Search results for: pedestrian walking speed
2620 Measurements of Recovery Stress and Recovery Strain of Ni-Based Shape Memory Alloys
Authors: W. J. Kim
Abstract:
The behaviors of the recovery stress and strain of an ultrafine-grained Ni-50.2 at.% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined by a specially designed tensile-testing set up, and the factors that influence the recovery stress and strain were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed based on the experimental data. The recovery strain increased as the yield stress increased. The maximum recovery stress increased with an increase in yield stress. The residual recovery stress was affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased.Keywords: high-ratio differential speed rolling, tensile testing, severe plastic deformation, shape memory alloys
Procedia PDF Downloads 3662619 Influence of Infinite Elements in Vibration Analysis of High-Speed Railway Track
Authors: Janaki Rama Raju Patchamatla, Emani Pavan Kumar
Abstract:
The idea of increasing the existing train speeds and introduction of the high-speed trains in India as a part of Vision-2020 is really challenging from both economic viability and technical feasibility. More than economic viability, technical feasibility has to be thoroughly checked for safe operation and execution. Trains moving at high speeds need a well-established firm and safe track thoroughly tested against vibration effects. With increased speeds of trains, the track structure and layered soil-structure interaction have to be critically assessed for vibration and displacements. Physical establishment of track, testing and experimentation is a costly and time taking process. Software-based modelling and simulation give relatively reliable, cost-effective means of testing effects of critical parameters like sleeper design and density, properties of track and sub-grade, etc. The present paper reports the applicability of infinite elements in reducing the unrealistic stress-wave reflections from so-called soil-structure interface. The influence of the infinite elements is quantified in terms of the displacement time histories of adjoining soil and the deformation pattern in general. In addition, the railhead response histories at various locations show that the numerical model is realistic without any aberrations at the boundaries. The numerical model is quite promising in its ability to simulate the critical parameters of track design.Keywords: high speed railway track, finite element method, Infinite elements, vibration analysis, soil-structure interface
Procedia PDF Downloads 2722618 The Locus of Action - Tinted Windows
Authors: Devleminck Steven, Debackere Boris
Abstract:
This research is about the ways artists and scientists deal with (and endure) new meaning and comprehend and construct the world. The project reflects on the intense connection between comprehension and construction and their place of creation – the ‘locus of action’. It seeks to define a liquid form of understanding and analysis capable of approaching our complex liquid world as discussed by Zygmunt Bauman. The aim is to establish a multi-viewpoint theoretical approach based on the dynamic concept of the Flâneur as introduced by Baudelaire, replacing single viewpoint categorization. This is coupled with the concept of thickening as proposed by Clifford Geertz with its implication of interaction between multi-layers of meaning. Here walking and looking is introduced as a method or strategy, a model or map, providing a framework of understanding in conditions of hybridity and change.Keywords: action, art, liquid, locus, negotiation, place, science
Procedia PDF Downloads 2812617 Second Order MIMO Sliding Mode Controller for Nonlinear Modeled Wind Turbine
Authors: Alireza Toloei, Ahmad R. Saffary, Reza Ghasemi
Abstract:
Due to the growing need for energy and limited fossil resources, the use of renewable energy, particularly wind is strongly favored. We all wind energy can’t be saved. Betz law, 59% of the total kinetic energy of the wind turbine is extracting. Therefore turbine control to achieve maximum performance and maintain stable conditions seem necessary. In this article, we plan for a horizontal axis wind turbine variable-speed variable-pitch nonlinear controller to obtain maximum output power. The model presented in this article, including a wide range of wind turbines are horizontal axis. However, the parameters used in this model is from Vestas V29 225 kW wind turbine. We designed second order sliding mode controller, which was robust in the face of changes in wind speed and it eliminated chattering by using of super twisting algorithm. Finally, using MATLAB software to simulate the results we considered the accuracy of the simulation results.Keywords: non linear controller, robust, sliding mode, kinetic energy
Procedia PDF Downloads 4992616 Experimental Study on the Preparation of Pelletizing of the Panzhihua's Fine Ilmenite Concentrate
Authors: Han Kexi, Lv Xuewei, Song Bing
Abstract:
This paper focuses on the preparation of pelletizing with the Panzhihua ilmenite concentrate to satisfy the requirement of smelting titania slag. The effects of the moisture content, mixing time of raw materials, pressure of pellet, roller rotating speed of roller, drying temperature and time on the pelletizing yield and compressive strength were investigated. The experimental results show that the moister content was controlled at 2.0%~2.5%, mixing time at 20 min, the pressure of the ball forming machine at 13~15 mpa, the pelletizing yield can reach up 85%. When the roller rotating speed is 6~8 r/min while the drying temperature and time respectively is 350 ℃ and 40~60 min, the compressive strength of pelletizing more than 1500 N. The preparation of pelletizing can meet the requirement of smelting titania slag.Keywords: Panzhihua fine ilmenite concentrate, pelletizing, pelletizing yield, compressive strength, drying
Procedia PDF Downloads 2162615 Li-Fi Technology: Data Transmission through Visible Light
Authors: Shahzad Hassan, Kamran Saeed
Abstract:
People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.Keywords: communication, LED, Li-Fi, Wi-Fi
Procedia PDF Downloads 3472614 Generation of Automated Alarms for Plantwide Process Monitoring
Authors: Hyun-Woo Cho
Abstract:
Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.Keywords: detection, monitoring, process data, noise
Procedia PDF Downloads 2522613 A New Converter Topology for Wind Energy Conversion System
Authors: Mahmoud Khamaira, Ahmed Abu-Siada, Yasser Alharbi
Abstract:
Doubly Fed Induction Generators (DFIGs) are currently extensively used in variable speed wind power plants due to their superior advantages that include reduced converter rating, low cost, reduced losses, easy implementation of power factor correction schemes, variable speed operation and four quadrants active and reactive power control capabilities. On the other hand, DFIG sensitivity to grid disturbances, especially for voltage sags represents the main disadvantage of the equipment. In this paper, a coil is proposed to be integrated within the DFIG converters to improve the overall performance of a DFIG-based wind energy conversion system (WECS). The charging and discharging of the coil are controlled by controlling the duty cycle of the switches of the dc-dc chopper. Simulation results reveal the effectiveness of the proposed topology in improving the overall performance of the WECS system under study.Keywords: doubly fed induction generator, coil, wind energy conversion system, converter topology
Procedia PDF Downloads 6612612 Polishing Machine Based on High-Pressure Water Jet
Authors: Mohammad A. Khasawneh
Abstract:
The design of high pressure water jet based polishing equipment and its fabrication conducted in this study is reported herein, together with some preliminary test results for assessing its applicability for HMA surface polishing. This study also provides preliminary findings concerning the test variables, such as the rotational speed, the water jet pressure, the abrasive agent used, and the impact angel that were experimentally investigated in this study. The preliminary findings based on four trial tests (two on large slab specimens and two on small size gyratory compacted specimens), however, indicate that both friction and texture values tend to increase with the polishing durations for two combinations of pressure and rotation speed of the rotary deck. It seems that the more polishing action the specimen is subjected to; the aggregate edges are created such that the surface texture values are increased with the accompanied increase in friction values. It may be of interest (but which is outside the scope of this study) to investigate if the similar trend exist for HMA prepared with aggregate source that is sand and gravel.Keywords: high-pressure, water jet, friction, texture, polishing, statistical analysis
Procedia PDF Downloads 4872611 Fragile Mires as Living Heritage: Human-Nature Relations in Contemporary Digital Life
Authors: Kirsi Laurén, Tiina Seppä
Abstract:
This study focuses on human-mire relations in the context of digital aestheticization and the long-standing tradition of folklore concerning mires. The study concentrates on the Patvinsuo mire in Eastern Finland and the Viiankiaapa mire in Finnish Lapland. Patvinsuo is a national park, and Viiankiaapa is a protected mire area with hiking trails and other recreational infrastructure. Perceiving the environment through digital technology can help to notice aesthetic details in nature. In addition, sharing images and texts digitally through social media adds a sense of community to the relationship with nature and, at the same time, creates a different kind of living heritage where old and new traditions meet and mingle. People visiting and camping in these areas 'self-care' themselves through recreation in nature. However, these practices and digital aestheticization can sometimes lead to the erosion of fragile mires. The research focuses on understanding the impact of digital aestheticization, such as taking digital photos, on the relationship with nature for individuals moving and working in mires. Additionally, the study aims to explore the contemporary perception of the water environment in mires and its cultural heritage, including mythical and folkloric elements. The research material consists of senso-digital walking interviews and digital recordings (audio recordings, photographs, videos) made during the mire walks, as well as archival material from the Finnish Literature Society’s Archives on mire folklore. The analysis of the material relies centrally on theories from sensory anthropology on the relationship between sensory perception and culture. The modern-day interviewees include outdoor enthusiasts spending their leisure time in mires, artists treating mires in their art, and nature experts (scientists, civil servants, and nature guides). The senso-digital walking interviews were conducted in Patvinsuo and Viiankiaapa mires on a trail chosen by the interviewees themselves. The material selected from the archive consists mainly of folk beliefs and folk poetry from the 19th and 20th centuries that express the relationship of the narrator to the mires. The interview and archival materials date from different periods and are different in character, which has to be taken into account in the analysis. However, in the analysis of both materials, particular attention is paid to the descriptions of sensations that appear in them. Analyzing the materials in parallel is limited by the fact that they date from different periods, but on the other hand, it is their different ages that make it possible to perceive the changes in the cultural heritage of mires.Keywords: mires, living heritage, digital aestheticization, folklore, sensory anthropology
Procedia PDF Downloads 992610 Definition of Aerodynamic Coefficients for Microgravity Unmanned Aerial System
Authors: Gamaliel Salazar, Adriana Chazaro, Oscar Madrigal
Abstract:
The evolution of Unmanned Aerial Systems (UAS) has made it possible to develop new vehicles capable to perform microgravity experiments which due its cost and complexity were beyond the reach for many institutions. In this study, the aerodynamic behavior of an UAS is studied through its deceleration stage after an initial free fall phase (where the microgravity effect is generated) using Computational Fluid Dynamics (CFD). Due to the fact that the payload would be analyzed under a microgravity environment and the nature of the payload itself, the speed of the UAS must be reduced in a smoothly way. Moreover, the terminal speed of the vehicle should be low enough to preserve the integrity of the payload and vehicle during the landing stage. The UAS model is made by a study pod, control surfaces with fixed and mobile sections, landing gear and two semicircular wing sections. The speed of the vehicle is decreased by increasing the angle of attack (AoA) of each wing section from 2° (where the airfoil S1091 has its greatest aerodynamic efficiency) to 80°, creating a circular wing geometry. Drag coefficients (Cd) and forces (Fd) are obtained employing CFD analysis. A simplified 3D model of the vehicle is analyzed using Ansys Workbench 16. The distance between the object of study and the walls of the control volume is eight times the length of the vehicle. The domain is discretized using an unstructured mesh based on tetrahedral elements. The refinement of the mesh is made by defining an element size of 0.004 m in the wing and control surfaces in order to figure out the fluid behavior in the most important zones, as well as accurate approximations of the Cd. The turbulent model k-epsilon is selected to solve the governing equations of the fluids while a couple of monitors are placed in both wing and all-body vehicle to visualize the variation of the coefficients along the simulation process. Employing a statistical approximation response surface methodology the case of study is parametrized considering the AoA of the wing as the input parameter and Cd and Fd as output parameters. Based on a Central Composite Design (CCD), the Design Points (DP) are generated so the Cd and Fd for each DP could be estimated. Applying a 2nd degree polynomial approximation the drag coefficients for every AoA were determined. Using this values, the terminal speed at each position is calculated considering a specific Cd. Additionally, the distance required to reach the terminal velocity at each AoA is calculated, so the minimum distance for the entire deceleration stage without comprising the payload could be determine. The Cd max of the vehicle is 1.18, so its maximum drag will be almost like the drag generated by a parachute. This guarantees that aerodynamically the vehicle can be braked, so it could be utilized for several missions allowing repeatability of microgravity experiments.Keywords: microgravity effect, response surface, terminal speed, unmanned system
Procedia PDF Downloads 1732609 Recycling of Post-Industrial Cotton Wastes: Quality and Rotor Spinning of Reclaimed Fibers
Authors: Béchir Wanassi, Béchir Azzouz, Taher Halimi, Mohamed Ben Hassen
Abstract:
Mechanical recycling of post-industrial cotton yarn wastes, as well as the effects of passage number on the properties of reclaimed fibers, have been investigated. A new Modified Fiber Quality Index (MFQI) and Spinning Consistency Index (MSCI) for the characterization of the quality are presented. This index gives the real potential of spinnability according to its physical properties. The best quality of reclaimed fibers (after 7th passage) was used to produce rotor yarns. 100% recycling cotton yarns were produced in open-end spinning system with different rotor speed (i.e. 65000, 70000, and 80000 rpm), opening roller speed (i.e. 7700, 8200, and 8700 rpm) and twist factor (i.e. 137, 165, and 183). The effects of spinning parameters were investigated to evaluate a 100% recycling cotton yarns quality (TQI, hairiness, thin places, and thick places) using DOE method.Keywords: cotton wastes, DOE, mechanical recycling, rotor spinning
Procedia PDF Downloads 3062608 Wind Turbine Powered Car Uses 3 Single Big C-Section Blades
Authors: K. Youssef, Ç. Hüseyin
Abstract:
The blades of a wind turbine have the most important job of any wind turbine component; they must capture the wind and convert it into usable mechanical energy. The objective of this work is to determine the mechanical power of single big C-section of vertical wind turbine for wind car in a two-dimensional model. The wind car has a vertical axis with 3 single big C-section blades mounted at an angle of 120°. Moreover, the three single big C-section blades are directly connected to wheels by using various kinds of links. Gears are used to convert the wind energy to mechanical energy to overcome the load exercised on the main shaft under low speed. This work allowed a comparison of drag characteristics and the mechanical power between the single big C-section blades with the previous work on 3 C-section and 3 double C-section blades for wind car. As a result obtained from the flow chart the torque and power curves of each case study are illustrated and compared with each other. In particular, drag force and torque acting on each types of blade was taken at an airflow speed of 4 m/s, and an angular velocity of 13.056 rad/s.Keywords: blade, vertical wind turbine, drag characteristics, mechanical power
Procedia PDF Downloads 5202607 New Insight into Fluid Mechanics of Lorenz Equations
Authors: Yu-Kai Ting, Jia-Ying Tu, Chung-Chun Hsiao
Abstract:
New physical insights into the nonlinear Lorenz equations related to flow resistance is discussed in this work. The chaotic dynamics related to Lorenz equations has been studied in many papers, which is due to the sensitivity of Lorenz equations to initial conditions and parameter uncertainties. However, the physical implication arising from Lorenz equations about convectional motion attracts little attention in the relevant literature. Therefore, as a first step to understand the related fluid mechanics of convectional motion, this paper derives the Lorenz equations again with different forced conditions in the model. Simulation work of the modified Lorenz equations without the viscosity or buoyancy force is discussed. The time-domain simulation results may imply that the states of the Lorenz equations are related to certain flow speed and flow resistance. The flow speed of the underlying fluid system increases as the flow resistance reduces. This observation would be helpful to analyze the coupling effects of different fluid parameters in a convectional model in future work.Keywords: Galerkin method, Lorenz equations, Navier-Stokes equations, convectional motion
Procedia PDF Downloads 3922606 Construction and Evaluation of Soybean Thresher
Authors: Oladimeji Adetona Adeyeye, Emmanuel Rotimi Sadiku, Oluwaseun Olayinka Adeyeye
Abstract:
In order to resuscitate soybean production and post-harvest processing especially, in term of threshing, there is need to develop an affordable threshing machine which will reduce drudgery associated with manual soybean threshing. Soybean thresher was fabricated and evaluated at Institute of Agricultural Research and Training IAR&T Apata Ibadan. The machine component includes; hopper, threshing unit, shaker, cleaning unit and the seed outlet, all working together to achieve the main objective of threshing and cleaning. TGX1835 - 10E variety was used for evaluation because of its high resistance to pests, rust and pustules. The final moisture content of the used sample was about 15%. The sample was weighed and introduced into the machine. The parameters evaluated includes moisture content, threshing efficiency, cleaning efficiency, machine capacity and speed. The threshing efficiency and capacity are 74% and 65.9kg/hr respectively. All materials used were sourced locally which makes the cost of production of the machine extremely cheaper than the imported soybean thresher.Keywords: efficiency, machine capacity, speed, soybean, threshing
Procedia PDF Downloads 4852605 Integration of Hybrid PV-Wind in Three Phase Grid System Using Fuzzy MPPT without Battery Storage for Remote Area
Authors: Thohaku Abdul Hadi, Hadyan Perdana Putra, Nugroho Wicaksono, Adhika Prajna Nandiwardhana, Onang Surya Nugroho, Heri Suryoatmojo, Soedibjo
Abstract:
Access to electricity is now a basic requirement of mankind. Unfortunately, there are still many places around the world which have no access to electricity, such as small islands, where there could potentially be a factory, a plantation, a residential area, or resorts. Many of these places might have substantial potential for energy generation such us Photovoltaic (PV) and Wind turbine (WT), which can be used to generate electricity independently for themselves. Solar energy and wind power are renewable energy sources which are mostly found in nature and also kinds of alternative energy that are still developing in a rapid speed to help and meet the demand of electricity. PV and Wind has a characteristic of power depend on solar irradiation and wind speed based on geographical these areas. This paper presented a control methodology of hybrid small scale PV/Wind energy system that use a fuzzy logic controller (FLC) to extract the maximum power point tracking (MPPT) in different solar irradiation and wind speed. This paper discusses simulation and analysis of the generation process of hybrid resources in MPP and power conditioning unit (PCU) of Photovoltaic (PV) and Wind Turbine (WT) that is connected to the three-phase low voltage electricity grid system (380V) without battery storage. The capacity of the sources used is 2.2 kWp PV and 2.5 kW PMSG (Permanent Magnet Synchronous Generator) -WT power rating. The Modeling of hybrid PV/Wind, as well as integrated power electronics components in grid connected system, are simulated using MATLAB/Simulink.Keywords: fuzzy MPPT, grid connected inverter, photovoltaic (PV), PMSG wind turbine
Procedia PDF Downloads 3552604 Multi Universe Existence Based-On Quantum Relativity using DJV Circuit Experiment Interpretation
Authors: Muhammad Arif Jalil, Somchat Sonasang, Preecha Yupapin
Abstract:
This study hypothesizes that the universe is at the center of the universe among the white and black holes, which are the entangled pairs. The coupling between them is in terms of spacetime forming the universe and things. The birth of things is based on exchange energy between the white and black sides. That is, the transition from the white side to the black side is called wave-matter, where it has a speed faster than light with positive gravity. The transition from the black to the white side has a speed faster than light with negative gravity called a wave-particle. In the part where the speed is equal to light, the particle rest mass is formed. Things can appear to take shape here. Thus, the gravity is zero because it is the center. The gravitational force belongs to the Earth itself because it is in a position that is twisted towards the white hole. Therefore, it is negative. The coupling of black-white holes occurs directly on both sides. The mass is formed at the saturation and will create universes and other things. Therefore, it can be hundreds of thousands of universes on both sides of the B and white holes before reaching the saturation point of multi-universes. This work will use the DJV circuit that the research team made as an entangled or two-level system circuit that has been experimentally demonstrated. Therefore, this principle has the possibility for interpretation. This work explains the emergence of multiple universes and can be applied as a practical guideline for searching for universes in the future. Moreover, the results indicate that the DJV circuit can create the elementary particles according to Feynman's diagram with rest mass conditions, which will be discussed for fission and fusion applications.Keywords: multi-universes, feynman diagram, fission, fusion
Procedia PDF Downloads 632603 Vernacular Language Origin and Student's Accent Neutralization: A Basis for BPO Employability
Authors: Elma C. Sultan
Abstract:
The study concentrated on Vernacular Language Origin and Students’ Accent Neutralization of the College of Arts and Sciences fourth students in Samar State University, Catbalogan City answering respondent’s locale profile, vernacular language origin in terms of local dialect/s and domestic language/s used; the significant relationship between vernacular language origin and accent neutralization of the respondents; and the proposed activities to adopt in neutralizing students’ accent. It utilized the descriptive-correlational method of research determining the significant relationship between vernacular language origin and students’ accent neutralization. The researcher used: (1) questionnaire divided into three parts: the first part identified the students’ locale; the second part determined the respondents’ domestic language/s used while the third part identified their local language/s used, (2) validated accent neutralization assessment tool, (3) statistical treatments in the analysis of data: percentage to determine the profile of the students; chi-square test for independence to determine the significant relationship between vernacular language origin and students’ accent neutralization. Findings of the study showed that vowel and diphthong sound production, domestic and local languages in indigenous, and native dialects are significantly related to accent neutralization. While, slow reading speed has a higher possibility in affecting accent neutralization. These caused designing a 50-hour short-term program for accent neutralization focusing in the correct vowel and diphthong sounds production and appropriate reading speed in preparation for the respondents’ search for BPO employment. This short-term program ran for 5 hours in a day for five days in a week.Keywords: accent neutralization, dialect, diphthongs, indigenous, language origin, language, native, reading speed, vernacular, vowels
Procedia PDF Downloads 4982602 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot
Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin
Abstract:
Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.Keywords: balance control, speed control, intelligent controller, two wheel inverted pendulum
Procedia PDF Downloads 2242601 Identifying Key Factors for Accidents’ Severity at Rail-Road Level Crossings Using Ordered Probit Models
Authors: Arefeh Lotfi, Mahdi Babaei, Ayda Mashhadizadeh, Samira Nikpour, Morteza Bagheri
Abstract:
The main objective of this study is to investigate the key factors in accidents’ severity at rail-road level crossings. The data required for this study is obtained from both accident and inventory database of Iran Railways during 2009-2015. The Ordered Probit model is developed using SPSS software to identify the significant factors in the accident severity at rail-road level crossings. The results show that 'train speed', 'vehicle type' and 'weather' are the most important factors affecting the severity of the accident. The results of these studies assist to allocate resources in the right place. This paper suggests mandating the regulations to reduce train speed at rail-road level crossings in bad weather conditions to improve the safety of rail-road level crossings.Keywords: rail-road level crossing, ordered probit model, accidents’ severity, significant factors
Procedia PDF Downloads 1512600 Wear and Fraction Behavior of Porcelain Coated with Polyurethane/SiO2 Coating Layer
Authors: Ching Yern Chee
Abstract:
Various loading of nano silica is added into polyurethane (PU) and then coated on porcelain substrate. The wear and friction properties of the porcelain substrates coated with polyurethane/nano silica nano composite coatings were investigated using the reciprocating wear testing machine. The friction and wear test of polyurethane/nano silica coated porcelain substrate was studied at different sliding speed and applied load. It was found that the optimum composition of nano silica is 3 wt% which gives the lowest friction coefficient and wear rate in all applied load ranges and sliding speeds. For 3 wt% nano silica filled PU coated porcelain substrate, the increment of sliding speed caused higher wear rates but lower frictions coefficient. Besides, the friction coefficient of nano silica filled PU coated porcelain substrate decreased but the wear rate increased with the applied load.Keywords: porcelain, nanocomposite coating, morphology, friction, wear behavior
Procedia PDF Downloads 5282599 Static Charge Control Plan for High-Density Electronics Centers
Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda
Abstract:
Ensuring a safe environment for sensitive electronics boards in places with high limitations in size poses two major difficulties: the control of charge accumulation in floating floors and the prevention of excess charge generation due to air cooling flows. In this paper, we discuss these mechanisms and possible solutions to prevent them. An experiment was made in the control room of a Cherenkov Telescope, where six racks of 2x1x1 m size and independent cooling units are located. The room is 10x4x2.5 m, and the electronics include high-speed digitizers, trigger circuits, etc. The floor used in this room was antistatic, but it was a raised floor mounted in floating design to facilitate the handling of the cables and maintenance. The tests were made by measuring the contact voltage acquired by a person who was walking along the room with different footwear qualities. In addition, we took some measurements of the voltage accumulated in a person in other situations like running or sitting up and down on an office chair. The voltages were taken in real time with an electrostatic voltage meter and dedicated control software. It is shown that peak voltages as high as 5 kV were measured with ambient humidity of more than 30%, which are within the range of a class 3A according to the HBM standard. In order to complete the results, we have made the same experiment in different spaces with alternative types of the floor like synthetic floor and earthenware floor obtaining peak voltages much lower than the ones measured with the floating synthetic floor. The grounding quality one achieves with this kind of floors can hardly beat the one typically encountered in standard floors glued directly on a solid substrate. On the other hand, the air ventilation used to prevent the overheating of the boards probably contributed in a significant way to the charge accumulated in the room. During the assessment of the quality of the static charge control, it is necessary to guarantee that the tests are made under repeatable conditions. One of the major difficulties which one encounters during these assessments is the fact the electrostatic voltmeters might provide different values depending on the humidity conditions and ground resistance quality. In addition, the use of certified antistatic footwear might mask deficiencies in the charge control. In this paper, we show how we defined protocols to guarantee that electrostatic readings are reliable. We believe that this can be helpful not only to qualify the static charge control in a laboratory but also to asses any procedure oriented to minimize the risk of electrostatic discharge events.Keywords: electrostatics, ESD protocols, HBM, static charge control
Procedia PDF Downloads 1292598 Effect of Thickness and Solidity on the Performance of Straight Type Vertical Axis Wind Turbine
Authors: Jianyang Zhu, Lin Jiang, Tixian Tian
Abstract:
Inspired by the increasing interesting on the wind power associated with production of clear electric power, a numerical experiment is applied to investigate the aerodynamic performance of straight type vertical axis wind turbine with different thickness and solidity, where the incompressible Navier-Stokes (N-S) equations coupled with dynamic mesh technique is solved. By analyzing the flow field, as well as energy coefficient of different thickness and solidity turbine, it is found that the thickness and solidity can significantly influence the performance of vertical axis wind turbine. For the turbine under low tip speed, the mean energy coefficient increase with the increasing of thickness and solidity, which may improve the self starting performance of the turbine. However for the turbine under high tip speed, the appropriate thickness and smaller solidity turbine possesses better performance. In addition, delay stall and no interaction of the blade and previous separated vortex are observed around appropriate thickness and solidity turbine, therefore lead better performance characteristics.Keywords: vertical axis wind turbine, N-S equations, dynamic mesh technique, thickness, solidity
Procedia PDF Downloads 2652597 Improving the Security of Internet of Things Using Encryption Algorithms
Authors: Amirhossein Safi
Abstract:
Internet of things (IOT) is a kind of advanced information technology which has drawn societies’ attention. Sensors and stimulators are usually recognized as smart devices of our environment. Simultaneously, IOT security brings up new issues. Internet connection and possibility of interaction with smart devices cause those devices to involve more in human life. Therefore, safety is a fundamental requirement in designing IOT. IOT has three remarkable features: overall perception, reliable transmission, and intelligent processing. Because of IOT span, security of conveying data is an essential factor for system security. Hybrid encryption technique is a new model that can be used in IOT. This type of encryption generates strong security and low computation. In this paper, we have proposed a hybrid encryption algorithm which has been conducted in order to reduce safety risks and enhancing encryption's speed and less computational complexity. The purpose of this hybrid algorithm is information integrity, confidentiality, non-repudiation in data exchange for IOT. Eventually, the suggested encryption algorithm has been simulated by MATLAB software, and its speed and safety efficiency were evaluated in comparison with conventional encryption algorithm.Keywords: internet of things, security, hybrid algorithm, privacy
Procedia PDF Downloads 4672596 Temperature Gradient In Weld Zones During Friction Stir Process Using Finite Element Method
Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah
Abstract:
Finite element approach have been used via three-dimensional models by using Altair Hyper Work, a commercially available software, to describe heat gradients along the welding zones (axially and coronaly) in Friction Stir Welding (FSW). Transient thermal finite element analyses are performed in AA 6061-T6 Aluminum Alloy to obtain temperature distribution in the welded aluminum plates during welding operation. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and work piece is used in the analysis. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the work piece.Keywords: Frictions Stir Welding (FSW), temperature distribution, Finite Element Method (FEM), altair hyperwork
Procedia PDF Downloads 5342595 Dynamical Characteristics of Interaction between Water Droplet and Aerosol Particle in Dedusting Technology
Authors: Ding Jue, Li Jiahua, Lei Zhidi, Weng Peifen, Li Xiaowei
Abstract:
With the rapid development of national modern industry, people begin to pay attention to environmental pollution and harm caused by industrial dust. Based on above, a numerical study on the dedusting technology of industrial environment was conducted. The dynamic models of multicomponent particles collision and coagulation, breakage and deposition are developed, and the interaction of water droplet and aerosol particle in 2-Dimension flow field was researched by Eulerian-Lagrangian method and Multi-Monte Carlo method. The effects of the droplet scale, movement speed of droplet and the flow field structure on scavenging efficiency were analyzed. The results show that under the certain condition, 30μm of droplet has the best scavenging efficiency. At the initial speed 1m/s of droplets, droplets and aerosol particles have more time to interact, so it has a better scavenging efficiency for the particle.Keywords: water droplet, aerosol particle, collision and coagulation, multi-monte carlo method
Procedia PDF Downloads 3072594 Assessment and Evaluation of Football Performance
Authors: Bulus Kpame, Mukhtar Mohammed Alhaji, Garba Jibril
Abstract:
In any team sport, the most important variables that should be used to measure performance are physical condition, and technical and tactical performance. In a complex game like football, it is extremely difficult to measure the relative importance of each of these variables. However, physical fitness itself has been shown to consist of several components, like endurance, strength, flexibility, agility, coordination and speed. Each of these components has been shown to consist of several subcomponents. This paper attempts to describe a test battery to assess and evaluate physical performance in football players. This battery comprises a functional, structured training session of about 2.5hrs. it consists of quality rating of the warm-up procedure, tests of flexibility, football skills, power, speed, and endurance. Acceptable values for performance in each of the tests are also presented under each test. It is hoped that this battery of tests will be helpful to the coach in determining the effect of a specific training program. It would also be helpful to train physician and trainer, to monitor progress during rehabilitation after sustaining any injury.Keywords: assessment, evaluation, performance, programs
Procedia PDF Downloads 4082593 Optimal Tuning of RST Controller Using PSO Optimization for Synchronous Generator Based Wind Turbine under Three-Phase Voltage Dips
Authors: K. Tahir, C. Belfedal, T. Allaoui, C. Gerard, M. Doumi
Abstract:
In this paper, we presented an optimized RST controller using Particle Swarm Optimization (PSO) meta-heuristic technique of the active and reactive power regulation of a grid connected wind turbine based on a wound field synchronous generator. This regulation is achieved below the synchronous speed, by means of a maximum power point tracking algorithm. The control of our system is tested under typical wind variations and parameters variation, fault grid condition by simulation. Some results are presented and discussed to prove simplicity and efficiency of the WRSG control for WECS. On the other hand, according to simulation results, variable speed driven WRSG is not significantly impacted in fault conditions.Keywords: wind energy, particle swarm optimization, wound rotor synchronous generator, power control, RST controller, maximum power point tracking
Procedia PDF Downloads 4512592 Isolated and Combined Effects of Multimedia Computer Assisted Coaching and Traditional Coaching on Motor Ability Component and Physiological Variables among Sports School Basketball Players
Authors: Biju Lukose
Abstract:
The objective of the study was to identify the isolated and combined effect of multi-media computer assisted coaching and traditional coaching on selected motor ability component and physiological variables among sports school basketball players. Forty male basketball players aged between 14 to 18 years were selected randomly. They were divided into four groups of three experimental and one control. Isolated multi-media computer assisted coaching, isolated traditional coaching and combined coaching (multimedia computer assisted coaching and traditional coaching) are the three experimental groups. All the three experimental groups were given coaching for 24 weeks and control group were not allowed to participate in any coaching programme. The subjects were tested dependent variables such as speed and cardio vascular endurance; at the beginning (pre-test) in middle 12 week (mid-test) and after the coaching 24 week (post-test). The coaching schedule was for a period of 24 weeks. The data were collected two days before and after the coaching schedule and mid test after the 12 weeks of the coaching schedule. The data were analysed by applying ANCOVA and Scheffe’s Post hoc test. The result showed that there were significant changes in dependent variables such as speed and cardio vascular endurance. The results of the study showed that combined coaching (multimedia computer assisted coaching and traditional coaching) is more superior to traditional coaching and multimedia computer assisted coaching groups and no significant change in speed in the case of isolated multimedia computer assisted coaching group.Keywords: computer, computer-assisted coaching, multimedia coaching, traditional coaching
Procedia PDF Downloads 4582591 The Research of Hand-Grip Strength for Adults with Intellectual Disability
Authors: Haiu-Lan Chin, Yu-Fen Hsiao, Hua-Ying Chuang, Wei Lee
Abstract:
An adult with intellectual disability generally has insufficient physical activity which is an important factor leading to premature weakness. Studies in recent years on frailty syndrome have accumulated substantial data about indicators of human aging, including unintentional weight loss, self-reported exhaustion, weakness, slow walking speed, and low physical activity. Of these indicators, hand-grip strength can be seen as a predictor of mortality, disability, complications, and increased length of hospital stay. Hand-grip strength in fact provides a comprehensive overview of one’s vitality. The research is about the investigation on hand-grip strength of adults with intellectual disabilities in facilities, institutions and workshops. The participants are 197 male adults (M=39.09±12.85 years old), and 114 female ones (M=35.80±8.2 years old) so far. The aim of the study is to figure out the performance of their hand-grip strength, and initiate the setting of training on hand-grip strength in their daily life which will decrease the weakening on their physical condition. Test items include weight, bone density, basal metabolic rate (BMR), static body balance except hand-grip strength. Hand-grip strength was measured by a hand dynamometer and classified as normal group ( ≧ 30 kg for male and ≧ 20 kg for female) and weak group ( < 30 kg for male, < 20 kg for female)The analysis includes descriptive statistics, and the indicators of grip strength fo the adults with intellectual disability. Though the research is still ongoing and the participants are increasing, the data indicates: (1) The correlation between hand-grip strength and degree of the intellectual disability (p ≦. 001), basal metabolic rate (p ≦ .001), and static body balance (p ≦ .01) as well. Nevertheless, there is no significant correlation between grip strength and basal metabolic rate which had been having significant correlation with hand-grip strength. (2) The difference between male and female subjects in hand-grip strength is significant, the hand-grip strength of male subjects (25.70±12.81 Kg) is much higher than female ones (16.30±8.89 Kg). Compared to the female counterparts, male participants indicate greater individual differences. And the proportion of weakness between male and female subjects is also different. (3) The regression indicates the main factors related to grip strength performance include degree of the intellectual disability, height, static body balance, training and weight sequentially. (4) There is significant difference on both hand-grip and static body balance between participants in facilities and workshops. The study supports the truth about the sex and gender differences in health. Nevertheless, the average hand-grip strength of left hand is higher than right hand in both male and female subjects. Moreover, 71.3% of male subjects and 64.2% of female subjects have better performance in their left hand-grip which is distinctive features especially in low degree of the intellectual disability.Keywords: adult with intellectual disability, frailty syndrome, grip strength, physical condition
Procedia PDF Downloads 179