Search results for: error compensation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2192

Search results for: error compensation

1472 Spectrophotometric Determination of Phenylephrine Hydrochloride by Coupling with Diazotized 2,4-Dinitroaniline

Authors: Sulaiman Gafar Muhamad

Abstract:

A rapid spectrophotometric method for the micro-determination of phenylephrine-HCl (PHE) has been developed. The proposed method involves the coupling of phenylephrine-HCl with diazotized 2,4-dinitroaniline in alkaline medium at λmax 455 nm. Under the present optimum condition, Beer’s law was obeyed in the range of 1.0-20 μg/ml of PHE with molar absorptivity of 1.915 ×104 l. mol-1.cm-1, with a relative error of 0.015 and a relative standard deviation of 0.024%. The current method has been applied successfully to estimate phenylephrine-HCl in pharmaceutical preparations (nose drop and syrup).

Keywords: diazo-coupling, 2, 4-dinitroaniline, phenylephrine-HCl, spectrophotometry

Procedia PDF Downloads 258
1471 Reactive Power Control with Plug-In Electric Vehicles

Authors: Mostafa Dastori, Sirus Mohammadi

Abstract:

While plug-in electric vehicles (PEVs) potentially have the capability to fulfill the energy storage needs of the electric grid, the degradation on the battery during this operation makes it less preferable by the auto manufacturers and consumers. On the other hand, the on-board chargers can also supply energy storage system applications such as reactive power compensation, voltage regulation, and power factor correction without the need of engaging the battery with the grid and thereby preserving its lifetime. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac–dc topology are discussed to shed light on their suit- ability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and in- creased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

Keywords: energy storage system, battery unit, cost, optimal sizing, plug-in electric vehicles (PEVs), smart grid

Procedia PDF Downloads 343
1470 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss

Procedia PDF Downloads 348
1469 The Effect of Knowledge Management in Lean Organization

Authors: Mehrnoosh Askarizadeh

Abstract:

In an ever changeable and globalized world with new economic and global competitors competing for the same customers and resources, is increasing the pressure on organizations' competitiveness. In addition, organizations faces additional challenges due to an ever-growing amount of data and the ever-bigger challenge of analyzing that data and keeping the data secure. Successful companies are characterized by exploiting their intellectual capital in an efficient manner. Thus, the most valuable asset an organization has today has become its employees' knowledge. To enable this, there is a tool that supports easier handling and optimizes the use of knowledge, which is knowledge management. Based on the theoretical framework and careful review as well as analysis of interviews and observations resulted in six essential areas: structure, management, compensation, communication, trust and motivation. The analysis showed that the scientific articles and literature have different perspectives, different definitions and are based on different theories but the essence is that they all finally seems to arrive at the same result and conclusion, although with different viewpoints and perspectives. This is regardless of whether the focus is on management style, rewards or communication they all focus on the individual. The conclusion is that organizational culture affects knowledge management and dissemination of information, because of its direct impact on the individual. The largest and most important underlying factor why we choose to participate in improvement work or share knowledge is our motivation. Motivation is the reason for and the reason behind our actions.

Keywords: lean, lean production, knowledge management, information management, motivation

Procedia PDF Downloads 519
1468 Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments

Authors: Xiaoqin Wang, Li Yin

Abstract:

Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic.

Keywords: causal effect, point effect, statistical modelling, sequential causal inference

Procedia PDF Downloads 206
1467 Security System for Safe Transmission of Medical Image

Authors: Mohammed Jamal Al-Mansor, Kok Beng Gan

Abstract:

This paper develops an optimized embedding of payload in medical image by using genetic optimization. The goal is to preserve region of interest from being distorted because of the watermark. By using this developed system there is no need of manual defining of region of interest through experts as the system will apply the genetic optimization to select the parts of image that can carry the watermark with guaranteeing less distortion. The experimental results assure that genetic based optimization is useful for performing steganography with less mean square error percentage.

Keywords: AES, DWT, genetic algorithm, watermarking

Procedia PDF Downloads 411
1466 Discontinuous Galerkin Method for Higher-Order Ordinary Differential Equations

Authors: Helmi Temimi

Abstract:

In this paper, we study the super-convergence properties of the discontinuous Galerkin (DG) method applied to one-dimensional mth-order ordinary differential equations without introducing auxiliary variables. We found that nth−derivative of the DG solution exhibits an optimal O (hp+1−n) convergence rates in the L2-norm when p-degree piecewise polynomials with p≥1 are used. We further found that the odd-derivatives and the even derivatives are super convergent, respectively, at the upwind and downwind endpoints.

Keywords: discontinuous, galerkin, superconvergence, higherorder, error, estimates

Procedia PDF Downloads 478
1465 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second

Authors: P. V. Pramila , V. Mahesh

Abstract:

Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.

Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest

Procedia PDF Downloads 311
1464 Early Childhood Teacher Turnover in an Early Head Start Setting: A Qualitative Examination

Authors: Jennifer Sturgeon

Abstract:

Stable relationships provide a predictable and trusting environment and are essential for early development, but high teacher turnover rates in childcare settings make it challenging for infants and toddlers to form stable relationships with their teachers. This can have an adverse effect on development and learning. The qualitative study discussed in this article draws from the experiences of early Head Start teachers and administrators to describe both the impact of teacher turnover and the motivational factors that contribute to teacher retention. A case study approach was used and included classroom observations, a review of exit interviews, and perceptions from focus groups of early Head Start staff in an urban early Head Start childcare center. Emerging from the case study was the discovery that teacher turnover has an impact on the social-emotional development of toddlers, particularly in self-regulation. Additional key findings that emerged include teacher turnover leading to negative effects on learning, a decrease in preschool preparation, and increased chaos in the classroom and center. Motivational factors that contributed to teacher retention included positive leadership, the mission to make a difference, and fair compensation.

Keywords: early childhood, teacher turnover, continuity of care, early head start

Procedia PDF Downloads 71
1463 Providing a Road Pricing and Toll Allocation Method for Toll Roads

Authors: Ali Babaei

Abstract:

There is a worldwide growing tendency toward construction of infrastructures with the possibility of private sector participation instead of free exploitation of public infrastructures. The construction and development of roads through private sector participation is performed by different countries because of appropriate results and benefits such as compensation of public budget deficit in road construction and maintenance and responding to traffic growth (demand). Toll is the most definite form of budget provision in road development. There are two issues in the toll rate assignment: A. costing of transport, B. Cost allocation and distribution of cost between different types of vehicles as each vehicle pay its own share. There can be different goals in toll collection and its extent is variable according to the strategy of toll collection. Costing principles in different countries are based on inclusion of the whole transport and not peculiar to the toll roads. For example, fuel tax policy functions where the road network users pay transportation cost (not just users of toll road). Whereas transportation infrastructures in Iran are free, these methods are not applicable. In Iran, different toll freeways have built by public investment and government provides participation in the road construction through encouragement of financial institutions. In this paper, the existing policies about the toll roads are studied and then the appropriate method of costing and cost allocation to different vehicles is introduced.

Keywords: toll allocation, road pricing, transportation, financial and industrial systems

Procedia PDF Downloads 364
1462 Heat-Induced Uncertainty of Industrial Computed Tomography Measuring a Stainless Steel Cylinder

Authors: Verena M. Moock, Darien E. Arce Chávez, Mariana M. Espejel González, Leopoldo Ruíz-Huerta, Crescencio García-Segundo

Abstract:

Uncertainty analysis in industrial computed tomography is commonly related to metrological trace tools, which offer precision measurements of external part features. Unfortunately, there is no such reference tool for internal measurements to profit from the unique imaging potential of X-rays. Uncertainty approximations for computed tomography are still based on general aspects of the industrial machine and do not adapt to acquisition parameters or part characteristics. The present study investigates the impact of the acquisition time on the dimensional uncertainty measuring a stainless steel cylinder with a circular tomography scan. The authors develop the figure difference method for X-ray radiography to evaluate the volumetric differences introduced within the projected absorption maps of the metal workpiece. The dimensional uncertainty is dominantly influenced by photon energy dissipated as heat causing the thermal expansion of the metal, as monitored by an infrared camera within the industrial tomograph. With the proposed methodology, we are able to show evolving temperature differences throughout the tomography acquisition. This is an early study showing that the number of projections in computer tomography induces dimensional error due to energy absorption. The error magnitude would depend on the thermal properties of the sample and the acquisition parameters by placing apparent non-uniform unwanted volumetric expansion. We introduce infrared imaging for the experimental display of metrological uncertainty in a particular metal part of symmetric geometry. We assess that the current results are of fundamental value to reach the balance between the number of projections and uncertainty tolerance when performing analysis with X-ray dimensional exploration in precision measurements with industrial tomography.

Keywords: computed tomography, digital metrology, infrared imaging, thermal expansion

Procedia PDF Downloads 122
1461 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network

Authors: Ashima Anurag Sharma

Abstract:

Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 529
1460 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management

Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro

Abstract:

This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.

Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization

Procedia PDF Downloads 51
1459 Valuing Cultural Ecosystem Services of Natural Treatment Systems Using Crowdsourced Data

Authors: Andrea Ghermandi

Abstract:

Natural treatment systems such as constructed wetlands and waste stabilization ponds are increasingly used to treat water and wastewater from a variety of sources, including stormwater and polluted surface water. The provision of ancillary benefits in the form of cultural ecosystem services makes these systems unique among water and wastewater treatment technologies and greatly contributes to determine their potential role in promoting sustainable water management practices. A quantitative analysis of these benefits, however, has been lacking in the literature. Here, a critical assessment of the recreational and educational benefits in natural treatment systems is provided, which combines observed public use from a survey of managers and operators with estimated public use as obtained using geotagged photos from social media as a proxy for visitation rates. Geographic Information Systems (GIS) are used to characterize the spatial boundaries of 273 natural treatment systems worldwide. Such boundaries are used as input for the Application Program Interfaces (APIs) of two popular photo-sharing websites (Flickr and Panoramio) in order to derive the number of photo-user-days, i.e., the number of yearly visits by individual photo users in each site. The adequateness and predictive power of four univariate calibration models using the crowdsourced data as a proxy for visitation are evaluated. A high correlation is found between photo-user-days and observed annual visitors (Pearson's r = 0.811; p-value < 0.001; N = 62). Standardized Major Axis (SMA) regression is found to outperform Ordinary Least Squares regression and count data models in terms of predictive power insofar as standard verification statistics – such as the root mean square error of prediction (RMSEP), the mean absolute error of prediction (MAEP), the reduction of error (RE), and the coefficient of efficiency (CE) – are concerned. The SMA regression model is used to estimate the intensity of public use in all 273 natural treatment systems. System type, influent water quality, and area are found to statistically affect public use, consistently with a priori expectations. Publicly available information regarding the home location of the sampled visitors is derived from their social media profiles and used to infer the distance they are willing to travel to visit the natural treatment systems in the database. Such information is analyzed using the travel cost method to derive monetary estimates of the recreational benefits of the investigated natural treatment systems. Overall, the findings confirm the opportunities arising from an integrated design and management of natural treatment systems, which combines the objectives of water quality enhancement and provision of cultural ecosystem services through public use in a multi-functional approach and compatibly with the need to protect public health.

Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, waste stabilization ponds

Procedia PDF Downloads 181
1458 Investigation of Delivery of Triple Play Services

Authors: Paramjit Mahey, Monica Sharma, Jasbinder Singh

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 542
1457 Study of Syntactic Errors for Deep Parsing at Machine Translation

Authors: Yukiko Sasaki Alam, Shahid Alam

Abstract:

Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.

Keywords: syntactic parsing, error analysis, machine translation, deep parsing

Procedia PDF Downloads 560
1456 The Quality of Working Life and the Organizational Commitment of Municipal Employee in Samut Sakhon Province

Authors: Mananya Meenakorn

Abstract:

This research aims to investigate: (1) Relationship between the quality of working life and organizational commitment of municipal employee in Samut Sakhon Province. (2) To compare the quality of working life and the organizational commitment of municipal employee in Samut Sakhon Province by the gender, age, education, official experience, position, division, and income. This study is a quantitative research; data was collected by questionnaires distributed to the municipal employee in Samut Sakhon province for 241 sample by stratified random sampling. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including t-test, F-test and Pearson correlation for hypothesis testing. Finding showed that the quality of working life and the organizational commitment of municipal Employee in Samut Sakhon province in terms of compensation and fair has a positive correlation (r = 0.673) and the comparison of the quality of working life and organizational commitment of municipal employees in Samut Sakhon province by gender. We found that the overall difference was statistically significant at the 0.05 level and we also found stability and progress in career path and the characteristics are beneficial to society has a difference was statistically significant at the 0.01 level, and the participation and social acceptance has a difference was statistically significant at the 0.05 level.

Keywords: quality of working life, organizational commitment, municipal employee, Samut Sakhon province

Procedia PDF Downloads 291
1455 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field

Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot

Abstract:

The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.

Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management

Procedia PDF Downloads 134
1454 Autonomous Taxiing Robot for Grid Resilience Enhancement in Green Airport

Authors: Adedayo Ajayi, Patrick Luk, Liyun Lao

Abstract:

This paper studies the supportive needs for the electrical infrastructure of the green airport. In particular, the core objective revolves around the choice of electric grid configuration required to meet the expected electrified loads, i.e., the taxiing and charging loads of hybrid /pure electric aircraft in the airport. Further, reliability and resilience are critical aspects of a newly proposed grid; the concept of mobile energy storage as energy as a service (EAAS) for grid support in the proposed green airport is investigated using an autonomous electric taxiing robot (A-ETR) at a case study (Cranfield Airport). The performance of the model is verified and validated through DigSILENT power factory simulation software to compare the networks in terms of power quality, short circuit fault levels, system voltage profile, and power losses. Contingency and reliability index analysis are further carried out to show the potential of EAAS on the grid. The results demonstrate that the low voltage a.c network ( LVAC) architecture gives better performance with adequate compensation than the low voltage d.c (LVDC) microgrid architecture for future green airport electrification integration. And A-ETR can deliver energy as a service (EaaS) to improve the airport's electrical power system resilience and energy supply.

Keywords: reliability, voltage profile, flightpath 2050, green airport

Procedia PDF Downloads 84
1453 Fault Tolerant Control System Using a Multiple Time Scale SMC Technique and a Geometric Approach

Authors: Ghodbane Azeddine, Saad Maarouf, Boland Jean-Francois, Thibeault Claude

Abstract:

This paper proposes a new design of an active fault-tolerant flight control system against abrupt actuator faults. This overall system combines a multiple time scale sliding mode controller for fault compensation and a geometric approach for fault detection and diagnosis. The proposed control system is able to accommodate several kinds of partial and total actuator failures, by using available healthy redundancy actuators. The overall system first estimates the correct fault information using the geometric approach. Then, and based on that, a new reconfigurable control law is designed based on the multiple time scale sliding mode technique for on-line compensating the effect of such faults. This approach takes advantages of the fact that there are significant difference between the time scales of aircraft states that have a slow dynamics and those that have a fast dynamics. The closed-loop stability of the overall system is proved using Lyapunov technique. A case study of the non-linear model of the F16 fighter, subject to the rudder total loss of control confirms the effectiveness of the proposed approach.

Keywords: actuator faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, multiple time scale approximation, geometric approach for fault reconstruction, lyapunov stability

Procedia PDF Downloads 372
1452 Study of Error Analysis and Sources of Uncertainty in the Measurement of Residual Stresses by the X-Ray Diffraction

Authors: E. T. Carvalho Filho, J. T. N. Medeiros, L. G. Martinez

Abstract:

Residual stresses are self equilibrating in a rigid body that acts on the microstructure of the material without application of an external load. They are elastic stresses and can be induced by mechanical, thermal and chemical processes causing a deformation gradient in the crystal lattice favoring premature failure in mechanicals components. The search for measurements with good reliability has been of great importance for the manufacturing industries. Several methods are able to quantify these stresses according to physical principles and the response of the mechanical behavior of the material. The diffraction X-ray technique is one of the most sensitive techniques for small variations of the crystalline lattice since the X-ray beam interacts with the interplanar distance. Being very sensitive technique is also susceptible to variations in measurements requiring a study of the factors that influence the final result of the measurement. Instrumental, operational factors, form deviations of the samples and geometry of analyzes are some variables that need to be considered and analyzed in order for the true measurement. The aim of this work is to analyze the sources of errors inherent to the residual stress measurement process by X-ray diffraction technique making an interlaboratory comparison to verify the reproducibility of the measurements. In this work, two specimens were machined, differing from each other by the surface finishing: grinding and polishing. Additionally, iron powder with particle size less than 45 µm was selected in order to be a reference (as recommended by ASTM E915 standard) for the tests. To verify the deviations caused by the equipment, those specimens were positioned and with the same analysis condition, seven measurements were carried out at 11Ψ tilts. To verify sample positioning errors, seven measurements were performed by positioning the sample at each measurement. To check geometry errors, measurements were repeated for the geometry and Bragg Brentano parallel beams. In order to verify the reproducibility of the method, the measurements were performed in two different laboratories and equipments. The results were statistically worked out and the quantification of the errors.

Keywords: residual stress, x-ray diffraction, repeatability, reproducibility, error analysis

Procedia PDF Downloads 182
1451 Magnification Factor Based Seismic Response of Moment Resisting Frames with Open Ground Storey

Authors: Subzar Ahmad Bhat, Saraswati Setia, V. K.Sehgal

Abstract:

During the past earthquakes, open ground storey buildings have performed poorly due to the soft storey defect. Indian Standard IS 1893:2002 allows analysis of open ground storey buildings without considering infill stiffness but with a multiplication factor 2.5 in compensation for the stiffness discontinuity. Therefore, the aim of this paper is to check the applicability of the multiplication factor of 2.5 and study behaviour of the structure after the application of the multiplication factor. For this purpose, study is performed on models considering infill stiffness using SAP 2000 (Version 14) by linear static analysis and response spectrum analysis. Total seven models are analysed and designed for the range of multiplication factor ranging from 1.25 to 2.5. The value of multiplication factor equal to 2.5 has been found on the higher side, resulting in increased dimension and percentage of reinforcement without significant enhancement beyond a certain multiplication factor. When the building with OGS is designed for values of MF higher than 1.25 considering infill stiffness soft storey effect shifts from ground storey to first storey. For the analysis of the OGS structure best way to analysis the structure is to analyse it as the frame with stiffness and strength of the infill taken into account. The provision of infill walls in the upper storeys enhances the performance of the structure in terms of displacement and storey drift controls.

Keywords: open ground storey, multiplication factor, IS 1893:2002 provisions, static analysis, response spectrum analysis, infill stiffness, equivalent strut

Procedia PDF Downloads 396
1450 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks

Authors: Andrew N. Saylor, James R. Peters

Abstract:

Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.

Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging

Procedia PDF Downloads 131
1449 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar

Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo

Abstract:

The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.

Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB

Procedia PDF Downloads 89
1448 0.13-µm Complementary Metal-Oxide Semiconductor Vector Modulator for Beamforming System

Authors: J. S. Kim

Abstract:

This paper presents a 0.13-µm Complementary Metal-Oxide Semiconductor (CMOS) vector modulator for beamforming system. The vector modulator features a 360° phase and gain range of -10 dB to 10 dB with a root mean square phase and amplitude error of only 2.2° and 0.45 dB, respectively. These features make it a suitable for wireless backhaul system in the 5 GHz industrial, scientific, and medical (ISM) bands. It draws a current of 20.4 mA from a 1.2 V supply. The total chip size is 1.87x1.34 mm².

Keywords: CMOS, vector modulator, beamforming, 802.11ac

Procedia PDF Downloads 211
1447 Study and Analysis of the Factors Affecting Road Safety Using Decision Tree Algorithms

Authors: Naina Mahajan, Bikram Pal Kaur

Abstract:

The purpose of traffic accident analysis is to find the possible causes of an accident. Road accidents cannot be totally prevented but by suitable traffic engineering and management the accident rate can be reduced to a certain extent. This paper discusses the classification techniques C4.5 and ID3 using the WEKA Data mining tool. These techniques use on the NH (National highway) dataset. With the C4.5 and ID3 technique it gives best results and high accuracy with less computation time and error rate.

Keywords: C4.5, ID3, NH(National highway), WEKA data mining tool

Procedia PDF Downloads 339
1446 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network

Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir

Abstract:

The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.

Keywords: Actif power filter, MPPT, pertub&observe algorithm, PV array, PWM-control

Procedia PDF Downloads 340
1445 Assessment of Students Skills in Error Detection in SQL Classes using Rubric Framework - An Empirical Study

Authors: Dirson Santos De Campos, Deller James Ferreira, Anderson Cavalcante Gonçalves, Uyara Ferreira Silva

Abstract:

Rubrics to learning research provide many evaluation criteria and expected performance standards linked to defined student activity for learning and pedagogical objectives. Despite the rubric being used in education at all levels, academic literature on rubrics as a tool to support research in SQL Education is quite rare. There is a large class of SQL queries is syntactically correct, but certainly, not all are semantically correct. Detecting and correcting errors is a recurring problem in SQL education. In this paper, we usthe Rubric Abstract Framework (RAF), which consists of steps, that allows us to map the information to measure student performance guided by didactic objectives defined by the teacher as long as it is contextualized domain modeling by rubric. An empirical study was done that demonstrates how rubrics can mitigate student difficulties in finding logical errors and easing teacher workload in SQL education. Detecting and correcting logical errors is an important skill for students. Researchers have proposed several ways to improve SQL education because understanding this paradigm skills are crucial in software engineering and computer science. The RAF instantiation was using in an empirical study developed during the COVID-19 pandemic in database course. The pandemic transformed face-to-face and remote education, without presential classes. The lab activities were conducted remotely, which hinders the teaching-learning process, in particular for this research, in verifying the evidence or statements of knowledge, skills, and abilities (KSAs) of students. Various research in academia and industry involved databases. The innovation proposed in this paper is the approach used where the results obtained when using rubrics to map logical errors in query formulation have been analyzed with gains obtained by students empirically verified. The research approach can be used in the post-pandemic period in both classroom and distance learning.

Keywords: rubric, logical error, structured query language (SQL), empirical study, SQL education

Procedia PDF Downloads 191
1444 Impact of Import Restriction on Rice Production in Nigeria

Authors: C. O. Igberi, M. U. Amadi

Abstract:

This research paper on the impact of import restriction on rice production in Nigeria is aimed at finding/proffering valid solutions to the age long problem of rice self-sufficiency, through a better understanding of policy measures used in the past, in this case, the effectiveness of rice import restriction of the early 90’s. It tries to answer the questions of; import restriction boosting domestic rice production and the macroeconomic determining factors of Gross Domestic Rice Product (GDRP). The research probe is investigated through literature and analytical frameworks, such that time series data on the GDRP, Gross Fixed Capital Formation (GFCF), average foreign rice producers’ prices(PPF), domestic producers’ prices (PPN) and the labour force (LABF) are collated for analysis (with an import restriction dummy variable, POL1). The research objectives/hypothesis are analysed using; Cointegration, Vector Error Correction Model (VECM), Impulse Response Function (IRF) and Granger Causality Test(GCT) methodologies. Results show that in the short-run error correction specification for GDRP, a percentage (1%) deviation away from the long-run equilibrium in a current quarter is only corrected by 0.14% in the subsequent quarter. Also, the rice import restriction policy had no significant effect on the GDRP at this time. Other findings show that the policy period has, in fact, had effects on the PPN and LABF. The choice variables used are valid macroeconomic factors that explain the GDRP of Nigeria, as adduced from the IRF and GCT, and in the long-run. Policy recommendations suggest that the import restriction is not disqualified as a veritable tool for improving domestic rice production, rather better enforcement procedures and strict adherence to the policy dictates is needed. Furthermore, accompanying policies which drive public and private capital investment and accumulation must be introduced. Also, employment rate and labour substitution in the agricultural sector should not be drastically changed, rather its welfare and efficiency be improved.

Keywords: import restriction, gross domestic rice production, cointegration, VECM, Granger causality, impulse response function

Procedia PDF Downloads 208
1443 On the Performance Analysis of Coexistence between IEEE 802.11g and IEEE 802.15.4 Networks

Authors: Chompunut Jantarasorn, Chutima Prommak

Abstract:

This paper presents an intensive measurement studying of the network performance analysis when IEEE 802.11g Wireless Local Area Networks (WLAN) coexisting with IEEE 802.15.4 Wireless Personal Area Network (WPAN). The measurement results show that the coexistence between both networks could increase the Frame Error Rate (FER) of the IEEE 802.15.4 networks up to 60% and it could decrease the throughputs of the IEEE 802.11g networks up to 55%.

Keywords: wireless performance analysis, coexistence analysis, IEEE 802.11g, IEEE 802.15.4

Procedia PDF Downloads 553