Search results for: floating wind
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1406

Search results for: floating wind

686 Effects of Environmental Parameters on Salmonella Contaminated in Harvested Oysters (Crassostrea lugubris and Crassostrea belcheri)

Authors: Varangkana Thaotumpitak, Jarukorn Sripradite, Saharuetai Jeamsripong

Abstract:

Environmental contamination from wastewater discharges originated from anthropogenic activities introduces the accumulation of enteropathogenic bacteria in aquatic animals, especially in oysters, and in shellfish harvesting areas. The consumption of raw or partially cooked oysters can be a risk for seafood-borne diseases in human. This study aimed to evaluate the relationship between the presence of Salmonella in oyster meat samples, and environmental factors (ambient air temperature, relative humidity, gust wind speed, average wind speed, tidal condition, precipitation and season) by using the principal component analysis (PCA). One hundred and forty-four oyster meat samples were collected from four oyster harvesting areas in Phang Nga province, Thailand from March 2016 to February 2017. The prevalence of Salmonella of each site was ranged from 25.0-36.11% in oyster meat. The results of PCA showed that ambient air temperature, relative humidity, and precipitation were main factors correlated with Salmonella detection in these oysters. Positive relationship was observed between positive Salmonella in the oysters and relative humidity (PC1=0.413) and precipitation (PC1=0.607), while the negative association was found between ambient air temperature (PC1=0.338) and the presence of Salmonella in oyster samples. These results suggested that lower temperature and higher precipitation and higher relative humidity will possibly effect on Salmonella contamination of oyster meat. During the high risk period, harvesting of oysters should be prohibited to reduce pathogenic bacteria contamination and to minimize a hazard of humans from Salmonellosis.

Keywords: oyster, Phang Nga Bay, principal component analysis, Salmonella

Procedia PDF Downloads 123
685 Diurnal Circle of Rainfall and Convective Properties over West and Central Africa

Authors: Balogun R. Ayodeji, Adefisan E. Adesanya, Adeyewa Z. Debo, E. C. Okogbue

Abstract:

The need to investigate diurnal weather circles in West Africa is coined in the fact that complex interactions often results from diurnal weather patterns. This study investigates diurnal circles of wind, rainfall and convective properties using six (6) hour interval data from the ERA-Interim and the Tropical Rainfall Measurement Mission (TRMM). The seven distinct zones, used in this work and classified as rainforest (west-coast, dry, Nigeria-Cameroon), Savannah (Nigeria, and Central Africa and South Sudan (CASS)), Sudano-Sahel, and Sahel, were clearly indicated by the rainfall pattern in each zones. Results showed that the land‐ocean warming contrast was more strongly sensitive to seasonal cycle and has been very weak during March-May (MAM) but clearly spelt out during June-September (JJAS). Dipoles of wind convergence/divergence and wet/dry precipitation, between CASS and Nigeria Savannah zones, were identified in morning and evening hours of MAM, whereas distinct night and day anomaly, in the same location of CASS, were found to be consistent during the JJAS season. Diurnal variation of convective properties showed that stratiform precipitation, due to the extremely low occurrence of flashcount climatology, was dominant during morning hours for both MAM and JJAS than other periods of the day. On the other hand, diurnal variation of the system sizes showed that small system sizes were most dominant during the day time periods for both MAM and JJAS, whereas larger system sizes were frequent during the evening, night, and morning hours. The locations of flashcount and system sizes agreed with earlier results that morning and day-time hours were dominated by stratiform precipitation and small system sizes respectively. Most results clearly showed that the eastern locations of Sudano and Sahel were consistently dry because rainfall and precipitation features were predominantly few. System sizes greater than or equal to 800 km² were found in the western axis of the Sudano and Sahel zones, whereas the eastern axis, particularly in the Sahel zone, had minimal occurrences of small/large system sizes. From the results of locations of extreme systems, flashcount greater than 275 in one single system was never observed during the morning (6Z) diurnal, whereas, the evening (18Z) diurnal had the most frequent cases (at least 8) of flashcount exceeding 275 in one single system. Results presented had shown the importance of diurnal variation in understanding precipitation, flashcount, system sizes patterns at diurnal scales, and understanding land-ocean contrast, precipitation, and wind field anomaly at diurnal scales.

Keywords: convective properties, diurnal circle, flashcount, system sizes

Procedia PDF Downloads 125
684 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.

Keywords: road safety, crash prediction, exploratory analysis, machine learning

Procedia PDF Downloads 104
683 Settlement Performance of Soft Clay Reinforced with Granular Columns

Authors: Muneerah Jeludin, V. Sivakumar

Abstract:

Numerous laboratory-based research studies on the behavior of ground improved with granular columns with respect to bearing capacity have been well-documented. However, information on its settlement performance is still scarce. Laboratory model study on the settlement behavior of soft clay reinforced with granular columns was conducted and results are presented. The investigation uses a soft kaolin clay sample of 300 mm in diameter and 400 mm in length. The clay samples were reinforced with single and multiple granular columns of various lengths using the displacement and replacement installation method. The results indicated that that no settlement reduction was achieved for a short single floating column. The settlement reduction factors reported for L/d ratios of 5.0, 7.5 and 10.0 are in the range of 1 to 2. The findings obtained in this research showed that the reduction factors are considerably less and that load-sharing mechanism between columns and surrounding clay is complex, particularly for column groups and is affected by other factors such as negative skin friction.

Keywords: ground improvement, model test, reinforced soil, settlement

Procedia PDF Downloads 459
682 Aerodynamic Investigation of Baseline-IV Bird-Inspired BWB Aircraft Design: Improvements over Baseline-III BWB

Authors: C. M. Nur Syazwani, M. K. Ahmad Imran, Rizal E. M. Nasir

Abstract:

The study on BWB UV begins in UiTM since 2005 and three designs have been studied and published. The latest designs are Baseline-III and inspired by birds that have features and aerodynamics behaviour of cruising birds without flapping capability. The aircraft featuring planform and configuration are similar to the bird. Baseline-III has major flaws particularly in its low lift-to-drag ratio, stability and issues regarding limited controllability. New design known as Baseline-IV replaces straight, swept wing to delta wing and have a broader tail compares to the Baseline-III’s. The objective of the study is to investigate aerodynamics of Baseline-IV bird-inspired BWB aircraft. This will be achieved by theoretical calculation and wind tunnel experiments. The result shows that both theoretical and wind tunnel experiments of Baseline-IV graph of CL and CD versus alpha are quite similar to each other in term of pattern of graph slopes and values. Baseline-IV has higher lift coefficient values at wide range of angle of attack compares to Baseline-III. Baseline-IV also has higher maximum lift coefficient, higher maximum lift-to-drag and lower parasite drag. It has stable pitch moment versus lift slope but negative moment at zero lift for zero angle-of-attack tail setting. At high angle of attack, Baseline-IV does not have stability reversal as shown in Baseline-III. Baseline-IV is proven to have improvements over Baseline-III in terms of lift, lift-to-drag ratio and pitch moment stability at high angle-of-attack.

Keywords: blended wing-body, bird-inspired blended wing-body, aerodynamic, stability

Procedia PDF Downloads 500
681 Online Monitoring of Airborne Bioaerosols Released from a Composting, Green Waste Site

Authors: John Sodeau, David O'Connor, Shane Daly, Stig Hellebust

Abstract:

This study is the first to employ the online WIBS (Waveband Integrated Biosensor Sensor) technique for the monitoring of bioaerosol emissions and non-fluorescing “dust” released from a composting/green waste site. The purpose of the research was to provide a “proof of principle” for using WIBS to monitor such a location continually over days and nights in order to construct comparative “bioaerosol site profiles”. Current impaction/culturing methods take many days to achieve results available by the WIBS technique in seconds.The real-time data obtained was then used to assess variations of the bioaerosol counts as a function of size, “shape”, site location, working activity levels, time of day, relative humidity, wind speeds and wind directions. Three short campaigns were undertaken, one classified as a “light” workload period, another as a “heavy” workload period and finally a weekend when the site was closed. One main bioaerosol size regime was found to predominate: 0.5 micron to 3 micron with morphologies ranging from elongated to elipsoidal/spherical. The real-time number-concentration data were consistent with an Andersen sampling protocol that was employed at the site. The number-concentrations of fluorescent particles as a proportion of total particles counted amounted, on average, to ~1% for the “light” workday period, ~7% for the “heavy” workday period and ~18% for the weekend. The bioaerosol release profiles at the weekend were considerably different from those monitored during the working weekdays.

Keywords: bioaerosols, composting, fluorescence, particle counting in real-time

Procedia PDF Downloads 350
680 Marketing Planning Strategy to Promote Family Agro-Tourism: A Case Study of Bang Nam Phueng Community Prapradeang District, Samutprakarn Province

Authors: Sasitorn Chetanont, Benjaporn Yamjameung

Abstract:

The objectives of this study are to increase tourism products and to develop family agro-tourism. The research methodology was to analyze internal and external situations according to MP-MF and the MC-STEPS principles. The results of this study highlight following necessary improvements; extend the cycling routes, increase the number of bicycle rental shops, offer a recreation place for the elders, organize a space for the floating market products and increase tourism activities throughout the year. In ‘places or distribution channel’ we discuss the improvement of facilities, specifically the routes to facilitate elder visitors and visitors on wheelchairs and furthermore the arrangement of educational trips to relevant centers in the community. In ‘promotions’, we discuss the implementation of an 'all inclusive package' were the agro-tourism program, health-conscious program and the elderly fun program converge.

Keywords: marketing planning strategy, agro-tourism, promotions, Bang Nam Phueng

Procedia PDF Downloads 304
679 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks

Authors: Tugba Bayoglu

Abstract:

Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.

Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification

Procedia PDF Downloads 270
678 Study of Relation between Corporate Governance Mechanism and Investment Decisions Made by Companies Listed in Tehran Stock Exchange- IRAN

Authors: Roohollah Jamshidpour, Elaheh Ahmadi, Farhad Shah Veisi

Abstract:

Present research seeks to answer this question: Is there any relationship between corporate governance mechanisms and decision on corporate investments? Percentages of institutional, board of director’s, and stockholder’s ownership are among internal mechanisms of corporate governance relationship of which with investment-based decisions are studied by this research. Information on 103 companies during 1388 (2009)- 1393 (2014). Initially, research variables are identified; next, Rah Avard-e Novin software is used to gather Information. SPSS software is employed to test hypotheses with respect to descriptive and inferential statistics like correlation analysis. Research results show that percentage of institutional stockholders’ ownership has a significant direct relationship with investment decisions. For other cases, no significant relationship is observed between corporate governance mechanisms and investment decisions.

Keywords: corporate governance, company size, free floating stock, institutional investors, major shareholders

Procedia PDF Downloads 287
677 Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas

Authors: J. Szolomicki, H. Golasz-Szolomicka

Abstract:

The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping.

Keywords: core structures, damping system, high-rise building, seismic zone

Procedia PDF Downloads 169
676 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning

Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir

Abstract:

Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.

Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification

Procedia PDF Downloads 154
675 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves

Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada

Abstract:

Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.

Keywords: renewable energy, oscillating water column, multi-criteria selection, Wells turbine

Procedia PDF Downloads 156
674 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode

Authors: Sh. Heidari, A. J. Andrews, A. Oberoi

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.

Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon

Procedia PDF Downloads 495
673 Modeling of Tsunami Propagation and Impact on West Vancouver Island, Canada

Authors: S. Chowdhury, A. Corlett

Abstract:

Large tsunamis strike the British Columbia coast every few hundred years. The Cascadia Subduction Zone, which extends along the Pacific coast from Vancouver Island to Northern California is one of the most seismically active regions in Canada. Significant earthquakes have occurred in this region, including the 1700 Cascade Earthquake with an estimated magnitude of 9.2. Based on geological records, experts have predicted a 'great earthquake' of a similar magnitude within this region may happen any time. This earthquake is expected to generate a large tsunami that could impact the coastal communities on Vancouver Island. Since many of these communities are in remote locations, they are more likely to be vulnerable, as the post-earthquake relief efforts would be impacted by the damage to critical road infrastructures. To assess the coastal vulnerability within these communities, a hydrodynamic model has been developed using MIKE-21 software. We have considered a 500 year probabilistic earthquake design criteria including the subsidence in this model. The bathymetry information was collected from Canadian Hydrographic Services (CHS), and National Oceanic Atmospheric and Administration (NOAA). The arial survey was conducted using a Cessna-172 aircraft for the communities, and then the information was converted to generate a topographic digital elevation map. Both survey information was incorporated into the model, and the domain size of the model was about 1000km x 1300km. This model was calibrated with the tsunami occurred off the west coast of Moresby Island on October 28, 2012. The water levels from the model were compared with two tide gauge stations close to the Vancouver Island and the output from the model indicates the satisfactory result. For this study, the design water level was considered as High Water Level plus the Sea Level Rise for 2100 year. The hourly wind speeds from eight directions were collected from different wind stations and used a 200-year return period wind speed in the model for storm events. The regional model was set for 12 hrs simulation period, which takes more than 16 hrs to complete one simulation using double Xeon-E7 CPU computer plus a K-80 GPU. The boundary information for the local model was generated from the regional model. The local model was developed using a high resolution mesh to estimate the coastal flooding for the communities. It was observed from this study that many communities will be effected by the Cascadia tsunami and the inundation maps were developed for the communities. The infrastructures inside the coastal inundation area were identified. Coastal vulnerability planning and resilient design solutions will be implemented to significantly reduce the risk.

Keywords: tsunami, coastal flooding, coastal vulnerable, earthquake, Vancouver, wave propagation

Procedia PDF Downloads 128
672 Feasibility Study of Tidal Current of the Bay of Bengal to Generate Electricity as a Renewable Energy

Authors: Myisha Ahmad, G. M. Jahid Hasan

Abstract:

Electricity is the pinnacle of human civilization. At present, the growing concerns over significant climate change have intensified the importance of the use of renewable energy technologies for electricity generation. The interest is primarily due to better energy security, smaller environmental impact and providing a sustainable alternative compared to the conventional energy sources. Solar power, wind, biomass, tidal power, and wave power are some of the most reliable sources of renewable energy. Ocean approximately holds 2×10³ TW of energy and has the largest renewable energy resource on the planet. Ocean energy has many forms namely, encompassing tides, ocean circulation, surface waves, salinity and thermal gradients. Ocean tide in particular, associates both potential and kinetic energy. The study is focused on the latter concept that deals with tidal current energy conversion technologies. Tidal streams or marine currents generate kinetic energy that can be extracted by marine current energy devices and converted into transmittable energy form. The principle of technology development is very comparable to that of wind turbines. Conversion of marine tidal resources into substantial electrical power offers immense opportunities to countries endowed with such resources and this work is aimed at addressing such prospects of Bangladesh. The study analyzed the extracted current velocities from numerical model works at several locations in the Bay of Bengal. Based on current magnitudes, directions and available technologies the most fitted locations were adopted and possible annual generation capacity was estimated. The paper also examines the future prospects of tidal current energy along the Bay of Bengal and establishes a constructive approach that could be adopted in future project developments.

Keywords: bay of Bengal, energy potential, renewable energy, tidal current

Procedia PDF Downloads 367
671 Sea Level Characteristics Referenced to Specific Geodetic Datum in Alexandria, Egypt

Authors: Ahmed M. Khedr, Saad M. Abdelrahman, Kareem M. Tonbol

Abstract:

Two geo-referenced sea level datasets (September 2008 – November 2010) and (April 2012 – January 2014) were recorded at Alexandria Western Harbour (AWH). Accurate re-definition of tidal datum, referred to the latest International Terrestrial Reference Frame (ITRF-2014), was discussed and updated to improve our understanding of the old predefined tidal datum at Alexandria. Tidal and non-tidal components of sea level were separated with the use of Delft-3D hydrodynamic model-tide suit (Delft-3D, 2015). Tidal characteristics at AWH were investigated and harmonic analysis showed the most significant 34 constituents with their amplitudes and phases. Tide was identified as semi-diurnal pattern as indicated by a “Form Factor” of 0.24 and 0.25, respectively. Principle tidal datums related to major tidal phenomena were recalculated referred to a meaningful geodetic height datum. The portion of residual energy (surge) out of the total sea level energy was computed for each dataset and found 77% and 72%, respectively. Power spectral density (PSD) showed accurate resolvability in high band (1–6) cycle/days for the nominated independent constituents, except some neighbouring constituents, which are too close in frequency. Wind and atmospheric pressure data, during the recorded sea level time, were analysed and cross-correlated with the surge signals. Moderate association between surge and wind and atmospheric pressure data were obtained. In addition, long-term sea level rise trend at AWH was computed and showed good agreement with earlier estimated rates.

Keywords: Alexandria, Delft-3D, Egypt, geodetic reference, harmonic analysis, sea level

Procedia PDF Downloads 160
670 Analysing the Mesoscale Variations of 7Be and 210Pb Concentrations in a Complex Orography, Guadalquivir Valley, Southern Spain

Authors: M. A. Hernández-Ceballos, E. G. San Miguel, C. Galán, J. P. Bolívar

Abstract:

The evolution of 7Be and 210Pb activity concentrations in surface air along the Guadalquivir valley (southern Iberian Peninsula) is presented in this study. Samples collected for 48 h, every fifteen days, from September 2012 to November 2013 at two sampling sites (Huelva city in the mouth and Cordoba city in the middle (located 250 km far away)), are used to 1) analysing the spatial variability and 2) understanding the influence of wind conditions on 7Be and 210Pb. Similar average concentrations were registered along the valley. The mean 7Be activity concentration was 4.46 ± 0.21 mBq/m3 at Huelva and 4.33 ± 0.20 mBq/m3 at Cordoba, although registering higher maximum and minimum values at Cordoba (9.44 mBq/m3 and 1.80 mBq/m3) than at Huelva (7.95 mBq/m3 and 1.04 mBq/m3). No significant differences were observed in the 210Pb mean activity concentrations between Cordoba (0.40 ± 0.04 mBq/m3) and Huelva (0.35 ± 0.04 mBq/m3), although the maximum (1.10 mBq/m3 and 0.87 mBq/m3) and minimum (0.02 mBq/m3 and 0.04 mBq/m3) values were recorded in Cordoba. Although similar average concentrations were obtained in both sites, the temporal evolution of both natural radionuclides presents differences between them. The meteorological analysis of two sampling periods, in which large differences on 7Be and 210Pb concentrations are observed, indicates the different impact of surface and upper wind dynamics. The analysis reveals the different impact of the two sea-land breeze patterns usually observed along the valley (pure and non-pure) and the corresponding air masses at higher layers associated with each one. The pure, with short development (around 30 km inland) and increasing accumulation process, favours high concentrations of both radionuclides in Huelva (coastal site), while the non-pure, with winds sweeping the valley until arrive to Cordoba (250 km far away), causes high activity values at this site. These results reveal the impact of mesoscale conditions on these two natural radionuclides, and the importance of these circulations on its spatial and temporal variability.

Keywords: 7Be, 210Pb, air masses, mesoscale process

Procedia PDF Downloads 404
669 Martial Arts and Combative Program of the Philippine Military Academy Cadet Corps Armed Forces of the Philippines: An Assessment

Authors: Jayson Vicente

Abstract:

The young men and women of Philippine Military Academy Cadet Corps Armed Forces of the Philippines (PMA CCAFP) are bred to be front liners and last line of defense during war and times of peace; as such, they must be equipped with the most practical and most effective combat-ready Martial Arts and Combative skills to effectively fulfill their duty, as well as to protect and safeguard themselves to continue serving the people and their country. This study shall assess the current Martial Arts and Combative Program of the PMA CCAFP using descriptive methodology by interviews and floating questionnaires. The current Martial Arts and Combative Program of the PMA CCAFP with all of the subjects involved are more sports inclined rather than combat-equipped. Picking the best from each subject used in the program, this study seeks to recommend improvements or create a better Martial Arts and Combative Program that will satisfy the objective of producing Martial Arts combatant graduates. A good Martial Arts and Combative Program for PMA is essential to prepare them for what lies ahead, which is unforgiving and no rules to pacify threat.

Keywords: combative, martial arts, military, program

Procedia PDF Downloads 142
668 Improvement of Thermal Comfort Conditions in an Urban Space "Case Study: The Square of Independence, Setif, Algeria"

Authors: Ballout Amor, Yasmina Bouchahm, Lacheheb Dhia Eddine Zakaria

Abstract:

Several studies all around the world were conducted on the phenomenon of the urban heat island, and referring to the results obtained, one of the most important factors that influence this phenomenon is the mineralization of the cities which means the reducing of evaporative urban surfaces, replacing vegetation and wetlands with concrete and asphalt. The use of vegetation and water can change the urban environment and improve comfort, thus reduce the heat island. The trees act as a mask to the sun, wind, and sound, and also as a source of humidity which reduces air temperature and surrounding surfaces. Water also acts as a buffer to noise; it is also a source of moisture and regulates temperature not to mention the psychological effect on humans. Our main objective in this paper is to determine the impact of vegetation, ponds and fountains on the urban micro climate in general and on the thermal comfort of people along the Independence square in the Algerian city of Sétif, which is a semi-arid climate, in particularly. In order to reach this objective, a comparative study between different scenarios has been done; the use of the Envi-met program enabled us to model the urban environment of the Independence Square and to study the possibility of improving the conditions of comfort by adding an amount of vegetation and water ponds. After studying the results obtained (temperature, relative humidity, wind speed, PMV and PPD indicators), the efficiency of the additions we've made on the square was confirmed and this is what helped us to confirm our assumptions regarding the terms of comfort in the studied site, and in the end we are trying to develop recommendations and solutions which may contribute to improve the conditions for greater comfort in the Independence square.

Keywords: comfort in outer space, urban environment, scenarisation, vegetation, water ponds, public square, simulation

Procedia PDF Downloads 449
667 Computation of ΔV Requirements for Space Debris Removal Using Orbital Transfer

Authors: Sadhvi Gupta, Charulatha S.

Abstract:

Since the dawn of the early 1950s humans have launched numerous vehicles in space. Be it from rockets to rovers humans have done tremendous growth in the technology sector. While there is mostly upside for it for humans the only major downside which cannot be ignored now is the amount of junk produced in space due to it i.e. space debris. All this space junk amounts from objects we launch from earth which so remains in orbit until it re-enters the atmosphere. Space debris can be of various sizes mainly the big ones are of the dead satellites floating in space and small ones can consist of various things like paint flecks, screwdrivers, bolts etc. Tracking of small space debris whose size is less than 10 cm is impossible and can have vast implications. As the amount of space debris increases in space the chances of it hitting a functional satellite also increases. And it is extremely costly to repair or recover the satellite once hit by a revolving space debris. So the proposed solution is, Actively removing space debris while keeping space sustainability in mind. For this solution a total of 8 modules will be launched in LEO and in GEO and these models will be placed in their desired orbits through Hohmann transfer and for that calculating ΔV values is crucial. After which the modules will be placed in their designated positions in STK software and thorough analysis is conducted.

Keywords: space debris, Hohmann transfer, STK, delta-V

Procedia PDF Downloads 82
666 Numerical Aeroacoustics Investigation of Eroded and Coated Leading Edge of NACA 64- 618 Airfoil

Authors: Zeinab Gharibi, B. Stoevesandt, J. Peinke

Abstract:

Long term surface erosion of wind turbine blades, especially at the leading edge, impairs aerodynamic performance; therefore, lowers efficiency of the blades mostly in the high-speed rotor tip regions. Blade protection provides significant improvements in annual energy production, reduces costly downtime, and protects the integrity of the blades. However, this protection still influences the aerodynamic behavior, and broadband noise caused by interaction between the impinging turbulence and blade’s leading edge. This paper presents an extensive numerical aeroacoustics approach by investigating the sound power spectra of the eroded and coated NACA 64-618 wind turbine airfoil and evaluates aeroacoustics improvements after the protection procedure. Using computational fluid dynamics (CFD), different quasi 2D numerical grids were implemented and special attention was paid to the refinement of the boundary layers. The noise sources were captured and decoupled with acoustic propagation via the derived formulation of Curle’s analogy implemented in OpenFOAM. Therefore, the noise spectra were compared for clean, coated and eroded profiles in the range of chord-based Reynolds number (1.6e6 ≤ Re ≤ 11.5e6). Angle of attack was zero in all cases. Verifications were conducted for the clean profile using available experimental data. Sensitivity studies for the far-field were done on different observational positions. Furthermore, beamforming studies were done simulating an Archimedean spiral microphone array for far-field noise directivity patterns. Comparing the noise spectra of the coated and eroded geometries, results show that, coating clearly improves aerodynamic and acoustic performance of the eroded airfoil.

Keywords: computational fluid dynamics, computational aeroacoustics, leading edge, OpenFOAM

Procedia PDF Downloads 217
665 An Autonomous Passive Acoustic System for Detection, Tracking and Classification of Motorboats in Portofino Sea

Authors: A. Casale, J. Alessi, C. N. Bianchi, G. Bozzini, M. Brunoldi, V. Cappanera, P. Corvisiero, G. Fanciulli, D. Grosso, N. Magnoli, A. Mandich, C. Melchiorre, C. Morri, P. Povero, N. Stasi, M. Taiuti, G. Viano, M. Wurtz

Abstract:

This work describes a real-time algorithm for detecting, tracking and classifying single motorboats, developed using the acoustic data recorded by a hydrophone array within the framework of EU LIFE + project ARION (LIFE09NAT/IT/000190). The project aims to improve the conservation status of bottlenose dolphins through a real-time simultaneous monitoring of their population and surface ship traffic. A Passive Acoustic Monitoring (PAM) system is installed on two autonomous permanent marine buoys, located close to the boundaries of the Marine Protected Area (MPA) of Portofino (Ligurian Sea- Italy). Detecting surface ships is also a necessity in many other sensible areas, such as wind farms, oil platforms, and harbours. A PAM system could be an effective alternative to the usual monitoring systems, as radar or active sonar, for localizing unauthorized ship presence or illegal activities, with the advantage of not revealing its presence. Each ARION buoy consists of a particular type of structure, named meda elastica (elastic beacon) composed of a main pole, about 30-meter length, emerging for 7 meters, anchored to a mooring of 30 tons at 90 m depth by an anti-twist steel wire. Each buoy is equipped with a floating element and a hydrophone tetrahedron array, whose raw data are send via a Wi-Fi bridge to a ground station where real-time analysis is performed. Bottlenose dolphin detection algorithm and ship monitoring algorithm are operating in parallel and in real time. Three modules were developed and commissioned for ship monitoring. The first is the detection algorithm, based on Time Difference Of Arrival (TDOA) measurements, i.e., the evaluation of angular direction of the target respect to each buoy and the triangulation for obtaining the target position. The second is the tracking algorithm, based on a Kalman filter, i.e., the estimate of the real course and speed of the target through a predictor filter. At last, the classification algorithm is based on the DEMON method, i.e., the extraction of the acoustic signature of single vessels. The following results were obtained; the detection algorithm succeeded in evaluating the bearing angle with respect to each buoy and the position of the target, with an uncertainty of 2 degrees and a maximum range of 2.5 km. The tracking algorithm succeeded in reconstructing the real vessel courses and estimating the speed with an accuracy of 20% respect to the Automatic Identification System (AIS) signals. The classification algorithm succeeded in isolating the acoustic signature of single vessels, demonstrating its temporal stability and the consistency of both buoys results. As reference, the results were compared with the Hilbert transform of single channel signals. The algorithm for tracking multiple targets is ready to be developed, thanks to the modularity of the single ship algorithm: the classification module will enumerate and identify all targets present in the study area; for each of them, the detection module and the tracking module will be applied to monitor their course.

Keywords: acoustic-noise, bottlenose-dolphin, hydrophone, motorboat

Procedia PDF Downloads 165
664 Create and Design Visual Presentation to Promote Thai Cuisine

Authors: Supaporn Wimonchailerk

Abstract:

This research aims to study how to design and create the media to promote Thai cuisine. The study used qualitative research methods by using in-depth interview 3 key informants who have experienced in the production of food or cooking shows in television programs with an aspect of acknowledging Thai foods. The results showed that visual presentation is divided into four categories. First, the light meals should be presented in details via the close-up camera with lighting to make the food look more delicious. Then the curry presentation should be arranged a clear and crisp light focus on a colorful curry paste. Besides the vision of hot steam floating from the plate and a view of curry spread on steamed rice can call great attentions. Third, delivering good appearances of the fried or spicy foods, the images must allow the audiences to see the shine of the coat covering the texture of the food and the colorful of the ingredients. Fourth, the presentation of sweets is recommended to focus on details of food design, composition, and layout.

Keywords: media production, television, promote, Thai cuisine

Procedia PDF Downloads 228
663 Feasibility of Solar Distillation as Household Water Supply in Saline Zones of Bangladesh

Authors: Md. Rezaul Karim, Md. Ashikur Rahman, Dewan Mahmud Mim

Abstract:

Scarcity of potable water as the result of rapid climate change and saltwater intrusion in groundwater has been a major problem in the coastal regions over the world. In equinoctial countries like Bangladesh, where sunlight is available for more than 10 hours a day, Solar Distillation provides a promising sustainable way for safe drinking water supply in coastal poor households with negligible major cost and difficulty of construction and maintenance. In this paper, two passive type solar stills- a Conventional Single Slope Solar still (CSS) and a Pyramid Solar Sill (PSS) is used and relationship is established between distill water output corresponding to four different factors- temperature, solar intensity, relative humidity and wind speed for Gazipur, Bangladesh. Comparison is analyzed between the two different still outputs for nine months period (January- September) and efficiency is calculated. Later a thermal mathematical model is developed and the distilled water output for Khulna, Bangladesh is computed. Again, difference between the output of the two cities- Gazipur and Khulna is demonstrated and finally an economic analysis is prepared. The distillation output has a positive correlation with temperature and solar intensity, inverse relation with relative humidity and wind speed has nugatory consequence. The maximum output of Conventional Solar Still is obtained 3.8 L/m2/day and Pyramid still is 4.3 L/m2/day for Gazipur and almost 15% more efficiency is found for Pyramid still. Productivity in Khulna is found almost 20% more than Gazipur. Based on economic analysis, taking 10 BDT, per liter, the net profit, benefit cost ratio, payback period all indicates that both stills are feasible but pyramid still is more feasible than Conventional Still. Finally, for a 3-4 member family, area of 4 m2 is suggested for Conventional Still and 3m2 for Pyramid Solar Still.

Keywords: solar distillation, household water supply, saline zones, Bangladesh

Procedia PDF Downloads 266
662 The Four Elements of Zoroastrianism and Sustainable Ecosystems with an Ecological Approach

Authors: Esmat Momeni, Shabnam Basari, Mohammad Beheshtinia

Abstract:

The purpose of this study is to provide a symbolic explanation of the four elements in Zoroastrianism and sustainable ecosystems with an ecological approach. The research method is fundamental and deductive content analysis. Data collection has been done through library and documentary methods and through reading books and related articles. The population and sample of the present study are Yazd city and Iran country after discovering symbolic concepts derived from the theoretical foundations of Zoroastrianism in four elements of water, air, soil, fire and conformity with Iranian architecture with the ecological approach in Yazd city, the sustainable ecosystem it is explained by the system of nature. The validity and reliability of the results are based on the trust and confidence of the research literature. Research findings show that Yazd was one of the bases of Zoroastrianism in Iran. Many believe that the first person to discuss the elements of nature and respect Zoroastrians is the Prophet of this religion. Keeping the environment clean and pure by paying attention to and respecting these four elements. The water element is a symbol of existence in Zoroastrianism, so the people of Yazd used the aqueduct and designed a pool in front of the building. The soil element is a symbol of the raw material of human creation in the Zoroastrian religion, the most readily available material in the desert areas of Yazd, used as bricks and adobes, creating one of the most magnificent roof coverings is the dome. The wind element represents the invisible force of the soul in Creation in Zoroastrianism, the most important application of wind in the windy, which is a highly efficient cooling system. The element of fire, which is always a symbol of purity in Zoroastrianism, is located in a special place in Yazd's Ataskadeh (altar/ temple), where the most important religious prayers are held in and against the fire. Consequently, indigenous knowledge and attention to indigenous architecture is a part of the national capital of each nation that encompasses their beliefs, values, methods, and knowledge. According to studies on the four elements of Zoroastrianism, the link between these four elements are that due to the hot and dry fire at the beginning, it is the fire that begins to follow the nature of the movement in the stillness of the earth, and arises from the heat of the fire and because of vigor and its decreases, cold (wind) emerges, and from cold, humidity and wetness. And by examining books and resources on Yazd's architectural design with an ecological approach to the values of the four elements Zoroastrianism has been inspired, it can be concluded that in order to have environmentally friendly architecture, it is essential to use sustainable architectural principles, to link religious and sacrament culture and ecology through architecture.

Keywords: ecology, architecture, quadruple elements of air, soil, water, fire, Zoroastrian religion, sustainable ecosystem, Iran, Yazd city

Procedia PDF Downloads 104
661 Power Generation through Water Vapour: An Approach of Using Sea/River/Lake Water as Renewable Energy Source

Authors: Riad

Abstract:

As present world needs more and more energy in a low cost way, it needs to find out the optimal way of power generation. In the sense of low cost, renewable energy is one of the greatest sources of power generation. Water vapour of sea/river/lake can be used for power generation by using the greenhouse effect in a large flat type water chamber floating on the water surface. The water chamber will always be kept half filled. When water evaporates by sunlight, the high pressured gaseous water will be stored in the chamber. By passing through a pipe and by using aerodynamics it can be used for power generation. The water level of the chamber is controlled by some means. As a large amount of water evaporates, an estimation can be highlighted, approximately 3 to 4 thousand gallons of water evaporates from per acre of surface (this amount will be more by greenhouse effect). This large amount of gaseous water can be utilized for power generation by passing through a pipe. This method can be a source of power generation.

Keywords: renewable energy, greenhouse effect, water chamber, water vapour

Procedia PDF Downloads 348
660 Performance Comparison of Droop Control Methods for Parallel Inverters in Microgrid

Authors: Ahmed Ismail, Mustafa Baysal

Abstract:

Although the energy source in the world is mainly based on fossil fuels today, there is a need for alternative energy generation systems, which are more economic and environmentally friendly, due to continuously increasing demand of electric energy and lacking power resources and networks. Distributed Energy Resources (DERs) such as fuel cells, wind and solar power have recently become widespread as alternative generation. In order to solve several problems that might be encountered when integrating DERs to power system, the microgrid concept has been proposed. A microgrid can operate both grid connected and island mode to benefit both utility and customers. For most distributed energy resources (DER) which are connected in parallel in LV-grid like micro-turbines, wind plants, fuel cells and PV cells electrical power is generated as a direct current (DC) and converted to an alternative currents (AC) by inverters. So the inverters are assumed to be primary components in a microgrid. There are many control techniques of parallel inverters to manage active and reactive sharing of the loads. Some of them are based on droop method. In literature, the studies are usually focused on improving the transient performance of inverters. In this study, the performance of two different controllers based on droop control method is compared for the inverters operated in parallel without any communication feedback. For this aim, a microgrid in which inverters are controlled by conventional droop controller and modified droop controller is designed. Modified controller is obtained by adding PID into conventional droop control. Active and reactive power sharing performance, voltage and frequency responses of those control methods are measured in several operational cases. Study cases have been simulated by MATLAB-SIMULINK.

Keywords: active and reactive power sharing, distributed generation, droop control, microgrid

Procedia PDF Downloads 588
659 Functional Instruction Set Simulator of a Neural Network IP with Native Brain Float-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A functional model to mimic the functional correctness of a neural network compute accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of GCC compilers to the BF-16 datatype, which we addressed with a native BF-16 generator integrated into our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex neural network accelerator design by proposing a functional model-based scoreboard or software model using SystemC. The proposed functional model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT, bringing up micro-steps of execution.

Keywords: ISA, neural network, Brain Float-16, DUT

Procedia PDF Downloads 86
658 The Usage of Nitrogen Gas and Alum for Sludge Dewatering

Authors: Mamdouh Yousef Saleh, Medhat Hosny El-Zahar, Shymaa El-Dosoky

Abstract:

In most cases, the associated processing cost of dewatering sludge increase with the solid particles concentration. All experiments in this study were conducted on biological sludge type. All experiments help to reduce the greenhouse gases in addition, the technology used was faster in time and less in cost compared to other methods. First, the bubbling pressure was used to dissolve N₂ gas into the sludge, second alum was added to accelerate the process of coagulation of the sludge particles and facilitate their flotation, and third nitrogen gas was used to help floating the sludge particles and reduce the processing time because of the nitrogen gas from the inert gases. The conclusions of this experiment were as follows: first, the best conditions were obtained when the bubbling pressure was 0.6 bar. Second, the best alum dose was determined to help the sludge agglomerate and float. During the experiment, the best alum dose was 80 mg/L. It increased concentration of the sludge by 7-8 times. Third, the economic dose of nitrogen gas was 60 mg/L with separation efficiency of 85%. The sludge concentration was about 8-9 times. That happened due to the gas released tiny bubbles which adhere to the suspended matter causing them to float to the surface of the water where it could be then removed.

Keywords: nitrogen gas, biological treatment, alum, dewatering sludge, greenhouse gases

Procedia PDF Downloads 204
657 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid

Authors: Abdulla Rahil, Rupert Gammon, Neil Brown

Abstract:

The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.

Keywords: hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen

Procedia PDF Downloads 224