Search results for: genetic breeding models
7733 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform
Authors: Omaima N. Ahmad AL-Allaf
Abstract:
Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform
Procedia PDF Downloads 2267732 Genetic Dissection of QTLs in Intraspecific Hybrids Derived from Muskmelon (Cucumis Melo L.) and Mangalore Melon (Cucumis Melo Var Acidulus) for Shelflife and Fruit Quality Traits
Authors: Virupakshi Hiremata, Ratnakar M. Shet, Raghavendra Gunnaiah, Prashantha A.
Abstract:
Muskmelon is a health-beneficial and refreshing dessert vegetable with a low shelf life. Mangalore melon, a genetic homeologue of muskmelon, has a shelf life of more than six months and is mostly used for culinary purposes. Understanding the genetics of shelf life, yield and yield-related traits and identification of markers linked to such traits is helpful in transfer of extended shelf life from Mangalore melon to the muskmelon through intra-specific hybridization. For QTL mapping, 276 F2 mapping population derived from the cross Arka Siri × SS-17 was genotyped with 40 polymorphic markers distributed across 12 chromosomes. The same population was also phenotyped for yield, shelf life and fruit quality traits. One major QTL (R2 >10) and fourteen minor QTLs (R2 <10) localized on four linkage groups, governing different traits were mapped in F2 mapping population developed from the intraspecific cross with a LOD > 5.5. The phenotypic varience explained by each locus varied from 3.63 to 10.97 %. One QTL was linked to shelf-life (qSHL-3-1), five QTLs were linked to TSS (qTSS-1-1, qTSS-3-3, qTSS-3-1, qTSS-3-2 and qTSS-1-2), two QTLs for flesh thickness (qFT-3-1, and qFT-3-2) and seven QTLs for fruit yield per vine (qFYV-3-1, qFYV-1-1, qFYV-3-1, qFYV1-1, qFYV-1-3, qFYV2-1 and qFYV6-1). QTL flanking markers may be used for marker assisted introgression of shelf life into muskmelon. Important QTL will be further fine-mapped for identifying candidate genes by QTLseq and RNAseq analysis. Fine-mapping of Important Quantitative Trait Loci (QTL) holds immense promise in elucidating the genetic basis of complex traits. Leveraging advanced techniques like QTLseq and RNA sequencing (RNA seq) is crucial for this endeavor. QTLseq combines next-generation sequencing with traditional QTL mapping, enabling precise identification of genomic regions associated with traits of interest. Through high-throughput sequencing, QTLseq provides a detailed map of genetic variations linked to phenotypic variations, facilitating targeted investigations. Moreover, RNA seq analysis offers a comprehensive view of gene expression patterns in response to specific traits or conditions. By comparing transcriptomes between contrasting phenotypes, RNA seq aids in pinpointing candidate genes underlying QTL regions. Integrating QTLseq with RNA seq allows for a multi-dimensional approach, coupling genetic variation with gene expression dynamics.Keywords: QTL, shelf life, TSS, muskmelon and Mangalore melon
Procedia PDF Downloads 547731 Evolution under Length Constraints for Convolutional Neural Networks Architecture Design
Authors: Ousmane Youme, Jean Marie Dembele, Eugene Ezin, Christophe Cambier
Abstract:
In recent years, the convolutional neural networks (CNN) architectures designed by evolution algorithms have proven to be competitive with handcrafted architectures designed by experts. However, these algorithms need a lot of computational power, which is beyond the capabilities of most researchers and engineers. To overcome this problem, we propose an evolution architecture under length constraints. It consists of two algorithms: a search length strategy to find an optimal space and a search architecture strategy based on a genetic algorithm to find the best individual in the optimal space. Our algorithms drastically reduce resource costs and also keep good performance. On the Cifar-10 dataset, our framework presents outstanding performance with an error rate of 5.12% and only 4.6 GPU a day to converge to the optimal individual -22 GPU a day less than the lowest cost automatic evolutionary algorithm in the peer competition.Keywords: CNN architecture, genetic algorithm, evolution algorithm, length constraints
Procedia PDF Downloads 1287730 Evaluation of Adaptive Fitness of Indian Teak (Tectona grandis L. F.) Metapopulation through Inter Simple Sequence Repeat Markers
Authors: Vivek Vaishnav, Shamim Akhtar Ansari
Abstract:
Teak (Tectona grandis L.f.) belonging to plant family Lamiaceae and the most commercialized timber species is endemic to South-Asia. The adaptive fitness of the species metapopulation was evaluated through its genetic differentiation and assessing the influence of geo-climatic conditions. 290 genotypes were sampled from 29 locations of its natural distribution and the genetic data was incorporated with geo-climatic parameters. Through Bayesian approach based analysis of 43 highly polymorphic ISSR markers, six homogeneous clusters (0.8% genetic variability) were identified. The six clusters were found with the various regimes of the temperature range, i.e., I - 9.10±1.35⁰C, II -6.35±0.21⁰C, III -12.21±0.43⁰C, IV - 10.8±1.06⁰C, V - 11.67±3.04⁰C, and VI - 12.35±0.21⁰C. The population had a very high percentage of LD (21.48%) among the amplified loci possibly due to experiencing restricted gene flow as well as co-adaptation and association of distant/diverse loci/alleles as a result of the stabilized climatic conditions and countless cycles of historical recombination events on a large geological timescale. The same possibly accounts for the narrow distribution of teak as a climax species in the tropical deciduous forests of the country. The regions of strong LD in teak genome significantly associated with climatic parameters also reflect that the species is tolerant to the wide regimes of the temperature range and may possibly withstand global warming and climate change in the coming millennium.Keywords: Bayesian analysis, inter simple sequence repeat, linkage disequilibrium, marker-geoclimatic association
Procedia PDF Downloads 2637729 Optimal Design of Redundant Hybrid Manipulator for Minimum Singularity
Authors: Arash Rahmani, Ahmad Ghanbari, Abbas Baghernezhad, Babak Safaei
Abstract:
In the design of parallel manipulators, usually mean value of a dexterity measure over the workspace volume is considered as the objective function to be used in optimization algorithms. The mentioned indexes in a hybrid parallel manipulator (HPM) are quite complicated to solve thanks to infinite solutions for every point within the workspace of the redundant manipulators. In this paper, spatial isotropic design axioms are extended as a well-known method for optimum design of manipulators. An upper limit for the isotropy measure of HPM is calculated and instead of computing and minimizing isotropy measure, minimizing the obtained limit is considered. To this end, two different objective functions are suggested which are obtained from objective functions of comprising modules. Finally, by using genetic algorithm (GA), the best geometric parameters for a specific hybrid parallel robot which is composed of two modified Gough-Stewart platforms (MGSP) are achieved.Keywords: hybrid manipulator, spatial isotropy, genetic algorithm, optimum design
Procedia PDF Downloads 3367728 Sliding Mode MRAS Observer for Optimized Backstepping Control of Induction Motor
Authors: Chaouch Souad, Abdou Latifa, Larbi Chrifi Alaoui
Abstract:
This paper deals with sensorless backstepping control of induction motor using MRAS technique associated to sliding mode approach. A high order genetic algorithm structure is used to approximate a control law designed by the Backstepping technique, and to find the best parameters globally optimized. However, the Backstepping control approach is unsuitable for high performance applications because the need of a speed sensor for increased accuracy and the absence of any error decay mechanism. In this paper a nonlinear observer, obtained by combining sliding mode structure and model reference adaptive system (MRAS), is designed for the rotor flux and rotor speed estimations. To validate the proposed method, the results are presented for showing the improved drive characteristics and performances.Keywords: Backstepping Control, Induction Motor, Genetic Algorithm, Sliding Mode observer
Procedia PDF Downloads 7317727 A Nonlinear Dynamical System with Application
Authors: Abdullah Eqal Al Mazrooei
Abstract:
In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model
Procedia PDF Downloads 2547726 Models of State Organization and Influence over Collective Identity and Nationalism in Spain
Authors: Muñoz-Sanchez, Victor Manuel, Perez-Flores, Antonio Manuel
Abstract:
The main objective of this paper is to establish the relationship between models of state organization and the various types of collective identity expressed by the Spanish. The question of nationalism and identity ascription in Spain has always been a topic of special importance due to the presence in that country of territories where the population emits very different opinions of nationalist sentiment than the rest of Spain. The current situation of sovereignty challenge of Catalonia to the central government exemplifies the importance of the subject matter. In order to analyze this process of interrelation, we use a secondary data mining by applying the multiple correspondence analysis technique (MCA). As a main result a typology of four types of expression of collective identity based on models of State organization are shown, which are connected with the party position on this issue.Keywords: models of organization of the state, nationalism, collective identity, Spain, political parties
Procedia PDF Downloads 4437725 Mosaic Augmentation: Insights and Limitations
Authors: Olivia A. Kjorlien, Maryam Asghari, Farshid Alizadeh-Shabdiz
Abstract:
The goal of this paper is to investigate the impact of mosaic augmentation on the performance of object detection solutions. To carry out the study, YOLOv4 and YOLOv4-Tiny models have been selected, which are popular, advanced object detection models. These models are also representatives of two classes of complex and simple models. The study also has been carried out on two categories of objects, simple and complex. For this study, YOLOv4 and YOLOv4 Tiny are trained with and without mosaic augmentation for two sets of objects. While mosaic augmentation improves the performance of simple object detection, it deteriorates the performance of complex object detection, specifically having the largest negative impact on the false positive rate in a complex object detection case.Keywords: accuracy, false positives, mosaic augmentation, object detection, YOLOV4, YOLOV4-Tiny
Procedia PDF Downloads 1277724 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters
Authors: S. A. Al-Qallaf, S. A. Al-Mawsawi, A. Haider
Abstract:
In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.Keywords: UPFC, decoupled model, load flow, control parameters
Procedia PDF Downloads 5547723 A Study on Characteristics of Hedonic Price Models in Korea Based on Meta-Regression Analysis
Authors: Minseo Jo
Abstract:
The purpose of this paper is to examine the factors in the hedonic price models, that has significance impact in determining the price of apartments. There are many variables employed in the hedonic price models and their effectiveness vary differently according to the researchers and the regions they are analysing. In order to consider various conditions, the meta-regression analysis has been selected for the study. In this paper, four meta-independent variables, from the 65 hedonic price models to analysis. The factors that influence the prices of apartments, as well as including factors that influence the prices of apartments, regions, which are divided into two of the research performed, years of research performed, the coefficients of the functions employed. The covariance between the four meta-variables and p-value of the coefficients and the four meta-variables and number of data used in the 65 hedonic price models have been analyzed in this study. The six factors that are most important in deciding the prices of apartments are positioning of apartments, the noise of the apartments, points of the compass and views from the apartments, proximity to the public transportations, companies that have constructed the apartments, social environments (such as schools etc.).Keywords: hedonic price model, housing price, meta-regression analysis, characteristics
Procedia PDF Downloads 4027722 Autosomal Dominant Polycystic Kidney Patients May Be Predisposed to Various Cardiomyopathies
Authors: Fouad Chebib, Marie Hogan, Ziad El-Zoghby, Maria Irazabal, Sarah Senum, Christina Heyer, Charles Madsen, Emilie Cornec-Le Gall, Atta Behfar, Barbara Ehrlich, Peter Harris, Vicente Torres
Abstract:
Background: Mutations in PKD1 and PKD2, the genes encoding the proteins polycystin-1 (PC1) and polycystin-2 (PC2) cause autosomal dominant polycystic kidney disease (ADPKD). ADPKD is a systemic disease associated with several extrarenal manifestations. Animal models have suggested an important role for the polycystins in cardiovascular function. The aim of the current study is to evaluate the association of various cardiomyopathies in a large cohort of patients with ADPKD. Methods: Clinical data was retrieved from medical records for all patients with ADPKD and cardiomyopathies (n=159). Genetic analysis was performed on available DNA by direct sequencing. Results: Among the 58 patients included in this case series, 39 patients had idiopathic dilated cardiomyopathy (IDCM), 17 had hypertrophic obstructive cardiomyopathy (HOCM), and 2 had left ventricular noncompaction (LVNC). The mean age at cardiomyopathy diagnosis was 53.3, 59.9 and 53.5 years in IDCM, HOCM and LVNC patients respectively. The median left ventricular ejection fraction at initial diagnosis of IDCM was 25%. Average basal septal thickness was 19.9 mm in patients with HOCM. Genetic data was available in 19, 8 and 2 cases of IDCM, HOCM, and LVNC respectively. PKD1 mutations were detected in 47.4%, 62.5% and 100% of IDCM, HOCM and LVNC cases. PKD2 mutations were detected only in IDCM cases and were overrepresented (36.8%) relative to the expected frequency in ADPKD (~15%). The prevalence of IDCM, HOCM, and LVNC in our ADPKD clinical cohort was 1:17, 1:39 and 1:333 respectively. When compared to the general population, IDCM and HOCM was approximately 10-fold more prevalent in patients with ADPKD. Conclusions: In summary, we suggest that PKD1 or PKD2 mutations may predispose to idiopathic dilated or hypertrophic cardiomyopathy. There is a trend for patients with PKD2 mutations to develop the former and for patients with PKD1 mutations to develop the latter. Predisposition to various cardiomyopathies may be another extrarenal manifestation of ADPKD.Keywords: autosomal dominant polycystic kidney (ADPKD), polycystic kidney disease, cardiovascular, cardiomyopathy, idiopathic dilated cardiomyopathy, hypertrophic cardiomyopathy, left ventricular noncompaction
Procedia PDF Downloads 3117721 Convolutional Neural Networks Architecture Analysis for Image Captioning
Authors: Jun Seung Woo, Shin Dong Ho
Abstract:
The Image Captioning models with Attention technology have developed significantly compared to previous models, but it is still unsatisfactory in recognizing images. We perform an extensive search over seven interesting Convolutional Neural Networks(CNN) architectures to analyze the behavior of different models for image captioning. We compared seven different CNN Architectures, according to batch size, using on public benchmarks: MS-COCO datasets. In our experimental results, DenseNet and InceptionV3 got about 14% loss and about 160sec training time per epoch. It was the most satisfactory result among the seven CNN architectures after training 50 epochs on GPU.Keywords: deep learning, image captioning, CNN architectures, densenet, inceptionV3
Procedia PDF Downloads 1317720 Modeling of Particle Reduction and Volatile Compounds Profile during Chocolate Conching by Electronic Nose and Genetic Programming (GP) Based System
Authors: Juzhong Tan, William Kerr
Abstract:
Conching is one critical procedure in chocolate processing, where special flavors are developed, and smooth mouse feel the texture of the chocolate is developed due to particle size reduction of cocoa mass and other additives. Therefore, determination of the particle size and volatile compounds profile of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products. Currently, precise particle size measurement is usually done by laser scattering which is expensive and inaccessible to small/medium size chocolate manufacturers. Also, some other alternatives, such as micrometer and microscopy, can’t provide good measurements and provide little information. Volatile compounds analysis of cocoa during conching, has similar problems due to its high cost and limited accessibility. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was inserted to a conching machine and was used to monitoring the volatile compound profile of chocolate during the conching. A model correlated volatile compounds profiles along with factors including the content of cocoa, sugar, and the temperature during the conching to particle size of chocolate particles by genetic programming was established. The model was used to predict the particle size reduction of chocolates with different cocoa mass to sugar ratio (1:2, 1:1, 1.5:1, 2:1) at 8 conching time (15min, 30min, 1h, 1.5h, 2h, 4h, 8h, and 24h). And the predictions were compared to laser scattering measurements of the same chocolate samples. 91.3% of the predictions were within the range of later scatting measurement ± 5% deviation. 99.3% were within the range of later scatting measurement ± 10% deviation.Keywords: cocoa bean, conching, electronic nose, genetic programming
Procedia PDF Downloads 2557719 The Delaying Influence of Degradation on the Divestment of Gas Turbines for Associated Gas Utilisation: Part 1
Authors: Mafel Obhuo, Dodeye I. Igbong, Duabari S. Aziaka, Pericles Pilidis
Abstract:
An important feature of the exploitation of associated gas as fuel for gas turbine engines is a declining supply. So when exploiting this resource, the divestment of prime movers is very important as the fuel supply diminishes with time. This paper explores the influence of engine degradation on the timing of divestments. Hypothetical but realistic gas turbine engines were modelled with Turbomatch, the Cranfield University gas turbine performance simulation tool. The results were deployed in three degradation scenarios within the TERA (Techno-economic and environmental risk analysis) framework to develop economic models. An optimisation with Genetic Algorithms was carried out to maximize the economic benefit. The results show that degradation will have a significant impact. It will delay the divestment of power plants, while they are running less efficiently. Over a 20 year investment, a decrease of $0.11bn, $0.26bn and $0.45bn (billion US dollars) were observed for the three degradation scenarios as against the clean case.Keywords: economic return, flared associated gas, net present value, optimization
Procedia PDF Downloads 1377718 Models and Metamodels for Computer-Assisted Natural Language Grammar Learning
Authors: Evgeny Pyshkin, Maxim Mozgovoy, Vladislav Volkov
Abstract:
The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert.Keywords: computer-assisted instruction, language learning, natural language grammar models, HCI
Procedia PDF Downloads 5197717 Automatic Calibration of Agent-Based Models Using Deep Neural Networks
Authors: Sima Najafzadehkhoei, George Vega Yon
Abstract:
This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.Keywords: ABM, calibration, CNN, LSTM, epidemiology
Procedia PDF Downloads 247716 The Impact of the Genetic Groups of Microorganisms on the Production of Mousy-Compounds
Authors: Pierre Moulis, Markus Herderich, Doris Rauhut, Patricia Ballestra
Abstract:
Nowadays, it is starting to be more frequent to detect wines with mousy off-flavor. The reasons behind this could be the significant decrease in sulphur dioxide, the increase in pH, and the trend for spontaneous fermentation in wine. This off-flavor can be produced by Brettanomyces bruxellensis or some Lactic acid bacteria. So far there is no study working on the influence of the genetic group on the production of these microorganisms. Objectives: The objectives of this research are to increase knowledge and to have a better understanding of the microbiological phenomena related to the production of the mousy off-flavor in the wine. Methodologies: In this research, microorganisms were screened in an N-heterocycle assay medium (this medium contained all known precursors) and the production of mousy compounds was quantified by Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry (SBSE-GC-MS). Main contributions: Brettanomyces bruxellensis and Oenococcus oeni could produce mousiness at a different amount depending on the strain. But there is no group effect.Keywords: mousy off-flavor, wine, Brettanomyces bruxellensis, Oenococcus oeni
Procedia PDF Downloads 1017715 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 747714 Continuum-Based Modelling Approaches for Cell Mechanics
Authors: Yogesh D. Bansod, Jiri Bursa
Abstract:
The quantitative study of cell mechanics is of paramount interest since it regulates the behavior of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as a combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells.Keywords: cell mechanics, computational models, continuum approach, mechanical models
Procedia PDF Downloads 3637713 Genetic Characterization of a Composite Transposon Carrying armA and Aac(6)-Ib Genes in an Escherichia coli Isolate from Egypt
Authors: Omneya M. Helmy, Mona T. Kashef
Abstract:
Aminoglycosides are used in treating a wide range of infections caused by both Gram-negative and Gram positive bacteria. The presence of 16S rRNA methyl transferases (16S-RMTase) is among the newly discovered resistance mechanisms that confer high resistance to clinically useful aminoglycosides. Cephalosporins are the most commonly used antimicrobials in Egypt; therefore, this study was conducted to determine the isolation frequency of 16S rRNA methyl transferases among third generation cephalosporin-resistant clinical isolates in Egypt. One hundred and twenty three cephalosporin resistant Gram-negative clinical isolates were screened for aminoglycoside resistance by the Kirby Bauer disk diffusion method and tested for possible production of 16S-RMTase. PCR testing and sequencing were used to confirm the presence of 16S-RMTase and the associated antimicrobial resistance determinants, as well as the genetic region surrounding the armA gene. Out of 123 isolates, 66 (53.66%) were resistant to at least one aminoglycoside antibiotic. Only one Escherichia coli isolate (E9ECMO) which was totally resistant to all tested aminoglycosides, was confirmed to have the armA gene in association with blaTEM-1, blaCTX-M-15, blaCTX-M-14 and aac(6)-Ib genes. The armA gene was found to be carried on a large A/C plasmid. Genetic mapping of the armA surrounding region revealed, for the first time, the association of armA with aac(6)-Ib on the same transposon. In Conclusion, the isolation frequency of 16S-RMTase was low among the tested cephalosporin-resistant clinical samples. However, a novel composite transposon has been detected conferring high-level aminoglycosides resistance.Keywords: aminoglcosides, armA gene, β lactmases, 16S rRNA methyl transferases
Procedia PDF Downloads 2827712 Comparative Study on the Social Behaviour of Sambar Deer (Rusa unicolor) in Captive Facilities in Peninsular Malaysia
Authors: Kushaal Selvarajah, Geetha Annavi, Mohd Noor Hisham Mohd Nadzir
Abstract:
Sambar deer (Rusa unicolor) was uplisted from Least Concern to Vulnerable by the International Union for Conservation of Nature Red list in 2015 due to drastic population decline in the wild throughout its geographical range. Sambar deer is a valued prey for the highly endangered species such as the Malayan tiger. Ex-situ conservation efforts, i.e., captive breeding, initiated by local government to boost sambar deer numbers in captivity and to reintroduce into the wild to support a higher number of tigers, consistent with the goal of our National Tiger Conservation Action Plan. The reproductive success of sambar deer and their welfare management practices in captivity are important components for effective captive breeding programs. However, there is a lack of study carried out on sambar deer in recent years and their behavior in captivity. Three captive sites (Zoo Negara, Zoo Taiping, and Sungkai Conservation Centre) were selected and observed for an average of 40 days each site (6 hours/day). A Generalized Linear Model (GLM) was used to determine the correlation between social behavior and extrinsic parameters. A comparison between all three captive sites showed the strongest correlation in behavioral variability, followed by a time of observation. This proves that there is a difference between in behavioral consistency and frequency between herds across captive sites rising to the possibility of external factors that are influential. Time of day of observation also had significant influence on certain extrinsic parameters being skewed to morning observations and this could be due to an adaptive behavior to the feeding time in the captive sites being in the morning which caused the deer to be resting towards the afternoon. Extensive study need to be done on sambar deer to pinpoint the specifics and better understanding of these possible influential factors in their behavior.Keywords: behaviour ecology, captivity, ex-situ conservation, husbandry
Procedia PDF Downloads 1587711 Distribution System Planning with Distributed Generation and Capacitor Placements
Authors: Nattachote Rugthaicharoencheep
Abstract:
This paper presents a feeder reconfiguration problem in distribution systems. The objective is to minimize the system power loss and to improve bus voltage profile. The optimization problem is subjected to system constraints consisting of load-point voltage limits, radial configuration format, no load-point interruption, and feeder capability limits. A method based on genetic algorithm, a search algorithm based on the mechanics of natural selection and natural genetics, is proposed to determine the optimal pattern of configuration. The developed methodology is demonstrated by a 33-bus radial distribution system with distributed generations and feeder capacitors. The study results show that the optimal on/off patterns of the switches can be identified to give the minimum power loss while respecting all the constraints.Keywords: network reconfiguration, distributed generation capacitor placement, loss reduction, genetic algorithm
Procedia PDF Downloads 1767710 Family Functionality in Mexican Children with Congenital and Non-Congenital Deafness
Authors: D. Estrella, A. Silva, R. Zapata, H. Rubio
Abstract:
A total of 100 primary caregivers (mothers, fathers, grandparents) with at least one child or grandchild with a diagnosis of congenital bilateral profound deafness were assessed in order to evaluate the functionality of families with a deaf member, who was evaluated by specialists in audiology, molecular biology, genetics and psychology. After confirmation of the clinical diagnosis, DNA from the patients and parents were analyzed in search of the 35delG deletion of the GJB2 gene to determine who possessed the mutation. All primary caregivers were provided psychological support, regardless of whether or not they had the mutation, and prior and subsequent, the family APGAR test was applied. All parents, grandparents were informed of the results of the genetic analysis during the psychological intervention. The family APGAR, after psychological and genetic counseling, showed that 14% perceived their families as functional, 62% moderately functional and 24% dysfunctional. This shows the importance of psychological support in family functionality that has a direct impact on the quality of life of these families.Keywords: deafness, psychological support, family, adaptation to disability
Procedia PDF Downloads 4247709 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump
Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison
Abstract:
Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.Keywords: centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm
Procedia PDF Downloads 4107708 Educational Experience, Record Keeping, Genetic Selection and Herd Management Effects on Monthly Milk Yield and Revenues of Dairy Farms in Southern Vietnam
Authors: Ngoc-Hieu Vu
Abstract:
A study was conducted to estimate the record keeping, genetic selection, educational experience, and farm management effect on monthly milk yield per farm, average milk yield per cow, monthly milk revenue per farm, and monthly milk revenue per cow of dairy farms in the Southern region of Vietnam. The dataset contained 5448 monthly record collected from January 2013 to May 2015. Results showed that longer experience increased (P < 0.001) monthly milk yields and revenues. Better educated farmers produced more monthly milk per farm and monthly milk per cow and revenues (P < 0.001) than lower educated farmers. Farm that kept records on individual animals had higher (P < 0.001) for monthly milk yields and revenues than farms that did not. Farms that used hired people produced the highest (p < 0.05) monthly milk yield per farm, milk yield per cow and revenues, followed by farms that used both hire and family members, and lowest values were for farms that used family members only. Farms that used crosses Holstein in herd were higher performance (p < 0.001) for all traits than farms that used purebred Holstein and other breeds. Farms that used genetic information and phenotypes when selecting sires were higher (p < 0.05) for all traits than farms that used only phenotypes and personal option. Farms that received help from Vet, organization staff, or government officials had higher monthly milk yield and revenues than those that decided by owner. These findings suggest that dairy farmers should be training in systematic, must be considered and continuous support to improve farm milk production and revenues, to increase the likelihood of adoption on a sustainable way.Keywords: dairy farming, education, milk yield, Southern Vietnam
Procedia PDF Downloads 3317707 Aerodynamic Design an UAV with Application on the Spraying Agricola with Method of Genetic Algorithm Optimization
Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.
Abstract:
Agriculture in the world falls within the main sources of economic and global needs, so care of crop is extremely important for owners and workers; one of the major causes of loss of product is the pest infection of different types of organisms. We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB"," ANSYS FLUENT"," XFoil " package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi- objective problems can be helpful for future developments. The program has 10 functions developed in MATLAB, these functions are related to each other to enable the development of design, and all these functions are controlled by the principal code "Master.m".Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, stability, vortex
Procedia PDF Downloads 5327706 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery
Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene
Abstract:
Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.Keywords: multi-objective, analysis, data flow, freight delivery, methodology
Procedia PDF Downloads 1807705 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources
Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha
Abstract:
Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models
Procedia PDF Downloads 2117704 Cryopreservation of Ring-Necked Pheasant (Phasianus colchicus) Semen for Establishing Cryobank
Authors: Rida Pervaiz, Bushra Allah Rakha, Muhammad Sajjad Ansari, Shamim Akhter, Kainat Waseem, Sumiyyah Zuha, Tooba Javed
Abstract:
Ring-necked pheasant (Phasianus colchicus) belongs to order Galliformes and family Phasianidae. It has been recognized as the most hunted bird due to its attractive colorful appearance and meat. Loss of habitat and hunting pressure has caused population fluctuations in the native range. Under these circumstances, this species can be conserved by employing ex-situ in vitro conservation techniques. Captive breeding, in combination with semen cryobanking is the most appropriate option to conserve/propagate this species without deteriorating the genetic diversity. Cryopreservation protocols of adequate efficiency are necessary to establish semen cryobanking for a species. Therefore, present study was designed to devise an efficient extender for cryopreservation of ring-necked pheasant semen. For this purpose, a range of extenders (Beltsville Poultry, red fowl, Lake, EK, Tselutin Poultry and Chicken semen extenders) were evaluated for cryopreservation of ring-necked pheasant semen. Semen collected from 10 cocks, diluted in the Beltsville Poultry (BPSE), Red Fowl (RFE), Lake (LE), EK (EKE), Tselutin Poultry (TPE) and Chicken Semen (CSE) extenders and cryopreserved. Glycerol (10%) was added to semen at 4°C, equilibrated for 10 min, filled in 0.5 mL French straws, kept over liquid nitrogen vapors for 10 min, cryopreserved in LN2 and stored. Sperm motility (%), viability (%), live/dead ratio (%), plasma membrane (%) and DNA Integrity (%) were evaluated at post-dilution, post-cooling, post-equilibration and post-thawing stage of cryopreservation. Sperm motility (83.8 ± 3.1; 81.3 ± 3.8; 73.8 ± 2.4; 62.5 ± 1.4), viability (79.0 ± 1.7; 75.5 ± 1.6; 69.5 ± 2.3; 65.5 ± 2.4), live/dead ratio (80.5 ± 5.7; 77.3 ± 4.9; 76.0 ± 2.7; 68.3 ± 2.3), plasma membrane (74.5 ± 2.9; 73.8 ± 3.4; 71.3 ± 2.3; 75.0 ± 3.4) and DNA integrity (78.3 ± 1.7; 73.0 ± 1.2; 68.0 ± 2.0; 63.0 ± 2.5) at all four stages of cryopreservation were recorded higher (P < 0.05) in red fowl extender compared to all experimental extenders. It is concluded that red fowl extender is the best extender for cryopreservation of ring-necked pheasant semen and can be used in establishing cryobank for ex situ conservation.Keywords: ring-necked pheasant; extenders; cryopreservation; semen quality; DNA integrity
Procedia PDF Downloads 140