Search results for: genetic mutation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1722

Search results for: genetic mutation

1002 A Modified NSGA-II Algorithm for Solving Multi-Objective Flexible Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir

Abstract:

NSGA-II is one of the most well-known and most widely used evolutionary algorithms. In addition to its new versions, such as NSGA-III, there are several modified types of this algorithm in the literature. In this paper, a hybrid NSGA-II algorithm has been suggested for solving the multi-objective flexible job shop scheduling problem. For a better search, new neighborhood-based crossover and mutation operators are defined. To create new generations, the neighbors of the selected individuals by the tournament selection are constructed. Also, at the end of each iteration, before sorting, neighbors of a certain number of good solutions are derived, except for solutions protected by elitism. The neighbors are generated using a constraint-based neural network that uses various constructs. The non-dominated sorting and crowding distance operators are same as the classic NSGA-II. A comparison based on some multi-objective benchmarks from the literature shows the efficiency of the algorithm.

Keywords: flexible job shop scheduling problem, multi-objective optimization, NSGA-II algorithm, neighborhood structures

Procedia PDF Downloads 227
1001 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters

Authors: Dylan Santos De Pinho, Nabil Ouerhani

Abstract:

Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.

Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization

Procedia PDF Downloads 145
1000 Computer Based Identification of Possible Molecular Targets for Induction of Drug Resistance Reversion in Multidrug Resistant Mycobacterium Tuberculosis

Authors: Oleg Reva, Ilya Korotetskiy, Marina Lankina, Murat Kulmanov, Aleksandr Ilin

Abstract:

Molecular docking approaches are widely used for design of new antibiotics and modeling of antibacterial activities of numerous ligands which bind specifically to active centers of indispensable enzymes and/or key signaling proteins of pathogens. Widespread drug resistance among pathogenic microorganisms calls for development of new antibiotics specifically targeting important metabolic and information pathways. A generally recognized problem is that almost all molecular targets have been identified already and it is getting more and more difficult to design innovative antibacterial compounds to combat the drug resistance. A promising way to overcome the drug resistance problem is an induction of reversion of drug resistance by supplementary medicines to improve the efficacy of the conventional antibiotics. In contrast to well established computer-based drug design, modeling of drug resistance reversion still is in its infancy. In this work, we proposed an approach to identification of compensatory genetic variants reducing the fitness cost associated with the acquisition of drug resistance by pathogenic bacteria. The approach was based on an analysis of the population genetic of Mycobacterium tuberculosis and on results of experimental modeling of the drug resistance reversion induced by a new anti-tuberculosis drug FS-1. The latter drug is an iodine-containing nanomolecular complex that passed clinical trials and was admitted as a new medicine against MDR-TB in Kazakhstan. Isolates of M. tuberculosis obtained on different stages of the clinical trials and also from laboratory animals infected with MDR-TB strain were characterized by antibiotic resistance, and their genomes were sequenced by the paired-end Illumina HiSeq 2000 technology. A steady increase in sensitivity to conventional anti-tuberculosis antibiotics in series of isolated treated with FS-1 was registered despite the fact that the canonical drug resistance mutations identified in the genomes of these isolates remained intact. It was hypothesized that the drug resistance phenotype in M. tuberculosis requires an adjustment of activities of many genes to compensate the fitness cost of the drug resistance mutations. FS-1 cased an aggravation of the fitness cost and removal of the drug-resistant variants of M. tuberculosis from the population. This process caused a significant increase in genetic heterogeneity of the Mtb population that was not observed in the positive and negative controls (infected laboratory animals left untreated and treated solely with the antibiotics). A large-scale search for linkage disequilibrium associations between the drug resistance mutations and genetic variants in other genomic loci allowed identification of target proteins, which could be influenced by supplementary drugs to increase the fitness cost of the drug resistance and deprive the drug-resistant bacterial variants of their competitiveness in the population. The approach will be used to improve the efficacy of FS-1 and also for computer-based design of new drugs to combat drug-resistant infections.

Keywords: complete genome sequencing, computational modeling, drug resistance reversion, Mycobacterium tuberculosis

Procedia PDF Downloads 261
999 Mobile Genetic Elements in Trematode Himasthla Elongata Clonal Polymorphism

Authors: Anna Solovyeva, Ivan Levakin, Nickolai Galaktionov, Olga Podgornaya

Abstract:

Animals that reproduce asexually were thought to have the same genotypes within generations for a long time. However, some refuting examples were found, and mobile genetic elements (MGEs) or transposons are considered to be the most probable source of genetic instability. Dispersed nature and the ability to change their genomic localization enables MGEs to be efficient mutators. Hence the study of MGEs genomic impact requires an appropriate object which comprehends both representative amounts of various MGEs and options to evaluate the genomic influence of MGEs. Animals that reproduce asexually seem to be a decent model to study MGEs impact in genomic variability. We found a small marine trematode Himasthla elongata (Himasthlidae) to be a good model for such investigation as it has a small genome size, diverse MGEs and parthenogenetic stages in the lifecycle. In the current work, clonal diversity of cercaria was traced with an AFLP (Amplified fragment length polymorphism) method, diverse zones from electrophoretic patterns were cloned, and the nature of the fragments explored. Polymorphic patterns of individual cercariae AFLP-based fingerprints are enriched with retrotransposons of different families. The bulk of those sequences are represented by open reading frames of non-Long Terminal Repeats containing elements(non-LTR) yet Long-Terminal Repeats containing elements (LTR), to a lesser extent in variable figments of AFLP array. The CR1 elements expose both in polymorphic and conservative patterns are remarkably more frequent than the other non-LTR retrotransposons. This data was confirmed with shotgun sequencing-based on Illumina HiSeq 2500 platform. Individual cercaria of the same clone (i.e., originated from a single miracidium and inhabiting one host) has a various distribution of MGE families detected in sequenced AFLP patterns. The most numerous are CR1 and RTE-Bov retrotransposons, typical for trematode genomes. Also, we identified LTR-retrotransposons of Pao and Gypsy families among DNA transposons of CMC-EnSpm, Tc1/Mariner, MuLE-MuDR and Merlin families. We detected many of them in H. elongata transcriptome. Such uneven MGEs distribution in AFLP sequences’ sets reflects the different patterns of transposons spreading in cercarial genomes as transposons affect the genome in many ways (ectopic recombination, gene structure interruption, epigenetic silencing). It is considered that they play a key role in the origins of trematode clonal polymorphism. The authors greatly appreciate the help received at the Kartesh White Sea Biological Station of the Russian Academy of Sciences Zoological Institute. This work is funded with RSF 19-74-20102 and RFBR 17-04-02161 grants and the research program of the Zoological Institute of the Russian Academy of Sciences (project number AAAA-A19-119020690109-2).

Keywords: AFLP, clonal polymorphism, Himasthla elongata, mobile genetic elements, NGS

Procedia PDF Downloads 122
998 Effects of Hydrogen Bonding and Vinylcarbazole Derivatives on 3-Cyanovinylcarbazole Mediated Photo-Cross-Linking Induced Cytosine Deamination

Authors: Siddhant Sethi, Yasuharu Takashima, Shigetaka Nakamura, Kenzo Fujimoto

Abstract:

Site-directed mutagenesis is a renowned technique to introduce specific mutations in the genome. To achieve site-directed mutagenesis, many chemical and enzymatic approaches have been reported in the past like disulphite induced genome editing, CRISPR-Cas9, TALEN etc. The chemical methods are invasive whereas the enzymatic approaches are time-consuming and expensive. Most of these techniques are unusable in the cellular application due to their toxicity and other limitations. Photo-chemical cytosine deamination, introduced in 2010, is one of the major technique for enzyme-free single-point mutation of cytosine to uracil in DNA and RNA, wherein, 3-cyanovinylcarbazole nucleoside (CNVK) containing oligodeoxyribonucleotide (ODN) having CNVK at -1 position to that of target cytosine is reversibly crosslinked to target DNA strand using 366 nm and then incubated at 90ºC to accommodate deamination. This technique is superior to enzymatic methods of site-directed mutagenesis but has a disadvantage that it requires the use of high temperature for the deamination step which restricts its applicability in the in vivo applications. This study has been focused on improving the technique by reducing the temperature required for deamination. Firstly, the photo-cross-linker, CNVK has been modified by replacing cyano group attached to vinyl group with methyl ester (OMeVK), amide (NH2VK), and carboxylic acid (OHVK) to observe the acceleration in the deamination of target cytosine cross-linked to vinylcarbazole derivative. Among the derivatives, OHVK has shown 2 times acceleration in deamination reaction as compared to CNVK, while the other two derivatives have shown deceleration towards deamination reaction. The trend of rate of deamination reaction follows the same order as that of hydrophilicity of the vinylcarbazole derivatives. OHVK being most hydrophilic has shown highest acceleration while OMeVK is least hydrophilic has proven to be least active for deamination. Secondly, in the related study, the counter-base of the target cytosine, guanine has been replaced by inosine, 2-aminopurine, nebularine, and 5-nitroindole having distinct hydrogen bonding patterns with target cytosine. Among the ODNs with these counter bases, ODN with inosine has shown 12 fold acceleration towards deamination of cytosine cross-linked to CNVK at physiological conditions as compared to guanosine. Whereas, when 2-aminopurine, nebularine, and 5-nitroindole were used, no deamination reaction took place. It can be concluded that inosine has potential to be used as the counter base of target cytosine for the CNVK mediated photo-cross-linking induced deamination of cytosine. The increase in rate of deamination reaction has been attributed to pattern and number of hydrogen bonding between the cytosine and counter base. One of the important factor is presence of hydrogen bond between exo-cyclic amino group of cytosine and the counter base. These results will be useful for development of more efficient technique for site-directed mutagenesis for C → U transformations in the DNA/RNA which might be used in the living system for treatment of various genetic disorders and genome engineering for making designer and non-native proteins.

Keywords: C to U transformation, DNA editing, genome engineering, ultra-fast photo-cross-linking

Procedia PDF Downloads 233
997 Advancing Our Understanding of Age-Related Changes in Executive Functions: Insights from Neuroimaging, Genetics and Cognitive Neurosciences

Authors: Yasaman Mohammadi

Abstract:

Executive functions are a critical component of goal-directed behavior, encompassing a diverse set of cognitive processes such as working memory, cognitive flexibility, and inhibitory control. These functions are known to decline with age, but the precise mechanisms underlying this decline remain unclear. This paper provides an in-depth review of recent research investigating age-related changes in executive functions, drawing on insights from neuroimaging, genetics, and cognitive neuroscience. Through an interdisciplinary approach, this paper offers a nuanced understanding of the complex interplay between neural mechanisms, genetic factors, and cognitive processes that contribute to executive function decline in aging. Here, we investigate how different neuroimaging methods, like functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), have helped scientists better understand the brain bases for age-related declines in executive function. Additionally, we discuss the role of genetic factors in mediating individual differences in executive functions across the lifespan, as well as the potential for cognitive interventions to mitigate age-related decline. Overall, this paper presents a comprehensive and integrative view of the current state of knowledge regarding age-related changes in executive functions. It underscores the need for continued interdisciplinary research to fully understand the complex and dynamic nature of executive function decline in aging, with the ultimate goal of developing effective interventions to promote healthy cognitive aging.

Keywords: executive functions, aging, neuroimaging, cognitive neuroscience, working memory, cognitive training

Procedia PDF Downloads 65
996 Molecular Profiles of Microbial Etiologic Agents Forming Biofilm in Urinary Tract Infections of Pregnant Women by RTPCR Assay

Authors: B. Nageshwar Rao

Abstract:

Urinary tract infection (UTI) represents the most commonly acquired bacterial infection worldwide, with substantial morbidity, mortality, and economic burden. The objective of the study is to characterize the microbial profiles of uropathogenic in the obstetric population by RTPCR. Study design: An observational cross-sectional study was performed at a single tertiary health care hospital among 50 pregnant women with UTIs, including asymptomatic and symptomatic patients attending the outpatient department and inpatient department of Obstetrics and Gynaecology.Methods: Serotyping and genes detection of various uropathogens were studied using RTPCR. Pulse filed gel electrophoresis methods were used to determine the various genetic profiles. Results: The present study shows that CsgD protein, involved in biofilm formation in Escherichia coli, VIM1, IMP1 genes for Klebsiella were identified by using the RTPCR method. Our results showed that the prevalence of VIM1 and IMP1 genes and CsgD protein in E.coli showed a significant relationship between strong biofilm formation, and this may be due to the prevalence of specific genes. Finally, the genetic identification of RTPCR results for both bacteria was correlated with each other and concluded that the above uropathogens were common isolates in producing Biofilm in the pregnant woman suffering from urinary tract infection in our hospital observational study.

Keywords: biofilms, Klebsiella, E.coli, urinary tract infection

Procedia PDF Downloads 125
995 Clinical Outcome after in Vitro Fertilization in Women Aged 40 Years and Above: Reasonable Cut-Off Age for Successful Pregnancy

Authors: Eun Jeong Yu, Inn Soo Kang, Tae Ki Yoon, Mi Kyoung Koong

Abstract:

Advanced female age is associated with higher cycle cancelation rates, lower clinical pregnancy rate, increased miscarriage and aneuploidy rates in IVF (In Vitro Fertilization) cycles. This retrospective cohort study was conducted at a Cha Fertility Center, Seoul Station. All fresh non-donor IVF cycles performed in women aged 40 years and above from January 2016 to December 2016 were reviewed. Donor/recipient treatment, PGD/PGS (Preimplantation Genetic Diagnosis/ Preimplantation Genetic Screening) were excluded from analysis. Of the 1,166 cycles from 753 women who completed ovulation induction, 1,047 were appropriate for the evaluation according to inclusion and exclusion criterion. IVF cycles were categorized according to age and grouped into the following 1-year age groups: 40, 41, 42, 43, 44, 45 and > 46. The mean age of patients was 42.4 ± 1.8 years. The median AMH (Anti-Mullerian Hormone) level was 1.2 ± 1.5 ng/mL. The mean number of retrieved oocytes was 4.9 ± 4.3. The clinical pregnancy rate and live birth rate in women > 40 years significantly decreased with each year of advancing age (p < 0.001). The clinical pregnancy rate decreased from 21% at the age of 40 years to 0% at ages above 45 years. Live birth rate decreased from 12.3% to 0%, respectively. There were no clinical pregnancy outcomes among 95 patients aged above 45 years of age. The overall miscarriage rate was 40.7% (range, 36.7%-70%). The transfer of at least one good quality embryo was associated with about 4-9% increased chance of a clinical pregnancy rate. Therefore, IVF in old age women less than 46 had a reasonable chance for successful pregnancy outcomes especially when good quality embryo is transferred.

Keywords: advanced maternal age, in vitro fertilization, pregnancy rate, live birth rate

Procedia PDF Downloads 143
994 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications

Procedia PDF Downloads 122
993 Collection and Phenotypic Characterization of Some Nigerian Bambara Groundnut (Vigna subterranea (L.) Verdc.) Germplasm Using Seed Morphology

Authors: Abejide Dorcas Ropo, Falusi Olamide Ahmed, Daudu Oladipupo Abdulazeez Yusuf, Muhammad Liman Muhammad, Gado Aishatu Adamu

Abstract:

Bambara groundnut is an indigenous African legume with great potential to tackle the problem of food insecurity in Nigeria. A germplasm collection mission was carried out in collaboration with the Agricultural Developments Project (ADP) Extension officers of Nigeria between October and December 2014. Bambara groundnut seeds were collected from farmers in different States in Nigeria, such as Kaduna, Niger, Kogi, Benue, Plateau, Adamawa, Nasarawa, Jigawa, Enugu, and Federal Capital Territoy (FCT) Abuja. Some seeds were also collected from National Centre for Genetic Resources and Biotechnology (NACGRAB). The seeds were phenotyped using the descriptor list of Vigna subterranea produced by the International Plant Genetic Resource Institute. A total of 45 original seed lots were collected, which comprised of mixed seeds having different seed coat colours (15) and pure seeded accessions having the same seed coat and eye colour (30). After sorting, a total of 83 accessions were derived from the 45 original seed lots collected, and a total of 24 distinct seed morphotypes with varying seed coat colours and eye colours were identified from the collections. They include cream ( cream ash eye, cream plain eye, and cream black eye), cream purplish spots, cream brown spots/stripe, cream black stripe, cream dark brown patches, cream light grey spots, cream black patches, black, red, light red, dark red, brownish red, brown speckled with black, red speckled with black, brown, brown with brown pattern below hilum, brown with black pattern below hilum, cream black, grey brown, grey black and variegated red. The highest number of accessions were collected from NACGRAB (11), followed by Niger State (10), and the lowest from Benue, Jigawa, and Adamawa States (2). Niger State also had the highest number of mixed seeds. The different seed phenotypes observed in the study are important for the field production of true-to-type lines and can be exploited for the genetic improvement of the Bambara groundnut.

Keywords: Bambara groundnut, characterization, collection, germplasm, phenotypic

Procedia PDF Downloads 139
992 Public Participation in Science: The Case of Genetic Modified Organisms in Brazil

Authors: Maria Luisa Nozawa Ribeiro, Maria Teresa Miceli Kerbauy

Abstract:

This paper aims to present the theories of public participation in order to understand the context of the public GMO (Genetic Modified Organisms) policies in Brazil, highlighting the characteristics of its configuration and the dialog with the experts. As a controversy subject, the commercialization of GMO provoked manifestation of some popular and environmental representative groups questioning the decisions of policy makers and experts on the matter. Many aspects and consequences of the plantation and consumption of this crops emerged and the safety of this technology was questioned. Environmentalists, Civil Right's movement, representatives of rural workers, farmers and organics producers, etc. demonstrated their point of view, also sustained by some experts of medical, genetical, environmental, agronomical sciences, etc. fields. Despite this movement, the precautionary principle (risk management), implemented in 1987, suggested precaution facing new technologies and innovations in the sustainable development society. This principle influenced many legislation and regulation on GMO around the world, including Brazil, which became a reference among the world regulatory GMO systems. The Brazilian legislation ensures the citizens participation on GMO discussion, characteristic that was important to establish the connection between the subject and the participation theory. These deliberation spaces materialized in Brazil through the "Public Audiences", which are managed by the National Biosafety Technical Commission (CTNBio), the department responsible for controlling the research, production and commercialization of GMOs in Brazil.

Keywords: public engagement, public participation, science and technology studies, transgenic politics

Procedia PDF Downloads 303
991 Group Decision Making through Interval-Valued Intuitionistic Fuzzy Soft Set TOPSIS Method Using New Hybrid Score Function

Authors: Syed Talib Abbas Raza, Tahseen Ahmed Jilani, Saleem Abdullah

Abstract:

This paper presents interval-valued intuitionistic fuzzy soft sets based TOPSIS method for group decision making. The interval-valued intuitionistic fuzzy soft set is a mutation of an interval-valued intuitionistic fuzzy set and soft set. In group decision making problems IVIFSS makes the process much more algebraically elegant. We have used weighted arithmetic averaging operator for aggregating the information and define a new Hybrid Score Function as metric tool for comparison between interval-valued intuitionistic fuzzy values. In an illustrative example we have applied the developed method to a criminological problem. We have developed a group decision making model for integrating the imprecise and hesitant evaluations of multiple law enforcement agencies working on target killing cases in the country.

Keywords: group decision making, interval-valued intuitionistic fuzzy soft set, TOPSIS, score function, criminology

Procedia PDF Downloads 603
990 An Academic Theory on a Sustainable Evaluation of Achatina Fulica Within Ethekwini, KwaZulu-Natal

Authors: Sibusiso Trevor Tshabalala, Samuel Lubbe, Vince Vuledzani Ndou

Abstract:

Dependency on chemicals has had many disadvantages in pest management control strategies. Such genetic rodenticide resistance and secondary exposure risk are what is currently being experienced. Emphasis on integrated pest management suggests that to control future pests, early intervention and economic threshold development are key starting points in crop production. The significance of this research project is to help establish a relationship between Giant African Land Snail (Achatina Fulica) solution extract, its shell chemical properties, and farmer’s perceptions of biological control in eThekwini Municipality Agri-hubs. A mixed design approach to collecting data will be explored using a trial layout in the field and through interviews. The experimental area will be explored using a split-plot design that will be replicated and arranged in a randomised complete block design. The split-plot will have 0, 10, 20 and 30 liters of water to one liter of snail solution extract. Plots were 50 m² each with a spacing of 12 m between each plot and a plant spacing of 0.5 m (inter-row) ‘and 0.5 m (intra-row). Trials will be irrigated using sprinkler irrigation, with objective two being added to the mix every 4-5 days. The expected outcome will be improved soil fertility and micro-organisms population proliferation.

Keywords: giant african land snail, integrated pest management, photosynthesis, genetic rodenticide resistance, control future pests, shell chemical properties

Procedia PDF Downloads 103
989 Determination of Nutritional Value and Steroidal Saponin of Fenugreek Genotypes

Authors: Anita Singh, Richa Naula, Manoj Raghav

Abstract:

Nutrient rich and high-yielding varieties of fenugreek can be developed by using genotypes which are naturally high in nutrients. Gene banks harbour scanty germplasm collection of Trigonella spp. and a very little background information about its genetic diversity. The extent of genetic diversity in a specific breeding population depends upon the genotype included in it. The present investigation aims at the estimation of macronutrient (phosphorus by spectrophotometer and potassium by flame photometer), micronutrients, namely, iron, zinc, manganese, and copper from seeds of fenugreek genotypes using atomic absorption spectrophotometer, protein by Rapid N Cube Analyser and Steroidal Saponins. Twenty-eight genotypes of fenugreek along with two standard checks, namely, Pant Ragini and Pusa Early Bunching were collected from different parts of India, and nutrient contents of each genotype were determined at G. B. P. U. A. & T. Laboratory, Pantnagar. Highest potassium content was observed in PFG-35 (1207 mg/100g). PFG-37 and PFG-20 were richest in phosphorus, iron and manganese content among all the genotypes. The lowest zinc content was found in PFG-26 (1.19 mg/100g), while the maximum zinc content was found in PFG- 28 (4.43 mg/100g). The highest content of copper was found in PFG-26 (1.97 mg/100g). PFG-39 has the highest protein content (29.60 %). Significant differences were observed in the steroidal saponin among the genotypes. Saponin content ranged from 0.38 g/100g to 1.31 g/100g. Steroidal Saponins content was found the maximum in PFG-36 (1.31 g/100g) followed by PFG-17 (1.28 g/100g). Therefore, the genotypes which are rich in nutrient and oil content can be used for plant biofortification, dietary supplements, and herbal products.

Keywords: genotypes, macronutrients, micronutrient, protein, seeds

Procedia PDF Downloads 251
988 TNF-α, TNF-β and IL-10 Gene Polymorphism and Association with Oral Lichen Planus Risk in Saudi Patients

Authors: Maha Ali Al-Mohaya, Lubna Majed Al-Otaibi, Ebtissam Nassir Al-Bakr, Abdulrahman Al-Asmari

Abstract:

Objectives: Oral lichen planus (OLP) is a chronic inflammatory oral mucosal disease. Cytokines play an important role in the pathogenesis and disease progression of OLP. The purpose of this study was to investigate the association of tumor necrosis factor (TNF)-α, TNF-β and interleukin (IL)-10 gene polymorphisms with the OLP risk. Material and Methods: Forty-two unrelated patients with OLP and 211 healthy volunteers were genotyped for TNF-α (-308 G/A), TNF-β (+252A/G), IL-10 (-1082G/A), IL-10 (-819C/T), and IL-10 (-592C/A) polymorphisms. Results: The frequencies of allele A and genotype GA of TNF-α (-308G/A) were significantly higher while allele G and GG genotypes were lower in OLP patients as compared to the controls (P < 0.001). The frequency of GA genotype of TNF-β (+252A/G) was significantly higher in patients than in controls while the AA genotype was completely absent in OLP patients. These results indicated that allele A and genotype GA of TNF-α (-308G/A) as well as the GA genotype of TNF-β (+252A/G) polymorphisms are associated with OLP risk. The frequencies of alleles and genotypes of -1082G/A, -819C/T and -592C/A polymorphisms in IL-10 gene did not differ significantly between OLP patients and controls (P > 0.05). However, haplotype ATA extracted from 1082G/A, -819C/T, -592C/A polymorphisms of IL-10 were more prevalent in OLP patients when compared to controls indicating its possible association with OLP susceptibility. Conclusion: It is concluded that TNF-α (-308G/A), TNF-β (+252A/G) and IL-10 (-1082G/A, -819C/T and -592C/A) polymorphisms are associated with the susceptibility of OLP, thus giving additional support for the genetic basis of this disease. Further studies are required using a larger sample size to confirm this association and determine the prognostic values of these findings.

Keywords: oral lichen planus, cytokines, polymorphism, genetic

Procedia PDF Downloads 302
987 Network Analysis of Genes Involved in the Biosynthesis of Medicinally Important Naphthodianthrone Derivatives of Hypericum perforatum

Authors: Nafiseh Noormohammadi, Ahmad Sobhani Najafabadi

Abstract:

Hypericins (hypericin and pseudohypericin) are natural napthodianthrone derivatives produced by Hypericum perforatum (St. John’s Wort), which have many medicinal properties such as antitumor, antineoplastic, antiviral, and antidepressant activities. Production and accumulation of hypericin in the plant are influenced by both genetic and environmental conditions. Despite the existence of different high-throughput data on the plant, genetic dimensions of hypericin biosynthesis have not yet been completely understood. In this research, 21 high-quality RNA-seq data on different parts of the plant were integrated into metabolic data to reconstruct a coexpression network. Results showed that a cluster of 30 transcripts was correlated with total hypericin. The identified transcripts were divided into three main groups based on their functions, including hypericin biosynthesis genes, transporters, detoxification genes, and transcription factors (TFs). In the biosynthetic group, different isoforms of polyketide synthase (PKSs) and phenolic oxidative coupling proteins (POCPs) were identified. Phylogenetic analysis of protein sequences integrated into gene expression analysis showed that some of the POCPs seem to be very important in the biosynthetic pathway of hypericin. In the TFs group, six TFs were correlated with total hypericin. qPCR analysis of these six TFs confirmed that three of them were highly correlated. The identified genes in this research are a rich resource for further studies on the molecular breeding of H. perforatum in order to obtain varieties with high hypericin production.

Keywords: hypericin, St. John’s Wort, data mining, transcription factors, secondary metabolites

Procedia PDF Downloads 89
986 Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule

Authors: Ming-Jong Yao, Chin-Sum Shui, Chih-Han Wang

Abstract:

This paper is developed based on a real-world decision scenario that an industrial gas company that applies the Vendor Managed Inventory model and supplies liquid oxygen with a self-operated heterogeneous vehicle fleet to hospitals in nearby cities. We name it as a Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule and formulate it as a non-linear mixed-integer linear programming problem which simultaneously determines the length of the planning cycle (PC), the length of the replenishment cycle and the dates of replenishment for each customer and the vehicle routes of each day within PC, such that the average daily operation cost within PC, including inventory holding cost, setup cost, transportation cost, and overtime labor cost, is minimized. A solution method based on genetic algorithm, embedded with an encoding and decoding mechanism and local search operators, is then proposed, and the hash function is adopted to avoid repetitive fitness evaluation for identical solutions. Numerical experiments demonstrate that the proposed solution method can effectively solve the problem under different lengths of PC and number of customers. The method is also shown to be effective in determining whether the company should expand the storage capacity of a customer whose demand increases. Sensitivity analysis of the vehicle fleet composition shows that deploying a mixed fleet can reduce the daily operating cost.

Keywords: cyclic inventory routing problem, joint replenishment, heterogeneous vehicle, genetic algorithm

Procedia PDF Downloads 86
985 Pharmacogenetics of Uridine Diphosphate Glucuronosyltransferase (UGT1A9) Genetic Polymorphism on Sodium Valproate Pharmacokinetics in Epilepsy

Authors: Murali Munisamy, Gauthaman Karunakaran, Mubarak Al-Gahtany, Vivekanandhan Subbiah, M. Manjari Tripati

Abstract:

Background: Sodium valproate is a widely prescribed broad-spectrum anti-epileptic drug. It shows high inter-individual variability in pharmacokinetics and pharmacodynamics and has a narrow therapeutic range. We evaluated the effects of polymorphic uridine diphosphate glucuronosyltransferase (UGT1A9) metabolizing enzyme on the pharmacokinetics of sodium valproate in the patients with epilepsy who showed toxicity to therapy. Methods: Genotype analysis of the patients was made with polymerase chain–restriction fragment length polymorphism (RFLP) with sequencing. Plasma drug concentrations were measured with reversed phase high-performance liquid chromatography (HPLC) and concentration–time data were analyzed by using a non-compartmental approach. Results: The results of this study suggested a significant genotypic as well as allelic association with valproic acid toxicity for UGT1A9 polymorphic enzymes. The elimination half-life (t 1/2=40.2 h) of valproic acid was longer and the clearance rate (CL=937 ml/h) was lower in the poor metabolizers group of UGT1A9 polymorphism who showed toxicity than in the intermediate metabolizers group (t1/2=35.5 h, CL=1042 ml/h) or the extensive metabolizers group (t1/2=26. h, CL=1,302 ml/h). Conclusion: Our findings suggest that the UGT1A9 genetic polymorphism plays a significant role in the steady state concentration of sodium valproate, and it thereby has an impact on the toxicity of the sodium valproate used in the patients with epilepsy.

Keywords: UGT1A9, sodium valporate, pharmacogenetics, polymorphism

Procedia PDF Downloads 423
984 Genetic Diversity and Molecular Basis of Carbapenem Resistance in Acinetobacter Baumannii Isolates from Cattle

Authors: Minhas Alam, Muhammad Hidayat Rasool, Mohsin Khurshid, Bilal Aslam

Abstract:

Acinetobacter baumannii is a notorious bacterial pathogen that is an emerging nightmare in clinical settings and is mainly involved in severe nosocomial infections. However, the data related to carbapenem-resistant A. baumannii (CRAB) from veterinary settings is limited, especially in developing countries like Pakistan. To investigate the genetic diversity and molecular basis of carbapenem resistance in Acinetobacter baumannii isolates from Cattle, a total of 1960 samples were collected from cattle from Punjab, Pakistan. The isolates were analyzed by routine microbiological procedures and confirmed by polymerase chain reaction (PCR). The isolates were further screened for antimicrobial susceptibility and the presence of multiple antimicrobial-resistant determinants by PCR. Multilocus sequence typing (MLST) was performed. The results of the current study revealed that the overall prevalence of A. baumannii in cattle was 3.28% (65/1980). Among cattle 27.7% (18/65) were found CRAB strains. The CRAB isolates harbor class D β- lactamases genes, e-g, blaOXA-23 and blaOXA-51, 94.4% (17/18). CRAB isolates carry class B β- lactamases gene blaIMP, and only one isolate carries the blaNDM-1 gene. The MLST results of CRAB isolates from cattle demonstrated 5 STs and one new ST. The commonly found sequence types in CRAB isolates were ST2 (n=10, 55.5%), followed by ST642 (n=5, 27.8%) and ST600 & ST889 (n=1, 5.55%). The presence of CRAB isolates in cattle indicates an alarming situation in Punjab, Pakistan. Immediate control measures should be taken to stop the transmission of CRAB isolates within cattle, to the environment, and to clinical settings.

Keywords: acinetobacter baumannii, carbapenemases, veterinary, drug resistance

Procedia PDF Downloads 54
983 Influence of Age on Some Testicular and Spermatic Parameters in Kids and Bucks in Local Breed Arbia in Algeria

Authors: Boukhalfa Djemouai, Belkadi Souhila, Safsaf Boubakeur

Abstract:

To increase the profitability of the national herd so that it can meet the needs of the population, Algeria has proceeded to the introduction of new reproductive biotechnologies, including artificial insemination on natural heat, by induction and heat synchronization. This biotechnology uses the male way for the creation and dissemination of genetic progress. The study has focused on 30 goat kids and bucks local breed aged between 03 and 24 months, divided into 03 groups 03-06 months[Grp 1; n=9], 07-10 months [Grp 2; n=13] and 11-24 months [Grp 3; n=8], in order to determine the influence of age on testicular evolution by measurements of testis and scrotum, and the epididymis sperm parameters evaluation. These parameters are influenced by age variations (sperm and spermocytogram). The examined parameters have focused on testicular weight (grams), the scrotal circumference (cm), mass mobility (%), vitality rate (%), sperm concentration (x 109), and percentage of abnormal spermatozoa (%). The ANOVA reveals a significance effect of age on parameters: testis weight, scrotal circumference, sperm concentration, motility varying between high (p < 0.01) to very high significance (p < 0.001), while in viability and abnormalities no significance was observed between all groups. The value of these parameters increased significantly until the age of 02 years, while that of sperm abnormalities has increased in Grp2. The histological study of testicular development shows that the genetic spermatozoa function characterized by cell proliferation, which is more and more intense starting from the age of 05 months and can be considered as an age of puberty in the local breed goat Arbia and increases with animal age.

Keywords: kids and bucks, epididymis sperm, testicular measurements, Arbia breed

Procedia PDF Downloads 130
982 An Integrated Approach for Optimal Selection of Machining Parameters in Laser Micro-Machining Process

Authors: A. Gopala Krishna, M. Lakshmi Chaitanya, V. Kalyana Manohar

Abstract:

In the existent analysis, laser micro machining (LMM) of Silicon carbide (SiCp) reinforced Aluminum 7075 Metal Matrix Composite (Al7075/SiCp MMC) was studied. While machining, Because of the intense heat generated, A layer gets formed on the work piece surface which is called recast layer and this layer is detrimental to the surface quality of the component. The recast layer needs to be as small as possible for precise applications. Therefore, The height of recast layer and the depth of groove which are conflicting in nature were considered as the significant manufacturing criteria, Which determines the pursuit of a machining process obtained in LMM of Al7075/10%SiCp composite. The present work formulates the depth of groove and height of recast layer in relation to the machining parameters using the Response Surface Methodology (RSM) and correspondingly, The formulated mathematical models were put to use for optimization. Since the effect of machining parameters on the depth of groove and height of recast layer was contradictory, The problem was explicated as a multi objective optimization problem. Moreover, An evolutionary Non-dominated sorting genetic algorithm (NSGA-II) was employed to optimize the model established by RSM. Subsequently this algorithm was also adapted to achieve the Pareto optimal set of solutions that provide a detailed illustration for making the optimal solutions. Eventually experiments were conducted to affirm the results obtained from RSM and NSGA-II.

Keywords: Laser Micro Machining (LMM), depth of groove, Height of recast layer, Response Surface Methodology (RSM), non-dominated sorting genetic algorithm

Procedia PDF Downloads 343
981 Optimal Design of Storm Water Networks Using Simulation-Optimization Technique

Authors: Dibakar Chakrabarty, Mebada Suiting

Abstract:

Rapid urbanization coupled with changes in land use pattern results in increasing peak discharge and shortening of catchment time of concentration. The consequence is floods, which often inundate roads and inhabited areas of cities and towns. Management of storm water resulting from rainfall has, therefore, become an important issue for the municipal bodies. Proper management of storm water obviously includes adequate design of storm water drainage networks. The design of storm water network is a costly exercise. Least cost design of storm water networks assumes significance, particularly when the fund available is limited. Optimal design of a storm water system is a difficult task as it involves the design of various components, like, open or closed conduits, storage units, pumps etc. In this paper, a methodology for least cost design of storm water drainage systems is proposed. The methodology proposed in this study consists of coupling a storm water simulator with an optimization method. The simulator used in this study is EPA’s storm water management model (SWMM), which is linked with Genetic Algorithm (GA) optimization method. The model proposed here is a mixed integer nonlinear optimization formulation, which takes care of minimizing the sectional areas of the open conduits of storm water networks, while satisfactorily conveying the runoff resulting from rainfall to the network outlet. Performance evaluations of the developed model show that the proposed method can be used for cost effective design of open conduit based storm water networks.

Keywords: genetic algorithm (GA), optimal design, simulation-optimization, storm water network, SWMM

Procedia PDF Downloads 247
980 Data Mining in Healthcare for Predictive Analytics

Authors: Ruzanna Muradyan

Abstract:

Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.

Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health

Procedia PDF Downloads 59
979 Comparison of Phynotypic Traits of Three Arabian Horse Strains

Authors: Saria Almarzook, Monika Reissmann, Gudrun Brockmann

Abstract:

Due to its history, occurrence in different ecosystems and diverse using, the modern horse (Equus caballus) shows large variability in size, appearance, behavior and habits. At all times, breeders try to create groups (breeds, strains) representing high homology but showing clear differences in comparison to other groups. A great interest of analyzing phenotypic and genetic traits looking for real diversity and genetic uniqueness existents for Arabian horses in Syria. 90 Arabian horses from governmental research center of Arabian horses in Damascus were included. The horses represent three strains (Kahlawi, Saklawi, Hamdani) originated from different geographical zones. They were raised on the same farm, under stable conditions. Twelve phenotypic traits were measured: wither height (WH), croup width (CW), croup height (CH), neck girth (NG), thorax girth (TG), chest girth (ChG), chest depth (ChD), chest width (ChW), back line length (BLL), body length (BL), fore cannon length (FCL) and hind cannon length (HCL). The horses were divided into groups according to age (less than 2 years, 2-4 years, 4-9 years, over 9 years) and to sex (male, female). The statistical analyzes show that age has significant influence of WH while the strain has only a very limited effect. On CW, NG, BLL, FCL and HCL, there is only a significant influence of sex. Age has significant effect on CH and BL. All sources of classes have a significant effect on TG, ChG, ChD and ChW. Strain has a significant effect on the BL. These results provide first information for real biodiversity in and between the strains and can be used to develop the breeding work in the Arabian horse breed.

Keywords: Arabian horse, phenotypic traits, strains, Syria

Procedia PDF Downloads 389
978 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry

Authors: Nadia Belu, Laurenţiu Mihai Ionescu, Agnieszka Misztal

Abstract:

The automotive industry is one of the most important industries in the world that concerns not only the economy, but also the world culture. In the present financial and economic context, this field faces new challenges posed by the current crisis, companies must maintain product quality, deliver on time and at a competitive price in order to achieve customer satisfaction. Two of the most recommended techniques of quality management by specific standards of the automotive industry, in the product development, are Failure Mode and Effects Analysis (FMEA) and Control Plan. FMEA is a methodology for risk management and quality improvement aimed at identifying potential causes of failure of products and processes, their quantification by risk assessment, ranking of the problems identified according to their importance, to the determination and implementation of corrective actions related. The companies use Control Plans realized using the results from FMEA to evaluate a process or product for strengths and weaknesses and to prevent problems before they occur. The Control Plans represent written descriptions of the systems used to control and minimize product and process variation. In addition Control Plans specify the process monitoring and control methods (for example Special Controls) used to control Special Characteristics. In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.

Keywords: automotive industry, FMEA, control plan, automotive technology

Procedia PDF Downloads 405
977 Development of Microsatellite Markers for Dalmatian Pyrethrum Using Next-Generation Sequencing

Authors: Ante Turudic, Filip Varga, Zlatko Liber, Jernej Jakse, Zlatko Satovic, Ivan Radosavljevic, Martina Grdisa

Abstract:

Microsatellites (SSRs) are highly informative repetitive sequences of 2-6 base pairs, which are the most used molecular markers in assessing the genetic diversity of plant species. Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip) is an outcrossing diploid (2n = 18) endemic to the eastern Adriatic coast and source of the natural insecticide pyrethrin. Due to the high repetitiveness and large size of the genome (haploid genome size of 9,58 pg), previous attempts to develop microsatellite markers using the standard methods were unsuccessful. A next-generation sequencing (NGS) approach was applied on genomic DNA extracted from fresh leaves of Dalmatian pyrethrum. The sequencing was conducted using NovaSeq6000 Illumina sequencer, after which almost 400 million high-quality paired-end reads were obtained, with a read length of 150 base pairs. Short reads were assembled by combining two approaches; (1) de-novo assembly and (2) joining of overlapped pair-end reads. In total, 6.909.675 contigs were obtained, with the contig average length of 249 base pairs. Of the resulting contigs, 31.380 contained one or multiple microsatellite sequences, in total 35.556 microsatellite loci were identified. Out of detected microsatellites, dinucleotide repeats were the most frequent, accounting for more than half of all microsatellites identifies (21,212; 59.7%), followed by trinucleotide repeats (9,204; 25.9%). Tetra-, penta- and hexanucleotides had similar frequency of 1,822 (5.1%), 1,472 (4.1%), and 1,846 (5.2%), respectively. Contigs containing microsatellites were further filtered by SSR pattern type, transposon occurrences, assembly characteristics, GC content, and the number of occurrences against the draft genome of T. cinerariifolium published previously. After the selection process, 50 microsatellite loci were used for primer design. Designed primers were tested on samples from five distinct populations, and 25 of them showed a high degree of polymorphism. The selected loci were then genotyped on 20 samples belonging to one population resulting in 17 microsatellite markers. Availability of codominant SSR markers will significantly improve the knowledge on population genetic diversity and structure as well as complex genetics and biochemistry of this species. Acknowledgment: This work has been fully supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir/ Sch. Bip.) insecticidal potential’ - (PyrDiv) (IP-06-2016-9034).

Keywords: genome assembly, NGS, SSR, Tanacetum cinerariifolium

Procedia PDF Downloads 131
976 Identification of Genomic Mutations in Prostate Cancer and Cancer Stem Cells By Single Cell RNAseq Analysis

Authors: Wen-Yang Hu, Ranli Lu, Mark Maienschein-Cline, Danping Hu, Larisa Nonn, Toshi Shioda, Gail S. Prins

Abstract:

Background: Genetic mutations are highly associated with increased prostate cancer risk. In addition to whole genome sequencing, somatic mutations can be identified by aligning transcriptome sequences to the human genome. Here we analyzed bulk RNAseq and single cell RNAseq data of human prostate cancer cells and their matched non-cancer cells in benign regions from 4 individual patients. Methods: Sequencing raw reads were aligned to the reference genome hg38 using STAR. Variants were annotated using Annovar with respect to overlap gene annotation information, effect on gene and protein sequence, and SIFT annotation of nonsynonymous variant effect. We determined cancer-specific novel alleles by comparing variant calls in cancer cells to matched benign cells from the same individual by selecting unique alleles that were only detected in the cancer samples. Results: In bulk RNAseq data from 3 patients, the most common variants were the noncoding mutations at UTR3/UTR5, and the major variant types were single-nucleotide polymorphisms (SNP) including frameshift mutations. C>T transversion is the most frequently presented substitution of SNP. A total of 222 genes carrying unique exonic or UTR variants were revealed in cancer cells across 3 patients but not in benign cells. Among them, transcriptome levels of 7 genes (CITED2, YOD1, MCM4, HNRNPA2B1, KIF20B, DPYSL2, NR4A1) were significantly up or down regulated in cancer stem cells. Out of the 222 commonly mutated genes in cancer, 19 have nonsynonymous variants and 11 are damaged genes with variants including SIFT, frameshifts, stop gain/loss, and insertions/deletions (indels). Two damaged genes, activating transcription factor 6 (ATF6) and histone demethylase KDM3A are of particular interest; the former is a survival factor for certain cancer cells while the later positively activates androgen receptor target genes in prostate cancer. Further, single cell RNAseq data of cancer cells and their matched non-cancer benign cells from both primary 2D and 3D tumoroid cultures were analyzed. Similar to the bulk RNAseq data, single cell RNAseq in cancer demonstrated that the exonic mutations are less common than noncoding variants, with SNPs including frameshift mutations the most frequently presented types in cancer. Compared to cancer stem cell enriched-3D tumoroids, 2D cancer cells carried 3-times higher variants, 8-times more coding mutations and 10-times more nonsynonymous SNP. Finally, in both 2D primary and 3D tumoroid cultures, cancer stem cells exhibited fewer coding mutations and noncoding SNP or insertions/deletions than non-stem cancer cells. Summary: Our study demonstrates the usefulness of bulk and single cell RNAseaq data in identifying somatic mutations in prostate cancer, providing an alternative method in screening candidate genes for prostate cancer diagnosis and potential therapeutic targets. Cancer stem cells carry fewer somatic mutations than non-stem cancer cells due to their inherited immortal stand DNA from parental stem cells that explains their long-lived characteristics.

Keywords: prostate cancer, stem cell, genomic mutation, RNAseq

Procedia PDF Downloads 16
975 Reversible Information Hitting in Encrypted JPEG Bitstream by LSB Based on Inherent Algorithm

Authors: Vaibhav Barve

Abstract:

Reversible information hiding has drawn a lot of interest as of late. Being reversible, we can restore unique computerized data totally. It is a plan where mystery data is put away in digital media like image, video, audio to maintain a strategic distance from unapproved access and security reason. By and large JPEG bit stream is utilized to store this key data, first JPEG bit stream is encrypted into all around sorted out structure and then this secret information or key data is implanted into this encrypted region by marginally changing the JPEG bit stream. Valuable pixels suitable for information implanting are computed and as indicated by this key subtle elements are implanted. In our proposed framework we are utilizing RC4 algorithm for encrypting JPEG bit stream. Encryption key is acknowledged by framework user which, likewise, will be used at the time of decryption. We are executing enhanced least significant bit supplanting steganography by utilizing genetic algorithm. At first, the quantity of bits that must be installed in a guaranteed coefficient is versatile. By utilizing proper parameters, we can get high capacity while ensuring high security. We are utilizing logistic map for shuffling of bits and utilization GA (Genetic Algorithm) to find right parameters for the logistic map. Information embedding key is utilized at the time of information embedding. By utilizing precise picture encryption and information embedding key, the beneficiary can, without much of a stretch, concentrate the incorporated secure data and totally recoup the first picture and also the original secret information. At the point when the embedding key is truant, the first picture can be recouped pretty nearly with sufficient quality without getting the embedding key of interest.

Keywords: data embedding, decryption, encryption, reversible data hiding, steganography

Procedia PDF Downloads 287
974 Cytoxicity Studies of Sachets Beverages Using Allium Cepa Test

Authors: Ja’Afar Umar, Naziru Salisu

Abstract:

The consumption of powdered or industrialized juices has increased globally due to the fast pace of city life. These foods, with their attractive color, odor, and taste, are easily diluted in water and can lead to obesity, diabetes, hypertension, and cardiovascular problems. In a study, 80 purple varieties of onion bulbs were used to evaluate the cytotoxicity of the Tiara and Bevi mix beverage powder. The viability of the bulbs was tested using the A. cepa toxicity test. The bulbs were divided into five groups, and the root growth was recorded. The mixture was then squashed in a 45% acetic acid solution and examined for chromosomal abnormalities. The chromosomal abnormalities were classified as bridges, c-mitoses, vagrants, fragments, stickiness, bi-nuclei, and multi-polar. The study found that the highest number of dividing cells was in the negative control group, followed by the group treated with BM beverage. The highest number of aberrant cells was in the group treated with TR beverage, followed by BM 5%. Stickiness of cells was observed in both BM and TR 5% beverage concentrations. No lagging chromosome was present in the negative control group. The highest mitotic index was in the negative control group, and bridge fragrance was observed in the groups treated with different beverages. This study highlights the importance of Allium cepa L. in genotoxic substance testing, revealing chromosomal and mitotic abnormalities in root tip cells. The study also reveals that at 5% concentrations, root growth decreases, indicating potential genetic abnormalities in Allium cepa's genetic material.

Keywords: cytotoxicity, Allium cepa, Beverages, Chromosome

Procedia PDF Downloads 13
973 Optimization and Simulation Models Applied in Engineering Planning and Management

Authors: Abiodun Ladanu Ajala, Wuyi Oke

Abstract:

Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.

Keywords: linear programming, mutation, optimization, simulation

Procedia PDF Downloads 588