Search results for: erbium doped fiber amplifier
1212 Industrial and Technological Applications of Brewer’s Spent Malt
Authors: Francielo Vendruscolo
Abstract:
During industrial processing of raw materials of animal and vegetable origin, large amounts of solid, liquid and gaseous wastes are generated. Solid residues are usually materials rich in carbohydrates, protein, fiber and minerals. Brewer’s spent grain (BSG) is the main waste generated in the brewing industry, representing 85% of the waste generated in this industry. It is estimated that world’s BSG generation is approximately 38.6 x 106 t per year and represents 20-30% (w/w) of the initial mass of added malt, resulting in low commercial value by-product, however, does not have economic value, but it must be removed from the brewery, as its spontaneous fermentation can attract insects and rodents. For every 100 grams in dry basis, BSG has approximately 68 g total fiber, being divided into 3.5 g of soluble fiber and 64.3 g of insoluble fiber (cellulose, hemicellulose and lignin). In addition to dietary fibers, depending on the efficiency of the grinding process and mashing, BSG may also have starch, reducing sugars, lipids, phenolics and antioxidants, emphasizing that its composition will depend on the barley variety and cultivation conditions, malting and technology involved in the production of beer. BSG demands space for storage, but studies have proposed alternatives such as the use of drying, extrusion, pressing with superheated steam, and grinding to facilitate storage. Other important characteristics that enhance its applicability in bioremediation, effluent treatment and biotechnology, is the surface area (SBET) of 1.748 m2 g-1, total pore volume of 0.0053 cm3 g-1 and mean pore diameter of 121.784 Å, characterized as a macroporous and possess fewer adsorption properties but have great ability to trap suspended solids for separation from liquid solutions. It has low economic value; however, it has enormous potential for technological applications that can improve or add value to this agro-industrial waste. Due to its composition, this material has been used in several industrial applications such as in the production of food ingredients, fiber enrichment by its addition in foods such as breads and cookies in bioremediation processes, substrate for microorganism and production of biomolecules, bioenergy generation, and civil construction, among others. Therefore, the use of this waste or by-product becomes essential and aimed at reducing the amount of organic waste in different industrial processes, especially in breweries.Keywords: brewer’s spent malt, agro-industrial residue, lignocellulosic material, waste generation
Procedia PDF Downloads 2081211 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst
Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon
Abstract:
Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.Keywords: carbon dioxide, dry reforming, supports, core shell catalyst
Procedia PDF Downloads 1811210 Evaluation of a Risk Assessment Method for Fiber Emissions from Sprayed Asbestos-Containing Materials
Authors: Yukinori Fuse, Masato Kawaguchi
Abstract:
A quantitative risk assessment method was developed for fiber emissions from sprayed asbestos-containing materials (ACMs). In Japan, instead of being quantitative, these risk assessments have relied on the subjective judgment of skilled engineers, which may vary from one person to another. Therefore, this closed sampling method aims at avoiding any potential variability between assessments. This method was used to assess emissions from ACM sprayed in eleven buildings and the obtained results were compared with the subjective judgments of a skilled engineer. An approximate correlation tendency was found between both approaches. In spite of existing uncertainties, the closed sampling method is useful for public health protection. We firmly believe that this method may find application in the management and renovation decisions of buildings using friable and sprayed ACM.Keywords: asbestos, renovation, risk assessment, maintenance
Procedia PDF Downloads 3791209 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms
Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee
Abstract:
Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences
Procedia PDF Downloads 2771208 Topographic and Thermal Analysis of Plasma Polymer Coated Hybrid Fibers for Composite Applications
Authors: Hande Yavuz, Grégory Girard, Jinbo Bai
Abstract:
Manufacturing of hybrid composites requires particular attention to overcome various critical weaknesses that are originated from poor interfacial compatibility. A large number of parameters have to be considered to optimize the interfacial bond strength either to avoid flaw sensitivity or delamination that occurs in composites. For this reason, surface characterization of reinforcement phase is needed in order to provide necessary data to drive an assessment of fiber-matrix interfacial compatibility prior to fabrication of composite structures. Compared to conventional plasma polymerization processes such as radiofrequency and microwave, dielectric barrier discharge assisted plasma polymerization is a promising process that can be utilized to modify the surface properties of carbon fibers in a continuous manner. Finding the most suitable conditions (e.g., plasma power, plasma duration, precursor proportion) for plasma polymerization of pyrrole in post-discharge region either in the presence or in the absence of p-toluene sulfonic acid monohydrate as well as the characterization of plasma polypyrrole coated fibers are the important aspects of this work. Throughout the current investigation, atomic force microscopy (AFM) and thermogravimetric analysis (TGA) are used to characterize plasma treated hybrid fibers (CNT-grafted Toray T700-12K carbon fibers, referred as T700/CNT). TGA results show the trend in the change of decomposition process of deposited polymer on fibers as a function of temperature up to 900 °C. Within the same period of time, all plasma pyrrole treated samples began to lose weight with relatively fast rate up to 400 °C which suggests the loss of polymeric structures. The weight loss between 300 and 600 °C is attributed to evolution of CO2 due to decomposition of functional groups (e.g. carboxyl compounds). With keeping in mind the surface chemical structure, the higher the amount of carbonyl, alcohols, and ether compounds, the lower the stability of deposited polymer. Thus, the highest weight loss is observed in 1400 W 45 s pyrrole+pTSA.H2O plasma treated sample probably because of the presence of less stable polymer than that of other plasma treated samples. Comparison of the AFM images for untreated and plasma treated samples shows that the surface topography may change on a microscopic scale. The AFM image of 1800 W 45 s treated T700/CNT fiber possesses the most significant increase in roughening compared to untreated T700/CNT fiber. Namely, the fiber surface became rougher with ~3.6 fold that of the T700/CNT fiber. The increase observed in surface roughness compared to untreated T700/CNT fiber may provide more contact points between fiber and matrix due to increased surface area. It is believed to be beneficial for their application as reinforcement in composites.Keywords: hybrid fibers, surface characterization, surface roughness, thermal stability
Procedia PDF Downloads 2341207 Design and Implementation of A 10-bit SAR ADC with A Programmable Reference
Authors: Hasmayadi Abdul Majid, Yuzman Yusoff, Noor Shelida Salleh
Abstract:
This paper presents the development of a single-ended 38.5 kS/s 10-bit programmable reference SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and a SAR digital logic to create 10 effective bits ADC. A programmable reference circuitry allows the ADC to operate with different input range from 0.6 V to 2.1 V. A single ended 38.5 kS/s 10-bit programmable reference SAR ADC was proposed and implemented in a 0.35 µm CMOS technology and consumed less than 7.5 mW power with a 3 V supply.Keywords: successive approximation register analog-to-digital converter, SAR ADC, resistive DAC, programmable reference
Procedia PDF Downloads 5201206 Effect of Steel Fibers on M30 Fly Ash Concrete
Authors: Saksham
Abstract:
Concrete's versatility and affordability make it a highly competitive building material capable of meeting diverse requirements. However, the increasing demands placed on structures and the need for enhanced durability and performance have driven the development of distinct cementitious materials and concrete composites. One significant aspect of this advancement is the utilization of waste materials from industries, such as fly ash, to improve concrete's properties. Fly ash, a byproduct of coal combustion can enhance concrete's strength and durability while reducing environmental impact. Additionally, steel fibers can enhance concrete's toughness and crack resistance, contributing to improved structural performance. The experimental study aims to optimize the proportion of ingredients in M30-grade concrete, incorporating fly ash and steel fibers. By varying fly ash content (10% to 30%) and steel fiber dosage (0% to 1.5%), the research seeks to determine the optimal combination for achieving the desired compressive strength. Two sets of experiments are conducted: one focusing on varying fly ash content while keeping steel fiber dosage constant, and the other focusing on varying steel fiber dosage while keeping other parameters fixed. Through systematic testing, molding, curing, and evaluation according to specified standards, the research aims to analyze the impact of fly ash and steel fibers on concrete's compressive strength. The findings have the potential to inform engineers about optimized concrete mix designs that balance performance, cost-effectiveness, and sustainability, advancing toward more resilient and environmentally friendly building practices.Keywords: concrete, sustainability, durability, compressive strength
Procedia PDF Downloads 541205 Tunnel Convergence Monitoring by Distributed Fiber Optics Embedded into Concrete
Authors: R. Farhoud, G. Hermand, S. Delepine-lesoille
Abstract:
Future underground facility of French radioactive waste disposal, named Cigeo, is designed to store intermediate and high level - long-lived French radioactive waste. Intermediate level waste cells are tunnel-like, about 400m length and 65 m² section, equipped with several concrete layers, which can be grouted in situ or composed of tunnel elements pre-grouted. The operating space into cells, to allow putting or removing waste containers, should be monitored for several decades without any maintenance. To provide the required information, design was performed and tested in situ in Andra’s underground laboratory (URL) at 500m under the surface. Based on distributed optic fiber sensors (OFS) and backscattered Brillouin for strain and Raman for temperature interrogation technics, the design consists of 2 loops of OFS, at 2 different radiuses, around the monitored section (Orthoradiale strains) and longitudinally. Strains measured by distributed OFS cables were compared to classical vibrating wire extensometers (VWE) and platinum probes (Pt). The OFS cables were composed of 2 cables sensitive to strains and temperatures and one only for temperatures. All cables were connected, between sensitive part and instruments, to hybrid cables to reduce cost. The connection has been made according to 2 technics: splicing fibers in situ after installation or preparing each fiber with a connector and only plugging them together in situ. Another challenge was installing OFS cables along a tunnel mad in several parts, without interruption along several parts. First success consists of the survival rate of sensors after installation and quality of measurements. Indeed, 100% of OFS cables, intended for long-term monitoring, survived installation. Few new configurations were tested with relative success. Measurements obtained were very promising. Indeed, after 3 years of data, no difference was observed between cables and connection methods of OFS and strains fit well with VWE and Pt placed at the same location. Data, from Brillouin instrument sensitive to strains and temperatures, were compensated with data provided by Raman instrument only sensitive to temperature and into a separated fiber. These results provide confidence in the next steps of the qualification processes which consists of testing several data treatment approach for direct analyses.Keywords: monitoring, fiber optic, sensor, data treatment
Procedia PDF Downloads 1301204 Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect
Authors: B. Akturk, N. Yuzer, N. Kabay
Abstract:
High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH as a sustainable material instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared, incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.Keywords: high temperature, high strength concrete, polypropylene fiber, raw rice husk, thermo-physical properties
Procedia PDF Downloads 2751203 Torsional Behavior of Reinforced Concrete (RC) Beams Strengthened by Fiber Reinforced Cementitious Materials– a Review
Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri
Abstract:
Reinforced concrete (RC) is commonly used material in the construction sector, due to its low-cost and durability, and allowed the architectures and designers to construct structural members with different shapes and finishing. Usually, RC members are designed to sustain service loads efficiently without any destruction. However, because of the faults in the design phase, overloading, materials deficiencies, and environmental effects, most of the structural elements will require maintenance and repairing over their lifetime. Therefore, strengthening and repair of the deteriorated and/or existing RC structures are much important to extend their life cycle. Various techniques are existing to retrofit and strengthen RC structural elements such as steel plate bonding, external pre-stressing, section enlargement, fiber reinforced polymer (FRP) wrapping, etc. Although these configurations can successfully improve the load bearing capacity of the beams, they are still prone to corrosion damage which results in failure of the strengthened elements. Therefore, many researchers used fiber reinforced cementitious materials due to its low-cost, corrosion resistance, and result in improvement of the tensile and fatigue behaviors. Various types of cementitious materials have been used to strengthen or repair structural elements. This paper has summarized to accumulate data regarding on previously published research papers concerning the torsional behaviors of RC beams strengthened by various types of cementitious materials.Keywords: reinforced concrete beams, strengthening techniques, cementitious materials, torsional strength, twisting angle
Procedia PDF Downloads 1211202 Synthesis and Characterization of TiO₂, N Doped TiO₂ and AG Doped TiO₂ for Photocatalytic Degradation of Methylene Blue in Adwa Almeda Textile Industry, Tigray, Ethiopia
Authors: Mulugeta Gurum Gerechal
Abstract:
Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, urea, NH₄OH, and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400°C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM, and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was an efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21% under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 400⁰C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination, methylene blue
Procedia PDF Downloads 151201 Improved Visible Light Activities for Degrading Pollutants on ZnO-TiO2 Nanocomposites Decorated with C and Fe Nanoparticles
Authors: Yuvraj S. Malghe, Atul B. Lavand
Abstract:
In recent years, semiconductor photocatalytic degradation processes have attracted a lot of attention and are used widely for the destruction of organic pollutants present in waste water. Among various semiconductors, titanium dioxide (TiO2) is the most popular photocatalyst due to its excellent chemical stability, non-toxicity, relatively low cost and high photo-oxidation power. It has been known that zinc oxide (ZnO) with band gap energy 3.2 eV is a suitable alternative to TiO2 due to its high quantum efficiency, however it corrodes in acidic medium. Unfortunately TiO2 and ZnO both are active only in UV light due to their wide band gaps. Sunlight consist about 5-7% UV light, 46% visible light and 47% infrared radiation. In order to utilize major portion of sunlight (visible spectrum), it is necessary to modify the band gap of TiO2 as well as ZnO. This can be done by several ways such as semiconductor coupling, doping the material with metals/non metals. Doping of TiO2 using transition metals like Fe, Co and non-metals such as N, C or S extends its absorption wavelengths from UV to visible region. In the present work, we have synthesized ZnO-TiO2 nanocomposite using reverse microemulsion method. Visible light photocatalytic activity of synthesized nanocomposite was investigated for degradation of aqueous solution of malachite green (MG). To increase the photocatalytic activity of ZnO-TiO2 nanocomposite, it is decorated with C and Fe. Pure, carbon (C) doped and carbon, iron(C, Fe) co-doped nanosized ZnO-TiO2 nanocomposites were synthesized using reverse microemulsion method. These composites were characterized using, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), Scanning electron microscopy (SEM), UV visible spectrophotometery and X-ray photoelectron spectroscopy (XPS). Visible light photocatalytic activities of synthesized nanocomposites were investigated for degradation of aqueous malachite green (MG) solution. C, Fe co-doped ZnO-TiO2 nanocomposite exhibit better photocatalytic activity and showed threefold increase in photocatalytic activity. Effect of amount of catalyst, pH and concentration of MG solution on the photodegradation rate is studied. Stability and reusability of photocatalyst is also studied. C, Fe decorated ZnO-TiO2 nanocomposite shows threefold increase in photocatalytic activity.Keywords: malachite green, nanocomposite, photocatalysis, titanium dioxide, zinc oxide
Procedia PDF Downloads 2841200 Incorporation of Copper for Performance Enhancement in Metal-Oxides Resistive Switching Device and Its Potential Electronic Application
Authors: B. Pavan Kumar Reddy, P. Michael Preetam Raj, Souri Banerjee, Souvik Kundu
Abstract:
In this work, the fabrication and characterization of copper-doped zinc oxide (Cu:ZnO) based memristor devices with aluminum (Al) and indium tin oxide (ITO) metal electrodes are reported. The thin films of Cu:ZnO was synthesized using low-cost and low-temperature chemical process. The Cu:ZnO was then deposited onto ITO bottom electrodes using spin-coater technique, whereas the top electrode Al was deposited utilizing physical vapor evaporation technique. Ellipsometer was employed in order to measure the Cu:ZnO thickness and it was found to be 50 nm. Several surface and materials characterization techniques were used to study the thin-film properties of Cu:ZnO. To ascertain the efficacy of Cu:ZnO for memristor applications, electrical characterizations such as current-voltage (I-V), data retention and endurance were obtained, all being the critical parameters for next-generation memory. The I-V characteristic exhibits switching behavior with asymmetrical hysteresis loops. This work imputes the resistance switching to the positional drift of oxygen vacancies associated with respect to the Al/Cu:ZnO junction. Further, a non-linear curve fitting regression techniques were utilized to determine the equivalent circuit for the fabricated Cu:ZnO memristors. Efforts were also devoted in order to establish its potentiality for different electronic applications.Keywords: copper doped, metal-oxides, oxygen vacancies, resistive switching
Procedia PDF Downloads 1621199 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network
Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita
Abstract:
In this paper, we have compared and analyzed the electron absorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for an optical fiber communication network. The electroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ratio have been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.Keywords: exciton, refractive index change, extinction ratio, GaAs
Procedia PDF Downloads 5761198 Nanostructured Transition Metal Oxides Doped Graphene for High Performance Solid-State Supercapacitor Electrodes
Authors: G. Nyongombe, Guy L. Kabongo, B. M. Mothudi, M. S. Dhlamini
Abstract:
A series of Transition Metals Oxides (TMOs) doped graphene were synthesized and successfully used as supercapacitor electrode materials. The as-synthesized materials exhibited exceptional electrochemical properties owing to the combined properties of its constituents; high surface area and good conductivity were achieved. Several analytical characterization techniques were employed to investigate the morphology, crystal structure atomic arrangement and elemental chemical state in the materials for which scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted, respectively. Moreover, the electrochemical properties of the as-synthesized materials were examined by performing cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements. Furthermore, the effect of doping concentration on the interlayer distance of the graphene materials and the charge transfer resistance are investigated and correlated to the exceptional current density which was multiplied by a factor of ~80 after TMOs doping in graphene. Finally, the resulting high capacitance obtained confirms the contribution of grapheme exceptional electronic conductivity and large surface area on the electrode materials. Such good-performing electrode materials are highly promising for supercapacitors and other energy storage devices.Keywords: energy density, graphene, supercapacitors, TMOs
Procedia PDF Downloads 2581197 Dendrimer-Encapsulated N, Pt Co-Doped TiO₂ for the Photodegration of Contaminated Wastewater
Authors: S. K. M. Nzaba, H. H. Nyoni, B. Ntsendwana, B. B. Mamba, A. T. Kuvarega
Abstract:
Azo dye effluents, released into water bodies are not only toxic to the ecosystem but also pose a serious impact on human health due to the carcinogenic and mutagenic effects of the compounds present in the dye discharge. Conventional water treatment methods such as adsorption, flocculation/coagulation and biological processes are not effective in completely removing most of the dyes and their natural degradation by-products. Advanced oxidation processes (AOPs) have proven to be effective technologies for complete mineralization of these recalcitrant pollutants. Therefore, there is a need for new technology that can solve the problem. Thus, this study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal codoped TiO₂. N, Pt co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PAMAM G0), amine-terminated polyamidoamine dendrimer generation 1 ( PAMAM G1) and hyperbranched polyethyleneimine (HPEI) as templates and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier- transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet /visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25 revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N, Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of brilliant black (BB) dye. The N, metal codoped TiO₂ containing 0.5 wt. % of the metal consisted mainly of the anatase phase as confirmed by XRD results of all three samples, with a particle size range of 13–30 nm. The particles were largely spherical and shifted the absorption edge well into the visible region. Band gap reduction was more pronounced for the N, Pt HPEI (Pt 0.5 wt. %) codoped TiO₂ compared to PAMAM G0 and PAMAM G1. Consequently, codoping led to an enhancement in the photocatalytic activity of the materials for the degradation of brilliant black (BB).Keywords: codoped TiO₂, dendrimer, photodegradation, wastewater
Procedia PDF Downloads 1741196 Composite Materials from Beer Bran Fibers and Polylactic Acid: Characterization and Properties
Authors: Camila Hurtado, Maria A. Morales, Diego Torres, L.H. Reyes, Alejandro Maranon, Alicia Porras
Abstract:
This work presents the physical and chemical characterization of beer brand fibers and the properties of novel composite materials made of these fibers and polylactic acid (PLA). Treated and untreated fibers were physically characterized in terms of their moisture content (ASTM D1348), density, and particle size (ASAE S319.2). A chemical analysis following TAPPI standards was performed to determine ash, extractives, lignin, and cellulose content on fibers. Thermal stability was determined by TGA analysis, and an FTIR was carried out to check the influence of the alkali treatment in fiber composition. An alkali treatment with NaOH (5%) of fibers was performed for 90 min, with the objective to improve the interfacial adhesion with polymeric matrix in composites. Composite materials based on either treated or untreated beer brand fibers and polylactic acid (PLA) were developed characterized in tension (ASTM D638), bending (ASTM D790) and impact (ASTM D256). Before composites manufacturing, PLA and brand beer fibers (10 wt.%) were mixed in a twin extruder with a temperature profile between 155°C and 180°C. Coupons were manufactured by compression molding (110 bar) at 190°C. Physical characterization showed that alkali treatment does not affect the moisture content (6.9%) and the density (0.48 g/cm³ for untreated fiber and 0.46 g/cm³ for the treated one). Chemical and FTIR analysis showed a slight decrease in ash and extractives. Also, a decrease of 47% and 50% for lignin and hemicellulose content was observed, coupled with an increase of 71% for cellulose content. Fiber thermal stability was improved with the alkali treatment at about 10°C. Tensile strength of composites was found to be between 42 and 44 MPa with no significant statistical difference between coupons with either treated or untreated fibers. However, compared to neat PLA, composites with beer bran fibers present a decrease in tensile strength of 27%. Young modulus increases by 10% with treated fiber, compared to neat PLA. Flexural strength decreases in coupons with treated fiber (67.7 MPa), while flexural modulus increases (3.2 GPa) compared to neat PLA (83.3 MPa and 2.8 GPa, respectively). Izod impact test results showed an improvement of 99.4% in coupons with treated fibers - compared with neat PLA.Keywords: beer bran, characterization, green composite, polylactic acid, surface treatment
Procedia PDF Downloads 1331195 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air
Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao
Abstract:
ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere
Procedia PDF Downloads 2171194 Theoretical and Experimental Bending Properties of Composite Pipes
Authors: Maja Stefanovska, Svetlana Risteska, Blagoja Samakoski, Gari Maneski, Biljana Kostadinoska
Abstract:
Aim of this work is to determine the theoretical and experimental properties of filament wound glass fiber/epoxy resin composite pipes with different winding design subjected under bending. For determination of bending strength of composite samples three point bending tests were conducted according to ASTM D790 standard. Good correlation between theoretical and experimental results has been obtained, where sample No4 has shown the highest value of bending strength. All samples have demonstrated matrix cracking and fiber failure followed by layers delamination during testing. Also, it was found that smaller winding angles lead to an increase in bending stress. From presented results good merger between glass fibers and epoxy resin was confirmed by SEM analysis.Keywords: bending properties, composite pipe, winding design, SEM
Procedia PDF Downloads 3291193 The Review of Permanent Downhole Monitoring System
Abstract:
With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield
Procedia PDF Downloads 791192 Modification of Date Palm Leaflets Fibers Used as Thermoplastic Reinforcement
Authors: K. Almi, S.Lakel, A. Benchabane, A. Kriker
Abstract:
The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. This paper is an investigation of effect of different treatment process on the mechanical proprieties and on the thermal stability of date palm leaflets fibers with a view to improve the date palm fiber proprieties used as reinforcement of thermoplastic materials which main processes require extrusion, hot press. To compare the effect of alkali and acid treatment on the date palm leaflets fiber properties, different treatment were used such as Sodium hydroxide NaOH solution, aluminium chloride AlCl3 and acid treatment with HCL solution. All treatments were performed at 70°C for 4h and 48 h. The mechanical performance (tensile strength and elongation) is affected by immersion time in alkaline and acid solutions. The reduction of the tensile strength and elongation of fibers at 48h was higher in acid treatment than in alkali treatment at high concentration. No significant differences were observed in mechanical and thermal proprieties of raw fibers and fibers submerged in AlCl3 at low concentration 1% for 48h. Fibers treated by NaOH at 6% for 4h showed significant increase in the mechanical proprieties and thermal stability of date palm leaflets fibers. Hence, soda treatment is necessary to improve the fibers proprieties and consequently optimize the composite performance.Keywords: date palm fibers, surface treatments, thermoplastic composites, thermal analysis
Procedia PDF Downloads 3421191 Synthesis of Dispersion-Compensating Triangular Lattice Index-Guiding Photonic Crystal Fibers Using the Directed Tabu Search Method
Authors: F. Karim
Abstract:
In this paper, triangular lattice index-guiding photonic crystal fibers (PCFs) are synthesized to compensate the chromatic dispersion of a single mode fiber (SMF-28) for an 80 km optical link operating at 1.55 µm, by using the directed tabu search algorithm. Hole-to-hole distance, circular air-hole diameter, solid-core diameter, ring number and PCF length parameters are optimized for this purpose. Three Synthesized PCFs with different physical parameters are compared in terms of their objective functions values, residual dispersions and compensation ratios.Keywords: triangular lattice index-guiding photonic crystal fiber, dispersion compensation, directed tabu search, synthesis
Procedia PDF Downloads 4321190 On the Fatigue Behavior of a Triphasic Composite
Authors: G. Minak, D. Ghelli, A. Zucchelli
Abstract:
This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.Keywords: bending fatigue, epoxy resin, glass fiber, montmorillonite
Procedia PDF Downloads 4461189 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural
Authors: Baeza S. Roberto
Abstract:
The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.Keywords: neural network, dry relaxation, knitting, linear regression
Procedia PDF Downloads 5851188 Magnetization Studies and Vortex Phase Diagram of Oxygenated YBa₂Cu₃₋ₓAlₓO₆₊δ Single Crystal
Authors: Ashna Babu, Deepshikha Jaiswal Nagar
Abstract:
Cuprate high-temperature superconductors (HTSCs) have been immensely studied during the past few decades because of their structure which is described as a superlattice of superconducting CuO₂ layers. In particular, YBa₂Cu₃O₆₊δ (YBCO), with its critical temperature of 93 K, has received the most attention due to its well-defined metal stoichiometry and variable oxygen content that determines the carrier doping level. Substitution of metal ions at the Cu site is known to increase the critical current density without destroying superconductivity in YBCO. The construction of vortex phase diagrams is very important for such doped YBCO materials both from a fundamental perspective as well as from a technological perspective. By measuring field-dependent magnetization on annealed single crystals of Al-doped YBCO, YBa₂Cu₃₋ₓAlₓO₆₊δ (Al-YBCO), we were able to observe a second magnetization peak anomaly (SMP) in a very large part of the phase diagram. We were also able to observe the SMP anomaly in temperature-dependent magnetization measurements, the first observation to our knowledge. Critical current densities were calculated using Bean’s critical state model, flux jumps associated with symmetry reorientation of vortex lattice were studied, the oxygen cluster distribution was also analysed, and by incorporating all observations, we made a vortex phase diagram for oxygenated Al-YBCO single crystal.Keywords: oxygen deficient clusters, second magnetization peak anomaly, flux jumps, vortex phase diagram
Procedia PDF Downloads 701187 A Robust Software for Advanced Analysis of Space Steel Frames
Authors: Viet-Hung Truong, Seung-Eock Kim
Abstract:
This paper presents a robust software package for practical advanced analysis of space steel framed structures. The pre- and post-processors of the presented software package are coded in the C++ programming language while the solver is written by using the FORTRAN programming language. A user-friendly graphical interface of the presented software is developed to facilitate the modeling process and result interpretation of the problem. The solver employs the stability functions for capturing the second-order effects to minimize modeling and computational time. Both the plastic-hinge and fiber-hinge beam-column elements are available in the presented software. The generalized displacement control method is adopted to solve the nonlinear equilibrium equations.Keywords: advanced analysis, beam-column, fiber-hinge, plastic hinge, steel frame
Procedia PDF Downloads 3081186 Effect of Sr-Doping on Multiferroic Properties of Ca₁₋ₓSrₓMn₇O₁₂
Authors: Parul Jain, Jitendra Saha, L. C. Gupta, Satyabrata Patnaik, Ashok K. Ganguli, Ratnamala Chatterjee
Abstract:
This study shows how sensitively and drastically multiferroic properties of CaMn₇O₁₂ get modified by isovalent Sr-doping, namely, in Ca₁₋ₓSrₓMn₇O₁₂ for x as small as 0.01 and 0.02. CaMn₇O₁₂ is a type-II multiferroic, wherein polarization is caused by magnetic spin ordering. In this report magnetic and ferroelectric properties of Ca₁₋ₓSrₓMn₇O₁₂ (0 ≤ x ≤ 0.1) are investigated. Samples were prepared by wet sol gel technique using their respective nitrates; powders thus obtained were calcined and sintered in optimized conditions. The X-ray diffraction patterns of all samples doped with Sr concentrations in the range (0 ≤ x ≤ 10%) were found to be free from secondary phases. Magnetization versus temperature and magnetization versus field measurements were carried out using Quantum Design SQUID magnetometer. Pyroelectric current measurements were done for finding the polarization in the samples. Findings of the measurements are: (i) increase of Sr-doping in CaMn₇O₁₂ lattice i.e. for x ≤ 0.02, increases the polarization, whereas decreases the magnetization and the coercivity of the samples; (ii) the material with x = 0.02 exhibits ferroelectric polarization Ps which is more than double the Ps in the un-doped material and the magnetization M is reduced to less than half of that of the pure material; remarkably (iii) the modifications in Ps and M are reversed as x increases beyond x = 0.02 and for x = 0.10, Ps is reduced even below that for the pure sample; (iv) there is no visible change of the two magnetic transitions TN1 (90 K) and TN2 (48 K) of the pure material as a function of x. The strong simultaneous variations of Ps and M for x = 0.02 strongly suggest that either a basic modification of the magnetic structure of the material or a significant change of the coupling of P and M or possibly both.Keywords: ferroelectric, isovalent, multiferroic, polarization, pyroelectric
Procedia PDF Downloads 4621185 Design and Synthesis of Copper Doped Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal from Waste Water
Authors: Feleke Terefe Fanta
Abstract:
The existence of heavy metals and microbial contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, has become a public concern as human population increases and land development continues. This is because effluents from chemical and pharmaceutical industries are directly discharged onto surrounding land, irrigation fields and surface water bodies. In the present study, we synthesised zeolites and copper- zeolite composite based adsorbent through cost effective and simple approach to mitigate the problem. The study presents determination of heavy metal content and microbial contamination level of waste water sample collected from Akaki river using zeolites and copper- doped zeolites as adsorbents. The synthesis of copper- zeolite X composite was carried out by ion exchange method of copper ions into zeolites frameworks. The optimum amount of copper ions loaded into the zeolites frameworks were studied using the pore size determination concept via iodine test. The copper- loaded zeolites were characterized by X-ray diffraction (XRD). The XRD analysis showed clear difference in phase purity of zeolite before and after copper ion exchange. The concentration of Cd, Cr, and Pb were determined in waste water sample using atomic absorption spectrophotometry. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. The concentration of Cd, Cr, and Pb decreased to 0.005, 0.052 and BDL mg/L for sample treated with bare zeolite X while a further decrease in concentration of Cd, Cr, and Pb (0.005, BDL and BDL) mg/L respectively was observed for the sample treated with copper- zeolite composite. The antimicrobial activity was investigated by exposing the total coliform to the Zeolite X and Copper-modified Zeolite X. Zeolite X and Copper-modified Zeolite X showed complete elimination of microbilas after 90 and 50 minutes contact time respectively. This demonstrates effectiveness of copper- zeolite composite as efficient disinfectant. To understand the mode of heavy metals removal and antimicrobial activity of the copper-loaded zeolites; the adsorbent dose, contact time, temperature was studied. Overall, the results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbent.Keywords: waste water, copper doped zeolite x, adsorption heavy metal, disinfection
Procedia PDF Downloads 831184 Structural, Magnetic, Dielectric and Electrical Properties of Gd3+ Doped Cobalt Ferrite Nanoparticles
Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Jaromir Havlica, Lukas Kalina, Pavel Urbánek, Michal Machovsky, Milan Masař, Martin Holek
Abstract:
In this work, CoFe₂₋ₓGdₓO₄ (x=0.00, 0.05, 0.10, 0.15, 0.20) spinel ferrite nanoparticles are synthesized by sonochemical method. The structural properties and cation distribution are investigated using X-ray Diffraction (XRD), Raman Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray photoelectron spectroscopy. The morphology and elemental analysis are screened using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy, respectively. The particle size measured by FE-SEM and XRD analysis confirm the formation of nanoparticles in the range of 7-10 nm. The electrical properties show that the Gd³⁺ doped cobalt ferrite (CoFe₂₋ₓGdₓO₄; x= 0.20) exhibit enhanced dielectric constant (277 at 100 Hz) and ac conductivity (20.17 x 10⁻⁹ S/cm at 100 Hz). The complex impedance measurement study reveals that as Gd³⁺ doping concentration increases, the impedance Z’ and Z’ ’ decreases. The influence of Gd³⁺ doping in cobalt ferrite nanoparticles on the magnetic property is examined by using vibrating sample magnetometer. Magnetic property measurement reveal that the coercivity decreases with Gd³⁺ substitution from 234.32 Oe (x=0.00) to 12.60 Oe (x=0.05) and further increases from 12.60 Oe (x=0.05) to 68.62 Oe (x=0.20). The saturation magnetization decreases with Gd³⁺ substitution from 40.19 emu/g (x=0.00) to 21.58 emu/g (x=0.20). This decrease follows the three-sublattice model suggested by Yafet-Kittel (Y-K). The Y-K angle increases with the increase of Gd³⁺ doping in cobalt ferrite nanoparticles.Keywords: sonochemical method, nanoparticles, magnetic property, dielectric property, electrical property
Procedia PDF Downloads 3551183 Selective Synthesis of Pyrrolic Nitrogen-Doped Carbon Nanotubes Its Physicochemical Properties and Application as Pd Nanoparticles Support
Authors: L. M. Ombaka, R. S. Oosthuizen, P. G. Ndungu, V. O. Nyamori
Abstract:
Understanding the role of nitrogen species on the catalytic properties of nitrogen-doped carbon nanotubes (N-CNTs) as catalysts supports is critical as nitrogen species influence the support’s properties. To evaluate the influence of pyrrolic nitrogen on the physicochemical properties and catalytic activity of N-CNTs supported Pd (Pd/N-CNTs); N-CNTs containing varying pyrrolic contents were synthesized. The catalysts were characterised by the use of transmission electron microscope (TEM), scanning electron microscope, X-ray photoelectron spectroscopy (XPS), X-ray diffraction, Fourier transform infrared spectroscopy, and temperature programmed reduction. TEM analysis showed that the Pd nanoparticles were mainly located along the defect sites on N-CNTs. XPS analysis revealed that the abundance of Pd0 decreased while that of Pd2+ increased as the quantity of pyrrolic nitrogen increased. The increase of Pd2+ species was accredited to the formation of stable Pd-N coordination complexes which prevented further reduction of Pd2+ to Pd0 during synthesis. The formed Pd-N complexes increased the stability and dispersion of Pd2+ nanoparticles. The selective hydrogenation of nitrobenzophenone to aminobenzophenone over Pd/N-CNTs was compared to that of Pd on carbon nanotubes (Pd/CNTs). Pd/N-CNTs showed a higher catalytic activity and selectivity compared with Pd/CNTs. Pyrrolic nitrogen functional groups significantly promoted the selectivity towards aminobenzophenone formation.Keywords: pyrrolic N-CNTs, hydrogenation reactions, chemical vapour deposition technique
Procedia PDF Downloads 358