents such particle to accumulate in the certain pipe length is also addressed.Keywords: hydrate deposition, compressed natural gas, marine transportation, oceanography
Procedia PDF Downloads 49022354 The Evaluation of Substitution of Acacia villosa in Ruminants Ration
Authors: Hadriana Bansi, Elizabeth Wina, Toto Toharmat
Abstract:
Acacia villosa is thornless shrub legume which contents high crude protein. However, the utilization of A. villosa as ruminant feed is limited by its secondary compounds. The aim of this article is to find out the maximum of substitution A. villosa in sheep ration. The nutritional evaluation consisted of in vitro two stages, in vivo, and in vitro gas production trials. The secondary compounds of A. villosa also were analyzed. Evaluating digestibility of increasing level of substitution A. villosa replacing Pennisetum purpureum was using in vitro two stages. The substitution of 30% A. villosa was compared to 100% P. purpureum by in vitro gas production technique and in vivo digestibility. The results of two stages in vitro showed that total phenol, condensed tannin, and non-protein amino acid (NPAA) were high. Substitution 15% A. villosa reached the highest digestibility for both dry matter (DM) and crude protein (CP) which were 67% and 86% respectively, but it was shown that DM and CP digestibility of substitution 30% of A. villosa was still high which were 61.82% and 75-67% respectively. The pattern of gas production showed that first 8 hours total gas production substitution of 30% A. villosa was higher than 100% P. purpureum and declined after 10 hours incubation. In vivo trials showed that substitution of 30% A. villosa significantly increased CP intake, CP digestibility, and nitrogen retention. It can be concluded that substitution A. villosa until 30% still gave the good impact even though it has high secondary compounds.Keywords: Acacia villosa, digestibility, gas production, secondary compounds
Procedia PDF Downloads 16522353 Biofuel Production via Thermal Cracking of Castor Methyl Ester
Authors: Roghaieh Parvizsedghy, Seyed Mojtaba Sadrameli
Abstract:
Diminishing oil reserves, deteriorating health standards because of greenhouse gas emissions and associated environmental impacts have emerged biofuel production. Vegetable oils are proved to be valuable feedstock in these growing industries as they are renewable and potentially inexhaustible sources. Thermal Cracking of vegetable oils (triglycerides) leads to production of biofuels which are similar to fossil fuels in terms of composition but their combustion and physical properties have limits. Acrolein (very poisonous gas) and water production during cracking of triglycerides occurs because of presence of glycerin in their molecular structure. Transesterification of vegetable oil is a method to extract glycerol from triglycerides structure and produce methyl ester. In this study, castor methyl ester was used for thermal cracking in order to survey the efficiency of this method to produce bio-gasoline and bio-diesel. Thus, several experiments were designed by means of central composite method. Statistical studies showed that two reaction parameters, namely cracking temperature and feed flowrate, affect products yield significantly. At the optimized conditions (480 °C and 29 g/h) for maximum bio-gasoline production, 88.6% bio-oil was achieved which was distilled and separated as bio-gasoline (28%) and bio-diesel (48.2%). Bio-gasoline exposed a high octane number and combustion heat. Distillation curve and Reid vapor pressure of bio-gasoline fell in the criteria of standard gasoline (class AA) by ASTM D4814. Bio-diesel was compatible with standard diesel by ASTM D975. Water production was negligible and no evidence of acrolein production was distinguished. Therefore, thermal cracking of castor methyl ester could be used as a method to produce valuable biofuels.Keywords: bio-diesel, bio-gasoline, castor methyl ester, thermal cracking, transesterification
Procedia PDF Downloads 24022352 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations
Authors: Shank Kulkarni, Alireza Tabarraei
Abstract:
The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test
Procedia PDF Downloads 24522351 Simulation: A Tool for Stabilization of Welding Processes in Lean Production Concepts
Authors: Ola Jon Mork, Lars Andre Giske, Emil Bjørlykhaug
Abstract:
Stabilization of critical processes in order to have the right quality of the products, more efficient production and smoother flow is a key issue in lean production. This paper presents how simulation of key welding processes can stabilize complicated welding processes in small scale production, and how simulation can impact the entire production concept seen from the perspective of lean production. First, a field study was made to learn the production processes in the factory, and subsequently the field study was transformed into a value stream map to get insight into each operation, the quality issues, operation times, lead times and flow of materials. Valuable practical knowledge of how the welding operations were done by operators, appropriate tools and jigs, and type of robots that could be used, was collected. All available information was then implemented into a simulation environment for further elaboration and development. Three researchers, the management of the company and skilled operators at the work floor where working on the project over a period of eight months, and a detailed description of the process was made by the researchers. The simulation showed that simulation could solve a number of technical challenges, the robot program can be tuned in off line mode, and the design and testing of the robot cell could be made in the simulator. Further on the design of the product could be optimized for robot welding and the jigs could be designed and tested in simulation environment. This means that a key issue of lean production can be solved; the welding operation will work with almost 100% performance when it is put into real production. Stabilizing of one key process is critical to gain control of the entire value chain, then a Takt Time can be established and the focus can be directed towards the next process in the production which should be stabilized. Results show that industrial parameters like welding time, welding cost and welding quality can be defined on the simulation stage. Further on, this gives valuable information for calculation of the factories business performance, like manufacturing volume and manufacturing efficiency. Industrial impact from simulation is more efficient implementation of lean manufacturing, since the welding process can be stabilized. More research should be done to gain more knowledge about simulation as a tool for implementation of lean, especially where there complex processes.Keywords: simulation, lean, stabilization, welding process
Procedia PDF Downloads 32222350 Improvement of Overall Equipment Effectiveness of Load Haul Dump Machines in Underground Coal Mines
Authors: J. BalaRaju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every organization in the competitive world tends to improve its economy by increasing their production and productivity rates. Unequivocally, the production in Indian underground mines over the years is not satisfactory, due to a variety of reasons. There are manifold of avenues for the betterment of production, and one such approach is through enhanced utilization of mechanized equipment such as Load Haul Dumper (LHD). This is used as loading and hauling purpose in underground mines. In view of the aforementioned facts, this paper delves into identification of the key influencing factors such as LHDs maintenance effectiveness, vehicle condition, operator skill and utilization of the machines on performance of LHDs. An attempt has been made for improvement of performance of the equipment through evaluation of Overall Equipment Effectiveness (OEE). Two different approaches for evaluation of OEE have been adopted and compared under various operating conditions. The use of OEE calculation in terms of percentage availability, performance and quality and the hitherto existing situation of the underground mine production is evaluated. Necessary recommendations are suggested to mining industry on the basis of OEE.Keywords: utilization, maintenance, availability, performance and quality
Procedia PDF Downloads 22222349 OmniDrive Model of a Holonomic Mobile Robot
Authors: Hussein Altartouri
Abstract:
In this paper the kinematic and kinetic models of an omnidirectional holonomic mobile robot is presented. The kinematic and kinetic models form the OmniDrive model. Therefore, a mathematical model for the robot equipped with three- omnidirectional wheels is derived. This model which takes into consideration the kinematics and kinetics of the robot, is developed to state space representation. Relative analysis of the velocities and displacements is used for the kinematics of the robot. Lagrange’s approach is considered in this study for deriving the equation of motion. The drive train and the mechanical assembly only of the Festo Robotino® is considered in this model. Mainly the model is developed for motion control. Furthermore, the model can be used for simulation purposes in different virtual environments not only Robotino® View. Further use of the model is in the mechatronics research fields with the aim of teaching and learning the advanced control theories.Keywords: mobile robot, omni-direction wheel, mathematical model, holonomic mobile robot
Procedia PDF Downloads 61122348 Oxidation of Lignin for Production of Chemicals
Authors: Abayneh Getachew Demesa
Abstract:
Interest in renewable feedstock for the chemical industry has increased considerably over the last decades, mainly due to environmental concerns and foreseeable shortage of fossil raw materials. Lignocellulosic biomass is an abundant source of bio-based raw material that is readily available and can be utilized as an alternative source for chemical production. Lignin accrues in enormous amounts as a by-product of the pulping process in the pulp and paper industry. It is estimated that 70 million tons of lignin are annually processed worldwide from the pulp and paper industry alone. Despite its attractive chemical composition, lignin is still insufficiently exploited and mainly regarded as bio-waste. Therefore, an environmentally benign process that can completely and competitively convert lignin into different value-added chemicals is needed to launch its commercial success on industrial scale. Partial wet oxidation by molecular oxygen has received increased attention as a potential process for production of chemicals from biomass wastes. In this paper, the production of chemicals by oxidation of lignin is investigated. The factors influencing the different types of products formed during the oxidation of lignin and their yields and compositions are discussed.Keywords: biomass, lignin, waste, chemicals
Procedia PDF Downloads 23922347 Linking Milk Price and Production Costs with Greenhouse Gas Emissions of Luxembourgish Dairy Farms
Authors: Rocco Lioy, Tom Dusseldorf, Aline Lehnen, Romain Reding
Abstract:
A study concerning both the rentability and ecological performance of dairy production in Luxembourg was carried out for the years 2017, 2018 and 2019. The data of 100 dairy farms, referring to the Greenhouse gas emissions (ecology) and the profitability (economy) of dairy production, were evaluated, and the average was compared to the corresponding figures of 80 Luxembourgish dairy farms evaluated in the years 2014, 2015 and 2016. The ecological evaluation could confirm that farm efficiency (especially defined as the lowest ratio between used feedstuff and produced milk) is the key driver for significantly reducing the level of emissions in dairy farms. In both farm groups and in the two periods, the efficient farms show almost the same level of emissions per kg ECM (1,17 kg CO2-eq) in comparison with intensive farms (1,13 kg CO2-eq), and at the same time a by far lowest level of emissions related to the production surface (9,9 vs. 13,9 t CO2-eq/ha). Concerning the economic performances, it could be observed that in the years 2017, 2018 and 2019, the intensive farms (we define intensity in the first place in terms of produced milk pro ha) reached a higher profit (incomes minus costs, only consideration for subsidies) than the efficient farms (4,8 vs. 2,6 €-cent/kg ECM), in contradiction with the observation of the years 2014, 2015 and 2015 (1,5 vs. 3,7 €-cent/kg ECM). The most important reason for this divergent behavior was a change in income and cost structure in the considered periods. In the last period (2017, 2018 and 2019), the milk price was considerably higher than in the previous period, and the production costs were lower. This was of advantage for intensive farms, which produce the highest quantity of milk with a high amount of production means. In the period 2014, 2015 and 2016, with lower milk prices but comparable production costs, the advantage was with efficient farms. In conclusion, we expect that in the next future, when especially the production costs will presumably be much higher than in the last years, the profitableness of dairy farming will decrease. In this case, we assume that efficient farms will provide not only an ecologically but also an economically better performance than production-intensive farms. High milk prices and low production costs are no good incentives for carbon-smart farming.Keywords: efficiency, intensity, dairy, emissions, prices, costs
Procedia PDF Downloads 9722346 High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis
Authors: Peerawat Khongkliang, Prawit Kongjan, Tsuyoshi Imai, Poonsuk Prasertsan, Sompong O-Thong
Abstract:
A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency.Keywords: cassava starch processing wastewater, biohydrogen, thermophilic fermentation, microbial electrolysis cell
Procedia PDF Downloads 34522345 Efficacy of Self-Assessment in Written Production among High School Students
Authors: Yoko Suganuma Oi
Abstract:
The purpose of the present study is to find the efficacy of high school student self-assessment of written production. It aimed to explore the following two research questions: 1)How is topic development of their written production improved after student self-assessment and teacher feedback? 2)Does the consistency between student self-assessment and teacher assessment develop after student self-assessment and teacher feedback? The data came from the written production of 82 Japanese high school students aged from 16 to 18 years old, an American English teacher and one Japanese English teacher. Students were asked to write English compositions, about 150 words, for thirty minutes without using dictionaries. It was conducted twice at intervals of two months. Students were supposed to assess their own compositions by themselves. Teachers also assessed students’ compositions using the same assessment sheet. The results showed that both teachers and students assessed the second compositions higher than the first compositions. However, there was not the development of the consistency in coherence.Keywords: feedback, self-assessment, topic development, high school students
Procedia PDF Downloads 50322344 Smart Production Planning: The Case of Aluminium Foundry
Authors: Samira Alvandi
Abstract:
In the context of the circular economy, production planning aims to eliminate waste and emissions and maximize resource efficiency. Historically production planning is challenged through arrays of uncertainty and complexity arising from the interdependence and variability of products, processes, and systems. Manufacturers worldwide are facing new challenges in tackling various environmental issues such as climate change, resource depletion, and land degradation. In managing the inherited complexity and uncertainty and yet maintaining profitability, the manufacturing sector is in need of a holistic framework that supports energy efficiency and carbon emission reduction schemes. The proposed framework addresses the current challenges and integrates simulation modeling with optimization for finding optimal machine-job allocation to maximize throughput and total energy consumption while minimizing lead time. The aluminium refinery facility in western Sydney, Australia, is used as an exemplar to validate the proposed framework.Keywords: smart production planning, simulation-optimisation, energy aware capacity planning, energy intensive industries
Procedia PDF Downloads 7722343 Effect of Farmers Field School on Vegetables Production in District Peshawar Khyber Pakhtunkhwa-Pakistan
Authors: Muhammad Zafarullah Khan, Sumeera Abbasi
Abstract:
The Farmers Field School (FFS) aims at benefiting poor farmers by improving their knowledge of existing agricultural technologies and integrated crop management to become independent and confident in their decision. The study on effect of farmer’s field school on vegetables production before and after FFS implementation in district Peshawar in four selected villages on each crop in 2011 was conducted from 80 farmers. The results were compared by using paired t-test. It was observed that 80% of the respondents were satisfied with FFS approach as there was a significant increase in vegetable production. The seed rate of tomato and cucumber decreased from 0.185kg/kanal to 0.1 kg/ kanal and 0.120kg/kanal to 0.01kg/kanal while production of tomato and cucumber were increased from 8158.75kgs/kanal to 1030.25kgs/kanal and 3230kgs/kanal to 5340kgs/kanal, respectively after the activities of FFS. FFS brought a positive effect on vegetable production and technology adoption improving their income, skills and knowledge ultimately lead farmers towards empowerment. The input cost including seed, crop management, FYM, and weedicides for tomato were reduced by Rs.28, Rs. 3170 and Rs.658 and cucumber reduced by Rs.35, Rs.570 and Rs.430. Only fertilizers cost was increased by Rs. 2200 in case of tomato and 465 in case of cucumber. FFS facilitator and coordinator should be more skilled and practical oriented to facilitate poor farmers. In light of the above study, more FFS should be planned so that the more farmers should be benefited.Keywords: effect, farmer field school, vegetables production, integrated crop management
Procedia PDF Downloads 39522342 A Constitutive Model for Time-Dependent Behavior of Clay
Authors: T. N. Mac, B. Shahbodaghkhan, N. Khalili
Abstract:
A new elastic-viscoplastic (EVP) constitutive model is proposed for the analysis of time-dependent behavior of clay. The proposed model is based on the bounding surface plasticity and the concept of viscoplastic consistency framework to establish continuous transition from plasticity to rate dependent viscoplasticity. Unlike the overstress based models, this model will meet the consistency condition in formulating the constitutive equation for EVP model. The procedure of deriving the constitutive relationship is also presented. Simulation results and comparisons with experimental data are then presented to demonstrate the performance of the model.Keywords: bounding surface, consistency theory, constitutive model, viscosity
Procedia PDF Downloads 49322341 Cleaner Production Options for Fishery Wastes Around Lake Tana-Ethiopia
Authors: Abate Getnet Demisash, Beshatu Taye Hatew, Ababo Geleta Gudisa
Abstract:
As consumption trends of fish are rising in Ethiopia, assessment of the environmental performance of Fisheries becomes vital. Hence, Cleaner Production Assessment was conducted on Lake Tana No.1 Fish Supply Association. This paper focuses on determining the characteristics, quantity and setting up cleaner production option for the site with experimental investigation. The survey analysis showed that illegal waste dumping in Lake Tana is common practice in the area and some of the main reasons raised were they have no option than doing this for discharging fish wastes. Quantifying a fish waste by examination of records at the point of generation resulted in generation rate of 72,822.61 kg per year which is a significant amount of waste and needs management system. The result of the proximate analysis showed high free fat content of about 12.33% and this was a good candidate for the production of biodiesel that has been set as an option for fish waste utilization. Among the different waste management options, waste reduction by product optimization which involves biodiesel production was chosen as a potential method. Laboratory scale experiments were performed to produce renewable energy source from the wastes. The resulting biodiesel was characterized and found to have a density of 0.756kg/L, viscosity 0.24p and 153°C flash points which shows the product has values in compliance with American Society for Testing and Materials (ASTM) standards.Keywords: biodiesel, cleaner production, renewable energy, clean energy, waste to energy
Procedia PDF Downloads 14322340 Optimal Tetra-Allele Cross Designs Including Specific Combining Ability Effects
Authors: Mohd Harun, Cini Varghese, Eldho Varghese, Seema Jaggi
Abstract:
Hybridization crosses find a vital role in breeding experiments to evaluate the combining abilities of individual parental lines or crosses for creation of lines with desirable qualities. There are various ways of obtaining progenies and further studying the combining ability effects of the lines taken in a breeding programme. Some of the most common methods are diallel or two-way cross, triallel or three-way cross, tetra-allele or four-way cross. These techniques help the breeders to improve the quantitative traits which are of economical as well as nutritional importance in crops and animals. Amongst these methods, tetra-allele cross provides extra information in terms of the higher specific combining ability (sca) effects and the hybrids thus produced exhibit individual as well as population buffering mechanism because of the broad genetic base. Most of the common commercial hybrids in corn are either three-way or four-way cross hybrids. Tetra-allele cross came out as the most practical and acceptable scheme for the production of slaughter pigs having fast growth rate, good feed efficiency, and carcass quality. Tetra-allele crosses are mostly used for exploitation of heterosis in case of commercial silkworm production. Experimental designs involving tetra-allele crosses have been studied extensively in literature. Optimality of designs has also been considered as a researchable issue. In practical situations, it is advisable to include sca effects in the model as this information is needed by the breeder to improve economically and nutritionally important quantitative traits. Thus, a model that provides information regarding the specific traits by utilizing sca effects along with general combining ability (gca) effects may help the breeders to deal with the problem of various stresses. In this paper, a model for experimental designs involving tetra-allele crosses that incorporates both gca and sca has been defined. Optimality aspects of such designs have been discussed incorporating sca effects in the model. Orthogonality conditions have been derived for block designs ensuring estimation of contrasts among the gca effects, after eliminating the nuisance factors, independently from sca effects. User friendly SAS macro and web solution (webPTC) have been developed for the generation and analysis of such designs.Keywords: general combining ability, optimality, specific combining ability, tetra-allele cross, webPTC
Procedia PDF Downloads 13722339 Evaluating the Effects of Weather and Climate Change to Risks in Crop Production
Authors: Marcus Bellett-Travers
Abstract:
Different modelling approaches have been used to determine or predict yield of crops in different geographies. Central to the methodologies are the presumption that it is the absolute yield of the crop in a given location that is of the highest priority to those requiring information on crop productivity. Most individuals, companies and organisations within the agri-food sector need to be able to balance the supply of crops with the demand for them. Different modelling approaches have been used to determine and predict crop yield. The growing need to ensure certainty of supply and stability of prices requires an approach that describes the risk in producing a crop. A review of current methodologies to evaluate the risk to food production from changes in the weather and climate is presented.Keywords: crop production, risk, climate, modelling
Procedia PDF Downloads 38622338 Experimental Assessment of Artificial Flavors Production
Authors: M. Unis, S. Turky, A. Elalem, A. Meshrghi
Abstract:
The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium.Keywords: artificial flavors, esterification, chemical equilibria, isothermal
Procedia PDF Downloads 33522337 Pollination Effectiveness of Native Bee Species in Quality Seed Production of Berseem
Authors: Awais Ahmad, Mudssar Ali
Abstract:
Berseem is the major fodder crop grown in Pakistan and is highly preferred by cattle farmers due to its multicut nature and nutritious value. The quality seed production in berseem is largely dependent upon the activities of insect pollinators, particularly bees. In order to determine the effectiveness of native bee species in quality seed production of berseem, an experiment was conducted in the research field of MNS-University of Agriculture, Multan, Pakistan. The pollinator community of berseem was composed of four bees, three syrphid fly, and two butterfly species. Pesudapis sp. was the most abundant insect visitor, followed by Apis mellifera and A. dorsata. The visitation rate of A. mellifera was found highest, followed by Pesudapis sp. and A. dorsata. Moreover, single-visit efficacy in terms of seed per head and 1000 seed weight proved A. mellifera and Pesudapis sp as the most effective pollinators. Conserving these bee species may lead to sustainable berseem seed production in Pakistan.Keywords: honey bees, syrphid fly, visitation rate, single visit
Procedia PDF Downloads 12822336 Rescheduling of Manufacturing Flow Shop under Different Types of Disruption
Authors: M. Ndeley
Abstract:
Now our days, Almost all manufacturing facilities need to use production planning and scheduling systems to increase productivity and to reduce production costs. Real-life production operations are subject to a large number of unexpected disruptions that may invalidate the original schedules. In these cases, rescheduling is essential to minimize the impact on the performance of the system. In this work we consider flow shop layouts that have seldom been studied in the rescheduling literature. We generate and employ three types of disruption that interrupt the original schedules simultaneously. We develop rescheduling algorithms to finally accomplish the twofold objective of establishing a standard framework on the one hand; and proposing rescheduling methods that seek a good trade-off between schedule quality and stability on the other.Keywords: flow shop scheduling, uncertainty, rescheduling, stability
Procedia PDF Downloads 44122335 Electricity Load Modeling: An Application to Italian Market
Authors: Giovanni Masala, Stefania Marica
Abstract:
Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression
Procedia PDF Downloads 39822334 Producing AI Innovation and Its Value Implications
Authors: Ali Ahmadi, Ambrus Kecskes, Roni Michaely, Phuong-Anh Nguyen
Abstract:
We quantify the proliferation of artificial intelligence innovation since 1990. Then, studying publicly traded firms, we find that they direct their production of innovation toward AI, motivated by their own and their customers, labor's exposure to AI technology. We instrument actual AI production by interacting with exogenously measured innovation capacity and AI exposure. We find that consistently during the past three decades, producing AI transitorily increases profitability, durably decreases risk (both systematic and idiosyncratic), and increases a firm's future stock returns. We can empirically distinguish the production of AI innovation from AI adoption, automation, and other potential confounds. The results suggest that AI innovation is a firm value increase that is underestimated by investors.Keywords: artificial intelligence, innovation, technology, labor, firm value, corporate investment, asset pricing
Procedia PDF Downloads 1722333 In Vitro Digestibility of Grains and Straw of Seventeen Ecotypes of Bitter Vetch (Vicia ervilia) in the North of Morocco
Authors: Boukrouh Soumaya, Cabaraux Jean-François, Avril Claire, Noutfia Ali, Chentouf Mouad
Abstract:
The introduction of marginal leguminous forage species in the diet of ruminants are of great importance. Bitter vetch is a good source of proteins, highly resistant against drought and poor soil conditions. Accordingly; two years field trials (2018/2019 and 2019-2020) were conducted to determine the digestibility of straw and grains of 17 promising bitter vetch ecotypes(Vicia ervilia) in the north of Morocco. In vitro dry and organic matter digestibility, gas production, and kinetics of fermentation of grains and straw were evaluated using gas production technique, pepsin-cellulase enzymatic digestibility of DM (CDDM)and OM (CDOM), as well as protease enzymatic CP degradation (CPD) and in vitro true digestibility, were performed using DAISYII Incubator. In vitro digestibility was performed using gas production method of (Menke et al., 1979) improved by Menke and Steingass (1988). Samples were incubated in glass syringes that contained rumen fluid and incubation solution that conserved in water bath in 39°C during 72 hours. Gas production was recorded after 2, 4, 8, 12, 24, 48, and 72 hours. Studied digestibility parameters were dry and organic matter digestibility, microbial biomass production, partitioning factor, and volatile fatty acids. Enzymatic dry matter digestibility was different (p < 0.05) among grains and straw for all ecotypes. It varied from 804.1 to 957.7 g/kg DM and 270.4 to 412.3 g/kg DM for grains and straw, respectively. Metabolizable energy varied between 11.7 to 14.3 MJ/kg DM and 2.6 to 5.0 MJ/kg DM for grains and straw, respectively. Potential gas production (A), the rate constants (c and d), and lag times of grains and straws from different bitter vetch ecotypes were different (p > 0.05). The results emphasized that in any evaluation of bitter vetch ecotypes, where straw of this legume seed is used as an animal feed, not only seed yield but also yield and quality of straw should be taken into consideration, particularly in areas where straw from this legume is considered as an important feedstuff for ruminants. Enzymatic digestibility was lower than in vitro digestibility by gaz production and by the DAISYII method because rumen fluid contains bacteria than increase digestibility. There was no difference between in vitro digestibility by gaz production and the DAISY II method. The DAISY II method can be used to increase labor efficiency in the in vitro DM digestibility analysis if gaz production is not necessary for analysis.Keywords: bitter vetch, grains, straw, ecotype, in vitro digestibility, gaz production, enzymatic digestibility
Procedia PDF Downloads 17822332 Biofuel Potential and Invasive Species Control: Exploring Prosopis Juliflora Pod Mash for Sustainable Energy Production
Authors: Mebrahtu Haile
Abstract:
Fuels obtained from renewable resources have garnered significant enthusiasm in recent decades due to concerns about fossil fuel depletion and climate change. This study aimed to investigate the potential of Prosopis juliflora pods mash for bio-ethanol production and its hydrolysis solid waste for solid fuel. Various parameters, such as acid concentration, hydrolysis times, fermentation times, fermentation temperature, and pH, were evaluated for their impact on bio-ethanol production using Saccharomyces cerevisiae yeast. The results showed that increasing acid concentration (up to 1 molar H₂SO₄) led to an increase in sugar content, reaching a maximum of 96.13%v/v. Optimal conditions for bio-ethanol production were found at 1 molar H₂SO₄ concentration (4.2%v/v), 48 hours fermentation time (5.1%v/v), 20 minutes hydrolysis time (5.57%v/v), 30°C fermentation temperature (5.57%v/v), and pH 5 (6.01%v/v), resulting in a maximum bio-ethanol yield of 6.01%v/v. The solid waste remaining after bio-ethanol production exhibited potential for use as a solid fuel, with a calorific value of 18.22 MJ/kg. These findings demonstrate the promising potential of Prosopis juliflora pods mash for bio-ethanol production and suggest a viable solution for addressing disposal challenges associated with solid waste, contributing to the exploration of renewable fuel sources in the face of fossil fuel depletion and climate change.Keywords: prosopis juliflora, pods mash, invasive species, bio-ethanol, fermentation, Saccharomyces cerevisiae, solid fuel
Procedia PDF Downloads 3622331 Comparing the Trophic Structure of the Moroccan Mediterranean Sea with the Moroccan Atlantic Coast Using Ecopath Model
Authors: Salma Aboussalam, Karima Khalil, Khalid Elkalay
Abstract:
To describe the structure, functioning, and state of the Moroccan Mediterranean Sea ecosystem, an Ecopath mass balance model has been applied. The model is based on 31 functional groups, containing 21 fishes, 7 invertebrates, 2 primary producers, and one dead group (detritus), which are considered in this work to explore the trophic interaction. The system's average trophic transfer efficiency was 23%. Both the total primary production and total respiration were calculated to be >1, suggesting that more energy is produced than respired in the system. The structure of our system is based on high respiration and consumption flows. Indicators of ecosystem stability and development showed low values of the Finn cycle index (13.97), system omnivory index (0.18), and average Finn path length (3.09), suggesting that our system is disturbed and has a more linear than web-like trophic structure. The keystone index and mixed trophic impact analysis indicated that other demersal invertebrates, zooplankton, and cephalopods had a tremendous impact on other groups and were recognized as keystone species.Keywords: Ecopath, food web, trophic flux, Moroccan Mediterranean Sea
Procedia PDF Downloads 9122330 Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction
Authors: Jitka Hroudova, Jiri Zach
Abstract:
The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction
Procedia PDF Downloads 33522329 Analytic Hierarchy Process Method for Supplier Selection Considering Green Logistics: Case Study of Aluminum Production Sector
Authors: H. Erbiyik, A. Bal, M. Sirakaya, Ö. Yesildal, E. Yolcu
Abstract:
The emergence of many environmental issues began with the Industrial Revolution. The depletion of natural resources and emerging environmental challenges over time requires enterprises and managers to take into consideration environmental factors while managing business. If we take notice of these causes; the design and implementation of environmentally friendly green purchasing, production and waste management systems become very important at green logistics systems. Companies can adopt green supply chain with the awareness of these facts. The concept of green supply chain constitutes from green purchasing, green production, green logistics, waste management and reverse logistics. In this study, we wanted to identify the concept of green supply chain and why green supply chain should be applied. In the practice part of the study an analytic hierarchy process (AHP) study is conducted on an aluminum production company to evaluate suppliers.Keywords: aluminum sector, analytic hierarchy process, decision making, green logistics
Procedia PDF Downloads 356