Search results for: plastic bottle
358 The Development of Packaging to Create Additional Value for Organic Rice Products of Uttaradit Province, Thailand
Authors: Juntima Pokkrong
Abstract:
The objectives of the study were to develop packaging made from rice straws left after the harvest in order to create additional value for organic rice products of Uttaradit Province and to demonstrate the technology of producing straw packaging to the community. The population was promoters of organic rice distributors, governmental organizations, consumers, and three groups of organic rice producers which are the Agriculturist Group of Khorrum Sub-district, Pichai District, Uttaradit Province; the Agriculturist Group of Wangdin Sub-district, Muang District, Uttaradit Province; and the Agriculturist Group of Wangkapi Sub-district, Muang District, Uttaradit Province. The data were collected via group discussions, and two types of questionnaires. The data acquired were then analyzed using descriptive statistic for percentage, mean, standard deviation, and content analysis. It has been found that primary packaging for one kilogram of rice requires vacuumed plastic bags made from thermoplastic or resin because they are able to preserve the quality of rice for a long time, and they are also very cheap. For secondary packaging, the making of straw paper was studied and applied. Straw paper can be used for various purposes, and in this study, it was used to create the secondary packaging models in compliance with packaging preferences acquired from the questionnaires. The models were surveyed among the population for their opinion using satisfaction questionnaires, and the result was overall highly satisfactory.Keywords: environmentally friendly, organic rice, packaging, straw paper
Procedia PDF Downloads 245357 Investigation of Delamination Process in Adhesively Bonded Hardwood Elements under Changing Environmental Conditions
Authors: M. M. Hassani, S. Ammann, F. K. Wittel, P. Niemz, H. J. Herrmann
Abstract:
Application of engineered wood, especially in the form of glued-laminated timbers has increased significantly. Recent progress in plywood made of high strength and high stiffness hardwoods, like European beech, gives designers in general more freedom by increased dimensional stability and load-bearing capacity. However, the strong hygric dependence of basically all mechanical properties renders many innovative ideas futile. The tendency of hardwood for higher moisture sorption and swelling coefficients lead to significant residual stresses in glued-laminated configurations, cross-laminated patterns in particular. These stress fields cause initiation and evolution of cracks in the bond-lines resulting in: interfacial de-bonding, loss of structural integrity, and reduction of load-carrying capacity. Subsequently, delamination of glued-laminated timbers made of hardwood elements can be considered as the dominant failure mechanism in such composite elements. In addition, long-term creep and mechano-sorption under changing environmental conditions lead to loss of stiffness and can amplify delamination growth over the lifetime of a structure even after decades. In this study we investigate the delamination process of adhesively bonded hardwood (European beech) elements subjected to changing climatic conditions. To gain further insight into the long-term performance of adhesively bonded elements during the design phase of new products, the development and verification of an authentic moisture-dependent constitutive model for various species is of great significance. Since up to now, a comprehensive moisture-dependent rheological model comprising all possibly emerging deformation mechanisms was missing, a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive material model for wood, with all material constants being defined as a function of moisture content, was developed. Apart from the solid wood adherends, adhesive layer also plays a crucial role in the generation and distribution of the interfacial stresses. Adhesive substance can be treated as a continuum layer constructed from finite elements, represented as a homogeneous and isotropic material. To obtain a realistic assessment on the mechanical performance of the adhesive layer and a detailed look at the interfacial stress distributions, a generic constitutive model including all potentially activated deformation modes, namely elastic, plastic, and visco-elastic creep was developed. We focused our studies on the three most common adhesive systems for structural timber engineering: one-component polyurethane adhesive (PUR), melamine-urea-formaldehyde (MUF), and phenol-resorcinol-formaldehyde (PRF). The corresponding numerical integration approaches, with additive decomposition of the total strain are implemented within the ABAQUS FEM environment by means of user subroutine UMAT. To predict the true stress state, we perform a history dependent sequential moisture-stress analysis using the developed material models for both wood substrate and adhesive layer. Prediction of the delamination process is founded on the fracture mechanical properties of the adhesive bond-line, measured under different levels of moisture content and application of the cohesive interface elements. Finally, we compare the numerical predictions with the experimental observations of de-bonding in glued-laminated samples under changing environmental conditions.Keywords: engineered wood, adhesive, material model, FEM analysis, fracture mechanics, delamination
Procedia PDF Downloads 436356 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion
Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri
Abstract:
In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price, and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of the sandwich panel on the maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.Keywords: finite element, honeycomb FRP sandwich panel, torsion, civil engineering
Procedia PDF Downloads 418355 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect
Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary
Abstract:
Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.Keywords: rapid prototyping, selective laser sintering, cranial defect, dimensional error
Procedia PDF Downloads 325354 Health Care Waste Management Practices in Liberia: An Investigative Case Study
Authors: V. Emery David Jr., J. Wenchao, D. Mmereki, Y. John, F. Heriniaina
Abstract:
Healthcare waste management continues to present an array of challenges for developing countries, and Liberia is of no exception. There is insufficient information available regarding the generation, handling, and disposal of health care waste. This face serves as an impediment to healthcare management schemes. The specific objective of this study is to present an evaluation of the current health care management practices in Liberia. It also presented procedures, techniques used, methods of handling, transportation, and disposal methods of wastes as well as the quantity and composition of health care waste. This study was conducted as an investigative case study, covering three different health care facilities; a hospital, a health center, and a clinic in Monrovia, Montserrado County. The average waste generation was found to be 0-7kg per day at the clinic and health center and 8-15kg per/day at the hospital. The composition of the waste includes hazardous and non-hazardous waste i.e. plastic, papers, sharps, and pathological elements etc. Nevertheless, the investigation showed that the healthcare waste generated by the surveyed healthcare facilities were not properly handled because of insufficient guidelines for separate collection, and classification, and adequate methods for storage and proper disposal of generated wastes. This therefore indicates that there is a need for improvement within the healthcare waste management system to improve the existing situation.Keywords: disposal, healthcare waste, management, Montserrado County, Monrovia
Procedia PDF Downloads 345353 Numerical Homogenization of Nacre
Authors: M. Arunachalam, M. Pandey
Abstract:
Nacre, a biological material that forms the inner-layer of sea shells can achieve high toughness and strength by way of staggered arrangement of strong tablets with soft and weak organic interface. Under applied loads the tablets slide over the adjacent tablets, thus generating inelastic deformation and toughness on macroscopic scale. A two dimensional finite element based homogenization methodology is adopted for obtaining the effective material properties of Nacre using a representative volume element (RVE) at finite deformations. In this work, the material behaviour for tablet and interface are assumed to be Isotropic elastic and Isotropic elastic-perfectly plastic with strain softening respectively. Numerical experiments such as uniaxial tension test along X, Y directions and simple shear test are performed on the RVE with uniform displacement and periodic constraints applied at the RVE boundaries to obtain the anisotropic homogenized response and maximum local stresses within each constituents of Nacre. Homogenized material model is then tested for macroscopic structure under three point bending condition and the results obtained are comparable with the results obtained for detailed microstructure based structure, thus homogenization provides a bridge between macroscopic scale and microscopic scale and homogenized material properties obtained from microstructural (RVE) analysis could be used in large scale structural analysis.Keywords: finite element, homogenization, inelastic deformation, staggered arrangement
Procedia PDF Downloads 318352 Fiber Optic Asparagine Biosensor for Fruit Juices by Co-Immobilization of L-Asparaginase and Phenol Red
Authors: Mandeep Kataria, Ritu Narula, Navneet Kaur
Abstract:
Asparagine is vital amino acid which is required for the development of brain and it regulates the equilibrium of central nervous system. Asparagine is the chief amino acid that forms acrylamide in baked food by reacting with reducing sugars at high temperature ( Millard Reaction i.e. amino acids and sugars give new flavors at high temperature). It can also be a parameter of freshness in fruit juices because on storage of juices at 37°C caused an 87% loss in the total free amino acids and major decrease was recorded in asparagine contents. With this significance of monitoring asparagine, in the present work a biosensor for determining asparagine in fruit juices is developed. For the construction of biosensor L-asparaginase enzyme (0.5 IU) was co-immobilized with phenol red on TEOS chitosan sol-gel plastic disc and fixed on the fiber optic tip. Tip was immersed in a cell having 5ml of substrate and absorption was noted at response time of 5 min with 10-1 - 10-10 M concentrations of asparagine at 538 nm. L-asparaginase was extracted and from Solanum nigrum Asparagine biosensor was applied fruit juices on the monitoring asparagine contents. L-asparagine concentration found to be present in fruit juices like Guava Juice, Apple Juice, Mango Juice, Litchi juice, Strawberry juice, Pineapple juice Lemon juice, and Orange juice. Hence the developed biosensor has commercial aspects in quality insurance of fruit juices.Keywords: fiber optic biosensor, chitosan, teos, l-asparaginase
Procedia PDF Downloads 289351 Effects of Interfacial Modification Techniques on the Mechanical Properties of Natural Particle Based Polymer Composites
Authors: Bahar Basturk, Secil Celik Erbas, Sevket Can Sarikaya
Abstract:
Composites combining the particulates and polymer components have attracted great interest in various application areas such as packaging, furniture, electronics and automotive industries. For strengthening the plastic matrices, the utilization of natural fillers instead of traditional reinforcement materials has received increased attention. The properties of natural filler based polymer composites (NFPC) may be improved by applying proper surface modification techniques to the powder phase of the structures. In this study, acorn powder-epoxy and pine corn powder-epoxy composites containing up to 45% weight percent particulates were prepared by casting method. Alkali treatment and acetylation techniques were carried out to the natural particulates for investigating their influences under mechanical forces. The effects of filler type and content on the tensile properties of the composites were compared with neat epoxy. According to the quasi-static tensile tests, the pine cone based composites showed slightly higher rigidity and strength properties compared to the acorn reinforced samples. Furthermore, the structures independent of powder type and surface modification technique, showed higher tensile properties with increasing the particle content.Keywords: natural fillers, polymer composites, surface modifications, tensile properties
Procedia PDF Downloads 468350 The Influence of Shear Wall Position on Seismic Performance in Buildings
Authors: Akram Khelaifia, Nesreddine Djafar Henni
Abstract:
Reinforced concrete shear walls are essential components in protecting buildings from seismic forces by providing both strength and stiffness. This study focuses on optimizing the placement of shear walls in a high seismic zone. Through nonlinear analyses conducted on an eight-story building, various scenarios of shear wall positions are investigated to evaluate their impact on seismic performance. Employing a performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria related to inter-story drift ratio and damage levels. The findings emphasize the importance of concentrating shear walls in the central area of the building during the design phase. This strategic placement proves more effective compared to peripheral distributions, resulting in reduced inter-story drift and mitigated potential damage during seismic events. Additionally, the research explores the use of shear walls that completely infill the frame, forming compound shapes like Box configurations. It is discovered that incorporating such complete shear walls significantly enhances the structure's reliability concerning inter-story drift. Conversely, the absence of complete shear walls within the frame leads to reduced stiffness and the potential deterioration of short beams.Keywords: performance level, pushover analysis, shear wall, plastic hinge, nonlinear analyses
Procedia PDF Downloads 53349 3D Finite Element Analysis for Mechanics of Soil-Tool Interaction
Authors: A. Armin, R. Fotouhi, W. Szyszkowski
Abstract:
This paper is part of a study to develop robots for farming. As such power requirement to operate equipment attach to such robots become an important factor. Soil-tool interaction play major role in power consumption, thus predicting accurately the forces which act on the blade during the farming is prime importance for optimal designing of farm equipment. In this paper a finite element investigation for tillage tools and soil interaction is described by using an inelastic constitutive material law for agriculture application. A 3-dimentional (3D) nonlinear finite element analysis (FEA) is developed to examine behavior of a blade with different rake angles moving in a block of soil, and to estimate the blade force. The soil model considered is an elastic-plastic with non-associated Drucker-Prager material model. Special use of contact elements are employed to consider connection between soil-blade and soil-soil surfaces. The FEA results are compared with experiment ones, which show good agreement in accurately predicting draft forces developed on the blade when it moves through the soil. Also, a very good correlation was obtained between FEA results and analytical results from classical soil mechanics theories for straight blades. These comparisons verified the FEA model developed. For analyzing complicated soil-tool interactions and for optimum design of blades, this method will be useful.Keywords: finite element analysis, soil-blade contact modeling, blade force, mechanical engineering
Procedia PDF Downloads 296348 Cosmetic Surgery on the Rise: The Impact of Remote Communication
Authors: Bruno Di Pace, Roxanne H. Padley
Abstract:
Aims: The recent increase in remote video interaction has increased the number of requests for teleconsultations with plastic surgeons in private practice (70% in the UK and 64% in the USA). This study investigated the motivations for such an increase and the underlying psychological impact on patients. Method: An anonymous web-based poll of 8 questions was designed and distributed to patients seeking cosmetic surgery through social networks in both Italy and the UK. The questions gathered responses regarding 1. Reasons for pursuing cosmetic surgery; 2. The effects of delays caused by the SARS-COV-2 pandemic; 3. The effects on mood; 4. The influence of video conferencing on body-image perception. Results: 85 respondents completed the online poll. Overall, 68% of respondents stated that seeing themselves more frequently online had influenced their decision to seek cosmetic surgery. The types of surgeries indicated were predominantly to the upper body and face (82%). Delays and access to surgeons during the pandemic were perceived as negatively impacting patients' moods (95%). Body-image perception and self-esteem were lower than in the pre-pandemic, particularly during lockdown (72%). Patients were more inclined to undergo cosmetic surgery during the pandemic, both due to the wish to improve their “lockdown face” for video conferencing (77%) and also due to the benefits of home recovery while in smart working (58%). Conclusions: Overall, findings suggest that video conferencing has led to a significant increase in requests for cosmetic surgery and the so-called “Zoom Boom” effect.Keywords: cosmetic surgery, remote communication, telehealth, zoom boom
Procedia PDF Downloads 179347 The Arts in Medicine and Health: A Necessity for Evidence-Based Health Systems
Authors: Alan S. Weber
Abstract:
This contribution reviews the current biomedical and qualitative arts research on arts-in-health interventions to improve both individual and population health outcomes. Arts therapies–for example, music therapy with roots in Aristoxenus’s Ἁρμονικὰ στοιχεῖα and the Pythagorean sect–have long been employed in therapeutic contexts. However, the 20th century witnessed the increasing use of the visual and plastic arts (drawing, painting, sculpting), performing arts (drama and dance), and other expressive arts modalities into occupational therapy, well-being medicine, and psychological and psychiatric counselling, diagnosis, and treatment. A significant body of peer-reviewed evidence in the medical and neurological sciences on the role of arts-in-health has developed, and specifically, research on music and art therapy has led to their inclusion within the current biomedical paradigm of evidence-based practice. The arts cannot only aid in public and population health promotion (promoting healthy behaviors and lifestyles, preventing disease onset) but also in addressing psychological issues (regulation of emotion; stress, anxiety, and depression reduction), behavioural issues (basic life skills, coping), and physiological response (immune system function, hormonal regulation, homeostatis). Working as a cross-disciplinary researcher in the arts in an American medical college, the author has developed several successful arts-in-health programs at the national and international level.Keywords: arts-in-health, evidence based medicine, arts for health, expressive arts therapies
Procedia PDF Downloads 70346 A Study of Electric Generation Characteristics for Thin-Film Piezoelectric PbZrTiO₃ Ceramic Plate during the Static and Cyclic Loading Conditions
Authors: Tsukasa Ogawa, Mitsuhiro Okayasu
Abstract:
To examine the generation properties of electric power for piezoelectric (PbZrTiO3) ceramic plates, the electric-power generation characteristics were examined experimentally and numerically during cyclic bending under various loading fixtures with different contact condition, i.e., point and area contact. In the low applied loading condition between 10 and 50 N, increasing the load-contact area on the piezoelectric ceramic led to a nonlinear decrease in the generated voltage. Decreasing contact area, including the point contact, basically enhanced the generated voltage, although the voltage saturated during loading when the contact area is less than ϕ5 mm, which was attributed to the high strain status, resulting in the material failure, i.e., high stress concentration. In this case, severe plastic deformation and the domain switching were dominated failure modes in the ceramic. From this approach, it is clear that the applied load became more larger (50 ~100 N), larger contact area (ϕ10 ~ ϕ20 mm) became advantageous for power generation. Based upon this cyclic loading was carried out to investigate the fatigue characteristics of the piezoelectric ceramic late. For all contact conditions, electric voltage dropped in the beginning of the cyclic loading, although the higher electric generation was stable in the further cyclic loading for the contact area of ϕ10 ~ ϕ20 mm. In constant, further decrement of electric generation occurred for the point contact condition, and the low electric voltage was generated for the larger contact condition.Keywords: electric power generation, piezoelectric ceramic, lead zirconate titanate ceramic, loading conditions
Procedia PDF Downloads 168345 Fabrication of Textile-Based Radio Frequency Metasurfaces
Authors: Adria Kajenski, Guinevere Strack, Edward Kingsley, Shahriar Khushrushahi, Alkim Akyurtlu
Abstract:
Radio Frequency (RF) metasurfaces are arrangements of subwavelength elements interacting with electromagnetic radiation. These arrangements affect polarization state, amplitude, and phase of impinged radio waves; for example, metasurface designs are used to produce functional passband and stopband filters. Recent advances in additive manufacturing techniques have enabled the low-cost, rapid fabrication of ultra-thin metasurface elements on flexible substrates such as plastic films, paper, and textiles. Furthermore, scalable manufacturing processes promote the integration of fabric-based RF metasurfaces into the market of sensors and devices within the Internet of Things (IoT). The design and fabrication of metasurfaces on textiles require a multidisciplinary team with expertise in i) textile and materials science, ii) metasurface design and simulation, and iii) metasurface fabrication and testing. In this presentation, we will discuss RF metasurfaces on fabric with an emphasis on how the materials, including fabric and inks, along with fabrication techniques, affect the RF performance. We printed metasurfaces using a direct-write approach onto various woven and non-woven fabrics, as well as on fabrics coated with either thermoplastic or thermoset coatings. Our team also performed a range of tests on the printed structures, including different inks and their curing parameters, wash durability, abrasion resistance, and RF performance over time.Keywords: electronic textiles, metasurface, printed electronics, flexible
Procedia PDF Downloads 195344 A Study on the Failure Modes of Steel Moment Frame in Post-Earthquake Fire Using Coupled Mechanical-Thermal Analysis
Authors: Ehsan Asgari, Meisam Afazeli, Nezhla Attarchian
Abstract:
Post-earthquake fire is considered as a major threat in seismic areas. After an earthquake, fire is possible in structures. In this research, the effect of post-earthquake fire on steel moment frames with and without fireproofing coating is investigated. For this purpose, finite element method is employed. For the verification of finite element results, the results of an experimental study carried out by previous researchers are used, and the predicted FE results are compared with the test results, and good agreement is observed. After ensuring the accuracy of the predictions of finite element models, the effect of post-earthquake fire on the frames is investigated taking into account the parameters including the presence or absence of fire protection, frame design assumptions, earthquake type and different fire scenario. Ordinary fire and post-earthquake fire effect on the frames is also studied. The plastic hinges induced by earthquake in the structure are determined in the beam to the column connection and in panel zone. These areas should be accurately considered when providing fireproofing coatings. The results of the study show that the occurrence of fire beside corner columns is the most damaging scenario that results in progressive collapse of structure. It was also concluded that the behavior of structure in fire after a strong ground motion is significantly different from that in a normal fire.Keywords: post earthquake fire, moment frame, finite element simulation, coupled temperature-displacement analysis, fire scenario
Procedia PDF Downloads 154343 Effect of Molybdenum Addition to Aluminum Grain Refined by Titanium Plus Boron on Its Grain Size and Mechanical Characteristics in the Cast and After Pressing by the Equal Channel Angular Pressing Conditions
Authors: A. I. O. Zaid, A. M. Attieh, S. M. A. Al Qawabah
Abstract:
Aluminum and its alloys solidify in columnar structure with large grain size which tends to reduce their mechanical strength and surface quality. They are, therefore, grain refined by addition of either titanium or titanium plus boron to their melt before solidification. Equal channel angular pressing, ECAP, process is a recent forming method for producing heavy plastic deformation in materials. In this paper, the effect of molybdenum addition to aluminum grain refined by Ti+B on its metallurgical and mechanical characteristics are investigated in the as cast condition and after pressing by the ECAP process. It was found that addition of Mo or Ti+B alone or together to aluminum resulted in grain refining of its microstructure in the as cast condition, as the average grain size was reduced from 139 micron to 46 micron when Mo and Ti+B are added together. Pressing by the ECAP process resulted in further refinement of the microstructure where 32 micron of average grain size was achieved in Al and the Al-Mo microalloy. Regarding the mechanical strength, addition of Mo or Ti+B alone to Al resulted in deterioration of its mechanical behavior but resulted in enhancement of its mechanical behavior when added together, increase of 10% in flow stress was achieved at 20% strain. However, pressing by ECAP addition of Mo or Ti+B alone to Al resulted in enhancement of its mechanical strength but reduced its strength when added together.Keywords: ECAP, aluminum, cast, mechanical characteristics, Mo grain refiner
Procedia PDF Downloads 472342 Co-Gasification Process for Green and Blue Hydrogen Production: Innovative Process Development, Economic Analysis, and Exergy Assessment
Authors: Yousaf Ayub
Abstract:
A co-gasification process, which involves the utilization of both biomass and plastic waste, has been developed to enable the production of blue and green hydrogen. To support this endeavor, an Aspen Plus simulation model has been meticulously created, and sustainability analysis is being conducted, focusing on economic viability, energy efficiency, advanced exergy considerations, and exergoeconomics evaluations. In terms of economic analysis, the process has demonstrated strong economic sustainability, as evidenced by an internal rate of return (IRR) of 8% at a process efficiency level of 70%. At present, the process has the potential to generate approximately 1100 kWh of electric power, with any excess electricity, beyond meeting the process requirements, capable of being harnessed for green hydrogen production via an alkaline electrolysis cell (AEC). This surplus electricity translates to a potential daily hydrogen production of around 200 kg. The exergy analysis of the model highlights that the gasifier component exhibits the lowest exergy efficiency, resulting in the highest energy losses, amounting to approximately 40%. Additionally, advanced exergy analysis findings pinpoint the gasifier as the primary source of exergy destruction, totaling around 9000 kW, with associated exergoeconomics costs amounting to 6500 $/h. Consequently, improving the gasifier's performance is a critical focal point for enhancing the overall sustainability of the process, encompassing energy, exergy, and economic considerations.Keywords: blue hydrogen, green hydrogen, co-gasification, waste valorization, exergy analysis
Procedia PDF Downloads 66341 Immediate and Long-Term Effect of the Sawdust Usage on Shear Strength of the Clayey Silt Soil
Authors: Dogan Cetin, Omar Hamdi Jasim
Abstract:
Using some additives is very common method to improve the soil properties such as shear strength, bearing capacity; and to reduce the settlement and lateral deformation. Soil reinforcement with natural materials is an attractive method to improve the soil properties because of their low cost. However, the studies conducted by using natural additive are very limited. This paper presents the results of an investigation on the immediate and long-term effects of the sawdust on the shear strength behavior of a clayey silt soil obtained in Arnavutkoy in Istanbul with sawdust. Firstly, compaction tests were conducted to be able to optimum moisture content for every percentage of sawdust. The samples were obtained from compacted soil at optimum moisture content. UU Triaxial Tests were conducted to evaluate the response of randomly distributed sawdust on the strength of low plasticity clayey silt soil. The specimens were tested with 1%, 2% and 3% content of sawdust. It was found that the undrained shear strength of clay soil with 1%, 2% and 3% sawdust were increased respectively 4.65%, 27.9% and 39.5% higher than the soil without additive. At 5%, shear strength of clay soil decreased by 3.8%. After 90 days cure period, the shear strength of the soil with 1%, 2%, 3% and %5 increased respectively 251%, 302%, 260% and 153%. It can be said that the effect of the sawdust usage has a remarkable effect on the undrained shear strength of the soil. Besides the increasing undrained shear strength, it was also found that the sawdust decreases the liquid limit, plastic limit and plasticity index by 5.5%, 2.9 and 10.9% respectively.Keywords: compaction test, sawdust, shear strength, UU Triaxial Test
Procedia PDF Downloads 354340 Preliminary Conceptions of 3D Prototyping Model to Experimental Investigation in Hypersonic Shock Tunnels
Authors: Thiago Victor Cordeiro Marcos, Joao Felipe de Araujo Martos, Ronaldo de Lima Cardoso, David Romanelli Pinto, Paulo Gilberto de Paula Toro, Israel da Silveira Rego, Antonio Carlos de Oliveira
Abstract:
Currently, the use of 3D rapid prototyping, also known as 3D printing, has been investigated by some universities around the world as an innovative technique, fast, flexible and cheap for a direct plastic models manufacturing that are lighter and with complex geometries to be tested for hypersonic shock tunnel. Initially, the purpose is integrated prototyped parts with metal models that actually are manufactured through of the conventional machining and hereafter replace them with completely prototyped models. The mechanical design models to be tested in hypersonic shock tunnel are based on conventional manufacturing processes, therefore are limited forms and standard geometries. The use of 3D rapid prototyping offers a range of options that enables geometries innovation and ways to be used for the design new models. The conception and project of a prototyped model for hypersonic shock tunnel should be rethought and adapted when comparing the conventional manufacturing processes, in order to fully exploit the creativity and flexibility that are allowed by the 3D prototyping process. The objective of this paper is to compare the conception and project of a 3D rapid prototyping model and a conventional machining model, while showing the advantages and disadvantages of each process and the benefits that 3D prototyping can bring to the manufacture of models to be tested in hypersonic shock tunnel.Keywords: 3D printing, 3D prototyping, experimental research, hypersonic shock tunnel
Procedia PDF Downloads 469339 Comparison Between Partial Thickness Skin Graft Harvesting From Scalp and Lower Limb for Scalp Defect
Authors: Mehrdad Taghipour, Mina Rostami, Mahdi Eskandarlou
Abstract:
Partial-thickness skin graft is the cornerstone for scalp defect repair. Given the potential side effects following harvesting from these sites, this study aimed to compare the outcomes of graft harvesting from scalp and lower limb. This clinical trial was conducted among a sample number of 40 partial thickness graft candidates (20 case and 20 control group) with scalp defect presenting to Plastic Surgery Clinic at Besat Hospital, Hamadan, Iran during 2018-2019. Sampling was done by simple randomization using random digit table. The donor site in case group and control group was scalp and lower limb respectively. Overall, 28 patients (70%) were male and 12 (30%) were female. Basal cell carcinoma (BCC) and trauma were the most common etiology for the defects. There was a statistically meaningful relationship between two groups regarding the etiology of defect (P=0.02). The mean diameter of defect was 24.28±45.37 mm for all of the patients. The difference between diameters of defect in both groups were statistically meaningful while no such difference between graft diameters was seen. The graft “Take” was completely successful in both groups according to evaluations. The level of postoperative pain was lower in the case group compared to the control according to VAS scale and the satisfaction was higher in them per Likert scale. Scalp can safely be used as donor site for skin graft to be used for scalp defects associated with better results and lower complication rates compared to other donor sites.Keywords: donor site, graft, scalp, partial thickness
Procedia PDF Downloads 91338 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method
Authors: Felix Jr. Garde, Eric Augustus Tingatinga
Abstract:
Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method
Procedia PDF Downloads 324337 Landfill Failure Mobility Analysis: A Probabilistic Approach
Authors: Ali Jahanfar, Brajesh Dubey, Bahram Gharabaghi, Saber Bayat Movahed
Abstract:
Ever increasing population growth of major urban centers and environmental challenges in siting new landfills have resulted in a growing trend in design of mega-landfills some with extraordinary heights and dangerously steep slopes. Landfill failure mobility risk analysis is one of the most uncertain types of dynamic rheology models due to very large inherent variabilities in the heterogeneous solid waste material shear strength properties. The waste flow of three historic dumpsite and two landfill failures were back-analyzed using run-out modeling with DAN-W model. The travel distances of the waste flow during landfill failures were calculated approach by taking into account variability in material shear strength properties. The probability distribution function for shear strength properties of the waste material were grouped into four major classed based on waste material compaction (landfills versus dumpsites) and composition (high versus low quantity) of high shear strength waste materials such as wood, metal, plastic, paper and cardboard in the waste. This paper presents a probabilistic method for estimation of the spatial extent of waste avalanches, after a potential landfill failure, to create maps of vulnerability scores to inform property owners and residents of the level of the risk.Keywords: landfill failure, waste flow, Voellmy rheology, friction coefficient, waste compaction and type
Procedia PDF Downloads 291336 Identifying Dynamic Structural Parameters of Soil-Structure System Based on Data Recorded during Strong Earthquakes
Authors: Vahidreza Mahmoudabadi, Omid Bahar, Mohammad Kazem Jafari
Abstract:
In many applied engineering problems, structural analysis is usually conducted by assuming a rigid bed, while imposing the effect of structure bed flexibility can affect significantly on the structure response. This article focuses on investigation and evaluation of the effects arising from considering a soil-structure system in evaluation of dynamic characteristics of a steel structure with respect to elastic and inelastic behaviors. The recorded structure acceleration during Taiwan’s strong Chi-Chi earthquake on different floors of the structure was our evaluation criteria. The respective structure is an eight-story steel bending frame structure designed using a displacement-based direct method assuring weak beam - strong column function. The results indicated that different identification methods i.e. reverse Fourier transform or transfer functions, is capable to determine some of the dynamic parameters of the structure precisely, rather than evaluating all of them at once (mode frequencies, mode shapes, structure damping, structure rigidity, etc.). Response evaluation based on the input and output data elucidated that the structure first mode is not significantly affected, even considering the soil-structure interaction effect, but the upper modes have been changed. Also, it was found that the response transfer function of the different stories, in which plastic hinges have occurred in the structure components, provides similar results.Keywords: bending steel frame structure, dynamic characteristics, displacement-based design, soil-structure system, system identification
Procedia PDF Downloads 503335 Ground-Structure Interaction Analysis of Aged Tunnels
Authors: Behrang Dadfar, Hossein Bidhendi, Jimmy Susetyo, John Paul Abbatangelo
Abstract:
Finding structural demand under various conditions that a structure may experience during its service life is an important step towards structural life-cycle analysis. In this paper, structural demand for the precast concrete tunnel lining (PCTL) segments of Toronto’s 60-year-old subway tunnels is investigated. Numerical modelling was conducted using FLAC3D, a finite difference-based software capable of simulating ground-structure interaction and ground material’s flow in three dimensions. The specific structural details of the segmental tunnel lining, such as the convex shape of the PCTL segments at radial joints and the PCTL segment pockets, were considered in the numerical modelling. Also, the model was developed in a way to accommodate the flexibility required for the simulation of various deterioration scenarios, shapes, and patterns that have been observed over more than 20 years. The soil behavior was simulated by using plastic-hardening constitutive model of FLAC3D. The effect of the depth of the tunnel, the coefficient of lateral earth pressure as well as the patterns of deterioration of the segments were studied. The structural capacity under various deterioration patterns and the existing loading conditions was evaluated using axial-flexural interaction curves that were developed for each deterioration pattern. The results were used to provide recommendations for the next phase of tunnel lining rehabilitation program.Keywords: precast concrete tunnel lining, ground-structure interaction, numerical modelling, deterioration, tunnels
Procedia PDF Downloads 161334 Performance Evaluation of Hemispherical Basin Type Solar Still
Authors: Husham Mahmood Ahmed
Abstract:
For so many reasons, fresh water scarcity is one of major problems facing the world and in particularly in the third world in the Northern Africa, the Middle East, the Southwest of Asia, and many other desert areas. Solar distillation offers one of the most promising solutions of renewable energy to this aggravated situation. The main obstacle hindering the spread of the use of solar technology for fresh water production is its low efficiency. Therefore, enhancing the solar stills performances by studying the parameters affecting their productivity and implementing new ideas and a different design are the main goals of the investigators in recent years. The present research is experimental work that tests a new design of solar still with a hemispherical top cover for water desalination with and without external reflectors under the climate of the Kingdom of Bahrain during the autumn season. The hemispherical cover has a base diameter of 1m and a depth of 0.4m, die cast from a 6 mm thick Lexan plastic sheet. The net effective area was 0.785 m2. It has been found that the average daily production rate obtained from the hemispherical top cover solar still is 3.610 liter/day. This yield is 11.1% higher than the yield of a conventional simple type single slope solar still having 20ᴼ slope glass cover and a larger effective area of 1 m2 obtained in previous research under similar climatic conditions. It has also been found that adding 1.2m long by 0.15 curved reflectors increased the yield of the hemispherical solar still by 5.5 %, while the 1.2 long by 0.3m curved reflector increased the yield by about 8%.Keywords: hemispherical solar still, solar desalination, solar energy, the Northern Africa
Procedia PDF Downloads 393333 Fermented Unripe Plantain (Musa paradisiacal) Peel Meal as a Replacement for Maize in the Diet of Nile Tilapia (Oreochromis niloticus) Fingerlings
Authors: N. A. Bamidele, S. O. Obasa, I. O. Taiwo, I. Abdulraheem, O. C. Odebiyi, A. A. Adeoye, O. E. Babalola, O. V. Uzamere
Abstract:
A feeding trial was conducted to investigate the effect of fermented unripe plantain peel meal (FUP) on growth performance, nutrients digestibility and economic indices of production of Nile tilapia, Oreochromis niloticus fingerlings. Fingerlings (150) of Nile tilapia (1.70±0.1g) were stocked at 10 per plastic tank. Five iso-nitrogenous diets containing 40% crude protein in which maize meal was replaced by fermented unripe plantain peel meal at 0% (FUP0), 25% (FUP25), 50% (FUP50), 75% (FUP75) and 100% (FUP100) were formulated and prepared. The fingerlings were fed at 5% body weight per day for 56 days. There was no significant difference (p > 0.05) in all the growth parameters among the treatments. Feed conversion ratio of 1.35 in fish fed diet FUP25 was not significantly different (P > 0.05) from 1.42 of fish fed diet FUP0. Apparent protein digestibility of 86.94% in fish fed diet FUP100 was significantly higher (p < 0.05) than 70.37% in fish fed diet FUP0 while apparent carbohydrate of 88.34% in fish fed diet FUP0 was significantly different (p < 0.05) from 70.29% of FUP100. Red blood cell (4.30 ml/mm3) of fish fed diet FUP100 was not significantly different from 4.13 ml/mm3 of fish fed diet FUP50. The highest percentage profit of 88.85% in fish fed diet FUP100 was significantly higher than 66.68% in fish fed diet FUP0 while the profit index of 1.89 in fish fed diet FUP100 was significantly different from 1.67 in fish fed diet FUP0. Therefore, fermented unripe plantain peel meal can completely replace maize in the diet of O. niloticus fingerlings.Keywords: fermentation, fish diets, plantain peel, tilapia
Procedia PDF Downloads 537332 Horizontal Bone Augmentation Using Two Membranes at Dehisced Implant Sites: A Randomized Clinical Study
Authors: Monika Bansal
Abstract:
Background: Placement of dental implant in narrow alveolar ridge is challenging to be treated. GBR procedure is currently most widely used to augment the deficient alveolar ridges and to treat the fenestration and dehiscence around dental implants. Thus, the objectives of the present study were to evaluate as well as compare the clinical performance of collagen membrane and titanium mesh for horizontal bone augmentation at dehisced implant sites. Methods and material: Total 12 single edentulous implant sites with buccal bone deficiency in 8 subjects were equally divided and treated simultaneously with either of the two membranes and DBBM(Bio-Oss) bone graft. Primary outcome measurements in terms of defect height and defect width were made using a calibrated plastic periodontal probe. Re-entry surgery was performed to remeasure the augmented site and to remove Ti-mesh at 6th month. Independent paired t-tests for the inter-group comparison and student-paired t-tests for the intra-group comparison were performed. The differences were considered to be significant at p ≤ 0.05. Results: Mean defect fill with respect to height and width was 3.50 ± 0.54 mm (87%) and 2.33 ± 0.51 mm (82%) for collagen membrane and 3.83 ± 0.75 mm (92%) and 2.50 ± 0.54 mm (88%) for Ti-mesh group respectively. Conclusions: Within the limitation of the study, it was concluded that mean defect height and width after 6 months were statistically significant within the group without significant difference between them, although defect resolution was better in Ti-mesh.Keywords: collagen membrane, dehiscence, dental implant, horizontal bone, augmentation, ti-mesh
Procedia PDF Downloads 111331 The Development of a Residual Stress Measurement Method for Roll Formed Products
Authors: Yong Sun, Vladimir Luzin, Zhen Qian, William J. T. Daniel, Mingxing Zhang, Shichao Ding
Abstract:
The residual stresses in roll formed products are generally very high and un-predictable. This is due to the occurrence of redundant plastic deformation in roll forming process and it can cause various product defects. Although the residual stresses of a roll formed product consist of longitudinal and transverse residual stresses components, but the longitudinal residual stresses plays a key role to the product defects of a roll formed product and therefore, only the longitudinal residual stresses concerned by the roll forming scholars and engineers. However, how to inspect the residual stresses of a product quickly and economically as a routine operation is still a challenge. This paper introduces a residual stresses measurement method called slope cutting method to study the longitudinal residual stresses through layers geometrically to a roll formed products or a product with similar process such as a rolled sheet. The detailed measuring procedure is given and discussed. The residual stresses variation through the layer can be derived based on the variation of curvature in different layers and steps. The slope cutting method has been explored and validated by experimental study on a roll-formed square tube. The neutron diffraction method is applied to validate the accuracy of the newly proposed layering removal materials results. The two set results agree with each other very well and therefore, the method is expected to be a routine testing method to monitor the quality of a product been formed and that is a great impact to roll forming industry.Keywords: roll forming, residual stress, measurement method, neutron diffraction
Procedia PDF Downloads 365330 Lagrangian Approach for Modeling Marine Litter Transport
Authors: Sarra Zaied, Arthur Bonpain, Pierre Yves Fravallo
Abstract:
The permanent supply of marine litter implies their accumulation in the oceans, which causes the presence of more compact wastes layers. Their Spatio-temporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment and the size and location of the wastes. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. For this, many research studies have been dedicated to describing the wastes behavior in order to identify their accumulation in oceans areas. Several models are therefore developed to understand the mechanisms that allow the accumulation and the displacements of marine litter. These models are able to accurately simulate the drift of wastes to study their behavior and stranding. However, these works aim to study the wastes behavior over a long period of time and not at the time of waste collection. This work investigates the transport of floating marine litter (FML) to provide basic information that can help in optimizing wastes collection by proposing a model for predicting their behavior during collection. The proposed study is based on a Lagrangian modeling approach that uses the main factors influencing the dynamics of the waste. The performance of the proposed method was assessed on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). Evaluation results in the Java Sea (Indonesia) prove that the proposed model can effectively predict the position and the velocity of marine wastes during collection.Keywords: floating marine litter, lagrangian transport, particle-tracking model, wastes drift
Procedia PDF Downloads 191329 Practical Method for Failure Prediction of Mg Alloy Sheets during Warm Forming Processes
Authors: Sang-Woo Kim, Young-Seon Lee
Abstract:
An important concern in metal forming, even at elevated temperatures, is whether a desired deformation can be accomplished without any failure of the material. A detailed understanding of the critical condition for crack initiation provides not only the workability limit of a material but also a guide-line for process design. This paper describes the utilization of ductile fracture criteria in conjunction with the finite element method (FEM) for predicting the onset of fracture in warm metal working processes of magnesium alloy sheets. Critical damage values for various ductile fracture criteria were determined from uniaxial tensile tests and were expressed as the function of strain rate and temperature. In order to find the best criterion for failure prediction, Erichsen cupping tests under isothermal conditions and FE simulations combined with ductile fracture criteria were carried out. Based on the plastic deformation histories obtained from the FE analyses of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under a bi-axial tensile condition. The results were compared with experimental results and the best criterion was recommended. In addition, the proposed methodology was used to predict the onset of fracture in non-isothermal deep drawing processes using an irregular shaped blank, and the results were verified experimentally.Keywords: magnesium, AZ31 alloy, ductile fracture, FEM, sheet forming, Erichsen cupping test
Procedia PDF Downloads 373