Search results for: discrete choice models
8077 Towards an Enhanced Compartmental Model for Profiling Malware Dynamics
Authors: Jessemyn Modiini, Timothy Lynar, Elena Sitnikova
Abstract:
We present a novel enhanced compartmental model for malware spread analysis in cyber security. This paper applies cyber security data features to epidemiological compartmental models to model the infectious potential of malware. Compartmental models are most efficient for calculating the infectious potential of a disease. In this paper, we discuss and profile epidemiologically relevant data features from a Domain Name System (DNS) dataset. We then apply these features to epidemiological compartmental models to network traffic features. This paper demonstrates how epidemiological principles can be applied to the novel analysis of key cybersecurity behaviours and trends and provides insight into threat modelling above that of kill-chain analysis. In applying deterministic compartmental models to a cyber security use case, the authors analyse the deficiencies and provide an enhanced stochastic model for cyber epidemiology. This enhanced compartmental model (SUEICRN model) is contrasted with the traditional SEIR model to demonstrate its efficacy.Keywords: cybersecurity, epidemiology, cyber epidemiology, malware
Procedia PDF Downloads 1088076 Simulation of Complex-Shaped Particle Breakage with a Bonded Particle Model Using the Discrete Element Method
Authors: Felix Platzer, Eric Fimbinger
Abstract:
In Discrete Element Method (DEM) simulations, the breakage behavior of particles can be simulated based on different principles. In the case of large, complex-shaped particles that show various breakage patterns depending on the scenario leading to the failure and often only break locally instead of fracturing completely, some of these principles do not lead to realistic results. The reason for this is that in said cases, the methods in question, such as the Particle Replacement Method (PRM) or Voronoi Fracture, replace the initial particle (that is intended to break) into several sub-particles when certain breakage criteria are reached, such as exceeding the fracture energy. That is why those methods are commonly used for the simulation of materials that fracture completely instead of breaking locally. That being the case, when simulating local failure, it is advisable to pre-build the initial particle from sub-particles that are bonded together. The dimensions of these sub-particles consequently define the minimum size of the fracture results. This structure of bonded sub-particles enables the initial particle to break at the location of the highest local loads – due to the failure of the bonds in those areas – with several sub-particle clusters being the result of the fracture, which can again also break locally. In this project, different methods for the generation and calibration of complex-shaped particle conglomerates using bonded particle modeling (BPM) to enable the ability to depict more realistic fracture behavior were evaluated based on the example of filter cake. The method that proved suitable for this purpose and which furthermore allows efficient and realistic simulation of breakage behavior of complex-shaped particles applicable to industrial-sized simulations is presented in this paper.Keywords: bonded particle model, DEM, filter cake, particle breakage
Procedia PDF Downloads 2108075 Determination of Direct Solar Radiation Using Atmospheric Physics Models
Authors: Pattra Pukdeekiat, Siriluk Ruangrungrote
Abstract:
This work was originated to precisely determine direct solar radiation by using atmospheric physics models since the accurate prediction of solar radiation is necessary and useful for solar energy applications including atmospheric research. The possible models and techniques for a calculation of regional direct solar radiation were challenging and compulsory for the case of unavailable instrumental measurement. The investigation was mathematically governed by six astronomical parameters i.e. declination (δ), hour angle (ω), solar time, solar zenith angle (θz), extraterrestrial radiation (Iso) and eccentricity (E0) along with two atmospheric parameters i.e. air mass (mr) and dew point temperature at Bangna meteorological station (13.67° N, 100.61° E) in Bangkok, Thailand. Analyses of five models of solar radiation determination with the assumption of clear sky were applied accompanied by three statistical tests: Mean Bias Difference (MBD), Root Mean Square Difference (RMSD) and Coefficient of determination (R2) in order to validate the accuracy of obtainable results. The calculated direct solar radiation was in a range of 491-505 Watt/m2 with relative percentage error 8.41% for winter and 532-540 Watt/m2 with relative percentage error 4.89% for summer 2014. Additionally, dataset of seven continuous days, representing both seasons were considered with the MBD, RMSD and R2 of -0.08, 0.25, 0.86 and -0.14, 0.35, 3.29, respectively, which belong to Kumar model for winter and CSR model for summer. In summary, the determination of direct solar radiation based on atmospheric models and empirical equations could advantageously provide immediate and reliable values of the solar components for any site in the region without a constraint of actual measurement.Keywords: atmospheric physics models, astronomical parameters, atmospheric parameters, clear sky condition
Procedia PDF Downloads 4098074 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification
Authors: Makram Ben Jeddou
Abstract:
The ABC classification is widely used by managers for inventory control. The classical ABC classification is based on the Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to take into account other important criteria. From these models, we will consider the ZF model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score based on a normalized average between a good and a bad optimized index can affect the ABC items classification. We will then focus on the weights assigned to each index and propose a classification compromise.Keywords: ABC classification, multi criteria inventory classification models, ZF-model
Procedia PDF Downloads 5088073 Comparative Study and Parallel Implementation of Stochastic Models for Pricing of European Options Portfolios using Monte Carlo Methods
Authors: Vinayak Bassi, Rajpreet Singh
Abstract:
Over the years, with the emergence of sophisticated computers and algorithms, finance has been quantified using computational prowess. Asset valuation has been one of the key components of quantitative finance. In fact, it has become one of the embryonic steps in determining risk related to a portfolio, the main goal of quantitative finance. This study comprises a drawing comparison between valuation output generated by two stochastic dynamic models, namely Black-Scholes and Dupire’s bi-dimensionality model. Both of these models are formulated for computing the valuation function for a portfolio of European options using Monte Carlo simulation methods. Although Monte Carlo algorithms have a slower convergence rate than calculus-based simulation techniques (like FDM), they work quite effectively over high-dimensional dynamic models. A fidelity gap is analyzed between the static (historical) and stochastic inputs for a sample portfolio of underlying assets. In order to enhance the performance efficiency of the model, the study emphasized the use of variable reduction methods and customizing random number generators to implement parallelization. An attempt has been made to further implement the Dupire’s model on a GPU to achieve higher computational performance. Furthermore, ideas have been discussed around the performance enhancement and bottleneck identification related to the implementation of options-pricing models on GPUs.Keywords: monte carlo, stochastic models, computational finance, parallel programming, scientific computing
Procedia PDF Downloads 1628072 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation
Authors: Fidelia A. Orji, Julita Vassileva
Abstract:
This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning
Procedia PDF Downloads 1288071 Comparison of Unit Hydrograph Models to Simulate Flood Events at the Field Scale
Authors: Imene Skhakhfa, Lahbaci Ouerdachi
Abstract:
To ensure the overall coherence of simulated results, it is necessary to develop a robust validation process. In many applications, it is no longer content to calibrate and validate the model only in relation to the hydro graph measured at the outlet, but we try to better simulate the functioning of the watershed in space. Therefore the timing also performs compared to other variables such as water level measurements in intermediate stations or groundwater levels. As part of this work, we limit ourselves to modeling flood of short duration for which the process of evapotranspiration is negligible. The main parameters to identify the models are related to the method of unit hydro graph (HU). Three different models were tested: SNYDER, CLARK and SCS. These models differ in their mathematical structure and parameters to be calibrated while hydrological data are the same, the initial water content and precipitation. The models are compared on the basis of their performance in terms six objective criteria, three global criteria and three criteria representing volume, peak flow, and the mean square error. The first type of criteria gives more weight to strong events whereas the second considers all events to be of equal weight. The results show that the calibrated parameter values are dependent and also highlight the problems associated with the simulation of low flow events and intermittent precipitation.Keywords: model calibration, intensity, runoff, hydrograph
Procedia PDF Downloads 4868070 Wind Wave Modeling Using MIKE 21 SW Spectral Model
Authors: Pouya Molana, Zeinab Alimohammadi
Abstract:
Determining wind wave characteristics is essential for implementing projects related to Coastal and Marine engineering such as designing coastal and marine structures, estimating sediment transport rates and coastal erosion rates in order to predict significant wave height (H_s), this study applies the third generation spectral wave model, Mike 21 SW, along with CEM model. For SW model calibration and verification, two data sets of meteorology and wave spectroscopy are used. The model was exposed to time-varying wind power and the results showed that difference ratio mean, standard deviation of difference ratio and correlation coefficient in SW model for H_s parameter are 1.102, 0.279 and 0.983, respectively. Whereas, the difference ratio mean, standard deviation and correlation coefficient in The Choice Experiment Method (CEM) for the same parameter are 0.869, 1.317 and 0.8359, respectively. Comparing these expected results it is revealed that the Choice Experiment Method CEM has more errors in comparison to MIKE 21 SW third generation spectral wave model and higher correlation coefficient does not necessarily mean higher accuracy.Keywords: MIKE 21 SW, CEM method, significant wave height, difference ratio
Procedia PDF Downloads 4028069 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)
Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves
Abstract:
The modeling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high-resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve denser and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high-resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.Keywords: 3D models, environment, matching, pleiades
Procedia PDF Downloads 3308068 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method
Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad
Abstract:
The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.Keywords: finite element method, flux density, transformer, voltage gradient
Procedia PDF Downloads 2928067 Using Differentiation Instruction to Create a Personalized Experience
Authors: Valerie Yocco Rossi
Abstract:
Objective: The author will share why differentiation is necessary for all classrooms as well as strategies for differentiating content, process, and product. Through learning how to differentiate, teachers will be able to create activities and assessments to meet the abilities, readiness levels, and interests of all learners. Content and Purpose: This work will focus on how to create a learning experience for students that recognizes their different interests, abilities, and readiness levels by differentiating content, process, and product. Likewise, the best learning environments allow for choice. Choice boards allow students to select tasks based on interests. There can be challenging and basic tasks to meet the needs of various abilities. Equally, rubrics allow for personalized and differentiated assessments based on readiness levels and cognitive abilities. The principals of DI help to create a classroom where all students are learning to the best of their abilities. Outcomes: After reviewing the work, readers will be able to (1) identify the benefits of differentiated instruction; (2) convert traditional learning activities to differentiated ones; (3) differentiate, writing-based assessments.Keywords: differentiation, personalized learning, design, instructional strategies
Procedia PDF Downloads 698066 Private University Students’ Travel Mode Choice Behaviour to University: Analysis in the Context of Dhaka City
Authors: Sharmin Nasrin
Abstract:
Dhaka is the capital of Bangladesh. In Dhaka among other trips, significant percentages of trips comprise education trips. This paper explores significant factors for private university students’ education trip to the University. A paper pencil based survey has been conducted on Asia Pacific University student in Dhaka from May 2016 to July 2016. Participants were chosen randomly for the survey. Exploratory analysis showed that about 50% chose bus, 33% chose Rickshaw, 2% chose car and 15% chose to walk for travel to their University. Results from Multinomial Logit model revealed that travel cost, travel time and comfort are the significant factors for private university students to choose different modes. However, magnitude of coefficient of attribute comfort is significantly higher compared to travel cost and travel time. Result from this paper can be used by policymakers and Government agencies to provide more cost effective, comfortable journey to their University.Keywords: private university student's education trip, mode choice mode, Dhaka, developing country
Procedia PDF Downloads 4528065 Poisson Type Spherically Symmetric Spacetimes
Authors: Gonzalo García-Reyes
Abstract:
Conformastat spherically symmetric exact solutions of Einstein's field equations representing matter distributions made of fluid both perfect and anisotropic from given solutions of Poisson's equation of Newtonian gravity are investigated. The approach is used in the construction of new relativistic models of thick spherical shells and three-component models of galaxies (bulge, disk, and dark matter halo), writing, in this case, the metric in cylindrical coordinates. In addition, the circular motion of test particles (rotation curves) along geodesics on the equatorial plane of matter configurations and the stability of the orbits against radial perturbations are studied. The models constructed satisfy all the energy conditions.Keywords: general relativity, exact solutions, spherical symmetry, galaxy, kinematics and dynamics, dark matter
Procedia PDF Downloads 878064 Size Effect on Shear Strength of Slender Reinforced Concrete Beams
Authors: Subhan Ahmad, Pradeep Bhargava, Ajay Chourasia
Abstract:
Shear failure in reinforced concrete beams without shear reinforcement leads to loss of property and life since a very little or no warning occurs before failure as in case of flexural failure. Shear strength of reinforced concrete beams decreases as its depth increases. This phenomenon is generally called as the size effect. In this paper, a comparative analysis is performed to estimate the performance of shear strength models in capturing the size effect of reinforced concrete beams made with conventional concrete, self-compacting concrete, and recycled aggregate concrete. Four shear strength models that account for the size effect in shear are selected from the literature and applied on the datasets of slender reinforced concrete beams. Beams prepared with conventional concrete, self-compacting concrete, and recycled aggregate concrete are considered for the analysis. Results showed that all the four models captured the size effect in shear effectively and produced conservative estimates of the shear strength for beams made with normal strength conventional concrete. These models yielded unconservative estimates for high strength conventional concrete beams with larger effective depths ( > 450 mm). Model of Bazant and Kim (1984) captured the size effect precisely and produced conservative estimates of shear strength of self-compacting concrete beams at all the effective depths. Also, shear strength models considered in this study produced unconservative estimates of shear strength for recycled aggregate concrete beams at all effective depths.Keywords: reinforced concrete beams; shear strength; prediction models; size effect
Procedia PDF Downloads 1618063 A Two-Week and Six-Month Stability of Cancer Health Literacy Classification Using the CHLT-6
Authors: Levent Dumenci, Laura A. Siminoff
Abstract:
Health literacy has been shown to predict a variety of health outcomes. Reliable identification of persons with limited cancer health literacy (LCHL) has been proved questionable with existing instruments using an arbitrary cut point along a continuum. The CHLT-6, however, uses a latent mixture modeling approach to identify persons with LCHL. The purpose of this study was to estimate two-week and six-month stability of identifying persons with LCHL using the CHLT-6 with a discrete latent variable approach as the underlying measurement structure. Using a test-retest design, the CHLT-6 was administered to cancer patients with two-week (N=98) and six-month (N=51) intervals. The two-week and six-month latent test-retest agreements were 89% and 88%, respectively. The chance-corrected latent agreements estimated from Dumenci’s latent kappa were 0.62 (95% CI: 0.41 – 0.82) and .47 (95% CI: 0.14 – 0.80) for the two-week and six-month intervals, respectively. High levels of latent test-retest agreement between limited and adequate categories of cancer health literacy construct, coupled with moderate to good levels of change-corrected latent agreements indicated that the CHLT-6 classification of limited versus adequate cancer health literacy is relatively stable over time. In conclusion, the measurement structure underlying the instrument allows for estimating classification errors circumventing limitations due to arbitrary approaches adopted by all other instruments. The CHLT-6 can be used to identify persons with LCHL in oncology clinics and intervention studies to accurately estimate treatment effectiveness.Keywords: limited cancer health literacy, the CHLT-6, discrete latent variable modeling, latent agreement
Procedia PDF Downloads 1788062 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)
Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean
Abstract:
The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.Keywords: pan evaporation, intelligent methods, shahroud, mayamey
Procedia PDF Downloads 748061 Multilevel Modeling of the Progression of HIV/AIDS Disease among Patients under HAART Treatment
Authors: Awol Seid Ebrie
Abstract:
HIV results as an incurable disease, AIDS. After a person is infected with virus, the virus gradually destroys all the infection fighting cells called CD4 cells and makes the individual susceptible to opportunistic infections which cause severe or fatal health problems. Several studies show that the CD4 cells count is the most determinant indicator of the effectiveness of the treatment or progression of the disease. The objective of this paper is to investigate the progression of the disease over time among patient under HAART treatment. Two main approaches of the generalized multilevel ordinal models; namely the proportional odds model and the nonproportional odds model have been applied to the HAART data. Also, the multilevel part of both models includes random intercepts and random coefficients. In general, four models are explored in the analysis and then the models are compared using the deviance information criteria. Of these models, the random coefficients nonproportional odds model is selected as the best model for the HAART data used as it has the smallest DIC value. The selected model shows that the progression of the disease increases as the time under the treatment increases. In addition, it reveals that gender, baseline clinical stage and functional status of the patient have a significant association with the progression of the disease.Keywords: nonproportional odds model, proportional odds model, random coefficients model, random intercepts model
Procedia PDF Downloads 4218060 Bone Fracture Detection with X-Ray Images Using Mobilenet V3 Architecture
Authors: Ashlesha Khanapure, Harsh Kashyap, Abhinav Anand, Sanjana Habib, Anupama Bidargaddi
Abstract:
Technologies that are developing quickly are being developed daily in a variety of disciplines, particularly the medical field. For the purpose of detecting bone fractures in X-ray pictures of different body segments, our work compares the ResNet-50 and MobileNetV3 architectures. It evaluates accuracy and computing efficiency with X-rays of the elbow, hand, and shoulder from the MURA dataset. Through training and validation, the models are evaluated on normal and fractured images. While ResNet-50 showcases superior accuracy in fracture identification, MobileNetV3 showcases superior speed and resource optimization. Despite ResNet-50’s accuracy, MobileNetV3’s swifter inference makes it a viable choice for real-time clinical applications, emphasizing the importance of balancing computational efficiency and accuracy in medical imaging. We created a graphical user interface (GUI) for MobileNet V3 model bone fracture detection. This research underscores MobileNetV3’s potential to streamline bone fracture diagnoses, potentially revolutionizing orthopedic medical procedures and enhancing patient care.Keywords: CNN, MobileNet V3, ResNet-50, healthcare, MURA, X-ray, fracture detection
Procedia PDF Downloads 658059 Single Mothers by Choice at Corona Time - The Perception of Social Support, Happiness and Work-Family Conflict and their Effect on State Anxiety
Authors: Orit Shamir Balderman, Shamir Michal
Abstract:
Israel often deals with crisis situations, but most have been characterized as security crises (e.g., war). This is the first time that the Israel has dealt with a health and social emergency as part of a global crisis. The crisis began in January 2020 with the emergence of the novel coronavirus (Covid-19), which was defined as a pandemic (World Health Organization, 2020) and arrived in Israel in early March 2020. This study examined how single mothers by choice (SMBC) experience state anxiety (SA), social support, work–family conflict (WFC), and happiness. This group has not been studied in the context of crises in general or a global crisis. Using a snowball sample, 386 SMBCanswered an online questionnaire. The findings show a negative relationship between income and level of state anxiety. State anxiety was also negatively associated with social support, level of happiness, and WFC. Finally, a stepwise regression analysis indicated that happiness explained 34% of the variance in SA. We also found that most of the women did not turn to formal support agencies such as social workers, other Government Ministries, or municipal welfare. A positive and strong correlations was also found between SA and WFC. The findings of the study reinforce the understanding that although these women made a conscious and informed decision regarding the choice of their family cell, their situation is more complex in the absence of a spouse support. Therefore, this study, as other future studies in the field of SMBC, may contribute to the improvement of their social status and the understanding that they are a unique group. Although SMBC are a growing sector of society in the past few years, there are still special needs and special attention that is needed from the formal and informal supports systems. A comparative study of these two groups and in different countries would shed light on SA among mothers in general, regardless of their relationship status and location.Researchers should expand this study by comparing mothers in relationships and exploring how SMBC coped in other countries. In summary, the findings of the study contribute knowledge on three levels: (a) knowledge about SMBC in general and during crisis situations; (b) examination of social support using tools assessing receipt of assistance and support, some of which were developed for the present study; and (c) insights regarding counseling, accompaniment, and guidance of welfare mechanisms.Keywords: single mothers by choice, state anxiety, social support, happiness, work–family conflict
Procedia PDF Downloads 858058 Factors Influencing Student's Decision to Pursue a Hospitality and Tourism Program
Authors: Zeenath Solih
Abstract:
The aim of the study is to analyze the factors that influence the decision to pursue a hospitality and tourism program for students of Maldives when pursuing higher education options. This research would further explore the implications and relationship between the universities and students. Quantitative research method will be used to demonstrate the hypothesis and achieve the objectives of this research, a questionnaire consisting of 30 closed questions will be used which will be analyzed based on SPSS18 software to handle and extract the data.10 public school and 3 private schools with secondary education and 3 universities with higher education facilities and a total of 500 students participated in the survey. The findings include selection criteria for decision making for higher studies being the university’s reputation, excellence and quality of educational program, the preference of pursuing further studies from a public over private universities and the academic, cultural and socio demographic factors that influence the students choice of program and university. Finally the study will provide valuable insight to how universities need to market their programs to attract the right students.Keywords: choice criteria, higher education, hospitality and tourism studies, information sources
Procedia PDF Downloads 2708057 Factors Influencing the Choice of Multi-Month Drug Dispensing Model Amongst Children and Adolescents Living with HIV (C/ALHIV) in Eswatini
Authors: Mbuso Siwela
Abstract:
Background: The Sub-Saharan Africa region has the greatest number of people eligible to receive antiretroviral treatment (ART). Multi-month Drug dispensing (MMD) of antiretroviral treatment (ART) aims to reduce patient-related barriers to access long-term treatment and improve health system efficiency. In Eswatini, however, few children and adolescents are on MMD. Young Heroes is implementing an HIV program that aims to avert new HIV infections in children and youth and improve treatment outcomes for children and adolescents living with HIV (C/ALHIV: 0-19 Years) and OVC caregivers with HIV prevention and impact mitigation interventions that prevent new HIV infections and reduce vulnerability. Aim of the study: The study aimed to ascertain factors that are associated with the assignment of the MMD model on C/ALHIVs. Methodology: The project provides treatment adherence support through well-trained community cadres (Home Visitors - HVs) at both community and health facility levels. During door-to-door visits, HVs track all C/ALHIV enrolled in the project monthly and refer any who might have stopped or interrupted treatment. C/ALHIV with unsuppressed viral load is supported through case conferencing and teen clubs. A quantitative cross-sectional analysis was conducted using STATA for children and adolescents living with HIV enrolled in the project. Bivariate analysis was conducted, and the Logistic Regression model was used to ascertain the effects of duration on ART on the choice of MMD model. Results: Data for 544 C/ALHIV (0-19 Years) was analyzed in STATA. Results show a strong association between (duration on ART, Age, being in teen club) and enrolment in an MMD model. Duration on ART is a major predictor for the choice of MMD model at (95% CI: 0.0012905 – 0.0039812; P = <0.0001). C/ALHIV who have been on ART for less than a year are less likely to be on MMD. C/ALHIVs who are 1 or more years on ART are more likely to be in 3 months dispensing, while those who are 5 years or more are most likely to be in 6 months model.Keywords: C/ALHIV, OVC, HIV, treatment
Procedia PDF Downloads 418056 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 3168055 Exploring Time-Series Phosphoproteomic Datasets in the Context of Network Models
Authors: Sandeep Kaur, Jenny Vuong, Marcel Julliard, Sean O'Donoghue
Abstract:
Time-series data are useful for modelling as they can enable model-evaluation. However, when reconstructing models from phosphoproteomic data, often non-exact methods are utilised, as the knowledge regarding the network structure, such as, which kinases and phosphatases lead to the observed phosphorylation state, is incomplete. Thus, such reactions are often hypothesised, which gives rise to uncertainty. Here, we propose a framework, implemented via a web-based tool (as an extension to Minardo), which given time-series phosphoproteomic datasets, can generate κ models. The incompleteness and uncertainty in the generated model and reactions are clearly presented to the user via the visual method. Furthermore, we demonstrate, via a toy EGF signalling model, the use of algorithmic verification to verify κ models. Manually formulated requirements were evaluated with regards to the model, leading to the highlighting of the nodes causing unsatisfiability (i.e. error causing nodes). We aim to integrate such methods into our web-based tool and demonstrate how the identified erroneous nodes can be presented to the user via the visual method. Thus, in this research we present a framework, to enable a user to explore phosphorylation proteomic time-series data in the context of models. The observer can visualise which reactions in the model are highly uncertain, and which nodes cause incorrect simulation outputs. A tool such as this enables an end-user to determine the empirical analysis to perform, to reduce uncertainty in the presented model - thus enabling a better understanding of the underlying system.Keywords: κ-models, model verification, time-series phosphoproteomic datasets, uncertainty and error visualisation
Procedia PDF Downloads 2558054 Several Aspects of the Conceptual Framework of Financial Reporting
Authors: Nadezhda Kvatashidze
Abstract:
The conceptual framework of International Financial Reporting Standards determines the basic principles of accounting. The said principles have multiple applications, with professional judgments being one of those. Recognition and assessment of the information contained in financial reporting, especially so the somewhat uncertain events and transactions and/or the ones regarding which there is no standard or interpretation are based on professional judgments. Professional judgments aim at the formulation of expert assumptions regarding the specifics of the circumstances and events to be entered into the report based on the conceptual framework terms and principles. Experts have to make a choice in favor of one of the aforesaid and simulate the situations applying multi-variant accounting estimates and judgment. In making the choice, one should consider all the factors, which may help represent the information in the best way possible. Professional judgment determines the relevance and faithful representation of the presented information, which makes it more useful for the existing and potential investors. In order to assess the prospected net cash flows, the information must be predictable and reliable. The publication contains critical analysis of the aforementioned problems. The fact that the International Financial Reporting Standards are developed continuously makes the issue all the more important and that is another point discussed in the study.Keywords: conceptual framework, faithful representation, professional judgement, relevance
Procedia PDF Downloads 2158053 Optical and Double Folding Analysis for 6Li+16O Elastic Scattering
Authors: Abd Elrahman Elgamala, N. Darwish, I. Bondouk, Sh. Hamada
Abstract:
Available experimental angular distributions for 6Li elastically scattered from 16O nucleus in the energy range 13.0–50.0 MeV are investigated and reanalyzed using optical model of the conventional phenomenological potential and also using double folding optical model of different interaction models: DDM3Y1, CDM3Y1, CDM3Y2, and CDM3Y3. All the involved models of interaction are of M3Y Paris except DDM3Y1 which is of M3Y Reid and the main difference between them lies in the different values for the parameters of the incorporated density distribution function F(ρ). We have extracted the renormalization factor NR for 6Li+16O nuclear system in the energy range 13.0–50.0 MeV using the aforementioned interaction models.Keywords: elastic scattering, optical model, folding potential, density distribution
Procedia PDF Downloads 1418052 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness
Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers
Abstract:
The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning
Procedia PDF Downloads 2868051 Moral Dilemmas, Difficulties in the Digital Games
Authors: YuPei Chang
Abstract:
In recent years, moral judgement tasks have served as an increasingly popular plot mechanism in digital gameplay. As a moral agency, the player's choice judgment in digital games is to shuttle between the real world and the game world. The purpose of the research is to explore the moral difficulties brewed by the interactive mechanism of the game and the moral choice of players. In the theoretical level, this research tries to combine moral disengagement, moral foundations theory, and gameplay as an aesthetic experience. And in the methodical level, this research tries to use methods that combine text analysis, diary method, and in-depth interviews. There are three research problems that will be solved in three stages. In the first stage, this project will explore how moral dilemmas are represented in game mechanics. In the second stage, this project will analyze the appearance and conflicts of moral dilemmas in game mechanics based on the five aspects of moral foundations theory. In the third stage, this project will try to understand the players' choices when they face the choices of moral dilemmas, as well as their explanations and reflections after making the decisions.Keywords: morality, moral disengagement, moral foundations theory, PC game, gameplay, moral dilemmas, player
Procedia PDF Downloads 798050 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach
Authors: Elias K. Maragos, Petros E. Maravelakis
Abstract:
In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs
Procedia PDF Downloads 1618049 Models of Copyrights System
Authors: A. G. Matveev
Abstract:
The copyrights system is a combination of different elements. The number, content and the correlation of these elements are different for different legal orders. The models of copyrights systems display this system in terms of the interaction of economic and author's moral rights. Monistic and dualistic models are the most popular ones. The article deals with different points of view on the monism and dualism in copyright system. A specific model of the copyright in Switzerland in the XXth century is analyzed. The evolution of a French dualistic model of copyright is shown. The author believes that one should talk not about one, but rather about a number of dualism forms of copyright system.Keywords: copyright, exclusive copyright, economic rights, author's moral rights, rights of personality, monistic model, dualistic model
Procedia PDF Downloads 4208048 Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study
Authors: Sathwik Sarvadevabhatla Kasyap, Kostas Senetakis
Abstract:
The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains.Keywords: contact interface, microparticles, micro-mechanical behavior, quartz sand
Procedia PDF Downloads 192