Search results for: bacteria sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2912

Search results for: bacteria sensor

2192 A Terahertz Sensor and Dynamic Switch Based on a Bilayer Toroidal Metamaterial

Authors: Angana Bhattacharya, Rakesh Sarkar, Gagan Kumar

Abstract:

Toroidal resonances, a new class of electromagnetic excitations, demonstrate exceptional properties as compared to electric and magnetic dipolar resonances. The advantage of narrow linewidth in toroidal resonance is utilized in this proposed work, where a bilayer metamaterial (MM) sensor has been designed in the terahertz frequency regime (THz). A toroidal MM geometry in a single layer is first studied. A second identical MM geometry placed on top of the first layer results in the coupling of toroidal excitations, leading to an increase in the quality factor (Q) of the resonance. The sensing capability of the resonance is studied. Further, the dynamic switching from an 'off' stage to an 'on' stage in the bilayer configuration is explored. The ardent study of such toroidal bilayer MMs could provide significant potential in the development of bio-molecular and chemical sensors, switches, and modulators.

Keywords: toroidal resonance, bilayer, metamaterial, terahertz, sensing, switching

Procedia PDF Downloads 155
2191 Alcohol Detection with Engine Locking System Using Arduino and ESP8266

Authors: Sukhpreet Singh, Kishan Bhojrath, Vijay, Avinash Kumar, Mandlesh Mishra

Abstract:

The project uses an Arduino and ESP8266 to construct an alcohol detection system with an engine locking mechanism, offering a distinct way to fight drunk driving. An alcohol sensor module is used by the system to determine the amount of alcohol present in the ambient air. When the system detects alcohol levels beyond a certain threshold that is deemed hazardous for driving, it activates a relay module that is linked to the engine of the car, so rendering it inoperable. By preventing people from operating a vehicle while intoxicated, this preventive measure seeks to improve road safety. Adding an ESP8266 module also allows for remote monitoring and notifications, giving users access to real-time status updates on their system. By using an integrated strategy, the initiative provides a workable and efficient way to lessen the dangers related to driving while intoxicated.

Keywords: MQ3 sensor, ESP 8266, arduino, IoT

Procedia PDF Downloads 69
2190 Evaluation of Antarctic Bacteria as Potential Producers of Cellulolytic Enzymes of Industrial Interest

Authors: Claudio Lamilla, Andrés Santos, Vicente Llanquinao, Jocelyn Hermosilla, Leticia Barrientos

Abstract:

The industry in general is very interested in improving and optimizing industrial processes in order to reduce the costs involved in obtaining raw materials and production. Thus, an interesting and cost-effective alternative is the incorporation of bioactive metabolites in such processes, being an example of this enzymes which catalyze efficiently a large number of enzymatic reactions of industrial and biotechnological interest. In the search for new sources of these active metabolites, Antarctica is one of the least explored places on our planet where the most drastic cold conditions, salinity, UVA-UVB and liquid water available are present, features that have shaped all life in this very harsh environment, especially bacteria that live in different Antarctic ecosystems, which have had to develop different strategies to adapt to these conditions, producing unique biochemical strategies. In this work the production of cellulolytic enzymes of seven bacterial strains isolated from marine sediments at different sites in the Antarctic was evaluated. Isolation of the strains was performed using serial dilutions in the culture medium at M115°C. The identification of the strains was performed using universal primers (27F and 1492R). The enzyme activity assays were performed on R2A medium, carboxy methyl cellulose (CMC)was added as substrate. Degradation of the substrate was revealed by adding Lugol. The results show that four of the tested strains produce enzymes which degrade CMC substrate. The molecular identifications, showed that these bacteria belong to the genus Streptomyces and Pseudoalteromonas, being Streptomyces strain who showed the highest activity. Only some bacteria in marine sediments have the ability to produce these enzymes, perhaps due to their greater adaptability to degrade at temperatures bordering zero degrees Celsius, some algae that are abundant in this environment and have cellulose as the main structure. The discovery of new enzymes adapted to cold is of great industrial interest, especially for paper, textiles, detergents, biofuels, food and agriculture. These enzymes represent 8% of industrial demand worldwide and is expected to increase their demand in the coming years. Mainly in the paper and food industry are required in extraction processes starch, protein and juices, as well as the animal feed industry where treating vegetables and grains helps improve the nutritional value of the food, all this clearly puts Antarctic microorganisms and their enzymes specifically as a potential contribution to industry and the novel biotechnological applications.

Keywords: antarctic, bacteria, biotechnological, cellulolytic enzymes

Procedia PDF Downloads 299
2189 Application of GPRS in Water Quality Monitoring System

Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan

Abstract:

Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.

Keywords: multiparameter sensor, GPRS, visual basic software, RS232

Procedia PDF Downloads 415
2188 Relationship between Response of the Resistive Sensors on the Chosen Volatile Organic Compounds (VOCs) and Their Concentration

Authors: Marek Gancarz, Agnieszka Nawrocka, Robert Rusinek, Marcin Tadla

Abstract:

Volatile organic compounds (VOCs) are the fungi metabolites in the gaseous form produced during improper storage of agricultural commodities (e.g. grain, food). The spoilt commodities produce a wide range of VOCs including alcohols, esters, aldehydes, ketones, alkanes, alkenes, furans, phenols etc. The characteristic VOCs and odours can be determined by using electronic nose (e-Nose) which contains a matrix of different kinds of sensors e.g. resistive sensors. The aim of the present studies was to determine relationship between response of the resistive sensors on the chosen volatiles and their concentration. According to the literature, it was chosen volatiles characteristic for the cereals: ethanol, 3-methyl-1-butanol and hexanal. Analysis of the sensor signals shows that a signal shape is different for the different substances. Moreover, each VOC signal gives information about a maximum of the normalized sensor response (R/Rmax), an impregnation time (tIM) and a cleaning time at half maximum of R/Rmax (tCL). These three parameters can be regarded as a ‘VOC fingerprint’. Seven resistive sensors (TGS2600-B00, TGS2602-B00, TGS2610-C00, TGS2611-C00, TGS2611-E00, TGS2612-D00, TGS2620-C00) produced by Figaro USA Inc., and one (AS-MLV-P2) produced by AMS AG, Austria were used. Two out of seven sensors (TGS2611-E00, TGS2612-D00) did not react to the chosen VOCs. The most responsive sensor was AS-MLV-P2. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.

Keywords: agricultural commodities, organic compounds, resistive sensors, volatile

Procedia PDF Downloads 371
2187 Developing a Novel Fluorescent Sensor for Detecting Analytes in an Aqueous Medium

Authors: Varshith Kotagiri, Lei Li

Abstract:

Fluorescent sensors are organic fluorophores that detect specific analytes with quantitative fluorescence intensity changes. They have offered impressive benefits compared with instrumental techniques, such as low cost, high selectivity, and rapid responses. One issue that limits the fluorescent sensors for further application is their poor solubility in the aqueous medium, where most targeted analytes, including metal ions, inorganic anions, and neutral biomolecules, are readily soluble. When fluorescent sensors are utilized to detect these analytes, a heterogeneous phase is formed. In most cases, an extra water-miscible organic solvent is needed as an additive to facilitate the sensing process, which complicates the measurement operations and produces more organic waste. We aim to resolve this issue by skillful molecular design to introduce a hydrophilic side chain to the fluorescent sensor, increasing its water solubility and facilitating its sensing process to analytes, like various protons, fluoride ions, and copper ions, in an aqueous medium. Simultaneously, its sensitivity and selectivity will be retained. This work will simplify the sensing operations and reduce the amount of organic waste produced during the measurement. This strategy will additionally be of broad interest to the chemistry community, as it introduces the idea of modifying the molecular structure to apply an initial hydrophobic compound under hydrophilic conditions in a feasible way.

Keywords: organic fluorescent sensor, analytes, sensing, aqueous medium, phenanthroimidazole, hydrophilic side chain

Procedia PDF Downloads 15
2186 A Systematic Review of Situational Awareness and Cognitive Load Measurement in Driving

Authors: Aly Elshafei, Daniela Romano

Abstract:

With the development of autonomous vehicles, a human-machine interaction (HMI) system is needed for a safe transition of control when a takeover request (TOR) is required. An important part of the HMI system is the ability to monitor the level of situational awareness (SA) of any driver in real-time, in different scenarios, and without any pre-calibration. Presenting state-of-the-art machine learning models used to measure SA is the purpose of this systematic review. Investigating the limitations of each type of sensor, the gaps, and the most suited sensor and computational model that can be used in driving applications. To the author’s best knowledge this is the first literature review identifying online and offline classification methods used to measure SA, explaining which measurements are subject or session-specific, and how many classifications can be done with each classification model. This information can be very useful for researchers measuring SA to identify the most suited model to measure SA for different applications.

Keywords: situational awareness, autonomous driving, gaze metrics, EEG, ECG

Procedia PDF Downloads 121
2185 Microbiological Analysis, Cytotoxic and Genotoxic Effects from Material Captured in PM2.5 and PM10 Filters Used in the Aburrá Valley Air Quality Monitoring Network (Colombia)

Authors: Carmen E. Zapata, Juan Bautista, Olga Montoya, Claudia Moreno, Marisol Suarez, Alejandra Betancur, Duvan Nanclares, Natalia A. Cano

Abstract:

This study aims to evaluate the diversity of microorganisms in filters PM2.5 and PM10; and determine the genotoxic and cytotoxic activity of the complex mixture present in PM2.5 filters used in the Aburrá Valley Air Quality Monitoring Network (Colombia). The research results indicate that particulate matter PM2.5 of different monitoring stations are bacteria; however, this study of detection of bacteria and their phylogenetic relationship is not complete evidence to connect the microorganisms with pathogenic or degrading activities of compounds present in the air. Additionally, it was demonstrated the damage induced by the particulate material in the cell membrane, lysosomal and endosomal membrane and in the mitochondrial metabolism; this damage was independent of the PM2.5 concentrations in almost all the cases.

Keywords: cytotoxic, genotoxic, microbiological analysis, PM10, PM2.5

Procedia PDF Downloads 350
2184 Isolation and Characterization of Bacteriophages Against Aeromonas Spp. Mediated Diseases in Indian Aquaculture

Authors: Mrunalini Sonne

Abstract:

Aquaculture uses a variety of broad spectrum antibiotics to manage and prevent a variety of diseases without understanding their mechanisms of action. This has led to water pollution in the modern world. The necessity for alternate control measures against bacterial illnesses in the aquaculture sector is highlighted by issues brought on by antibiotic-resistant bacteria and the dearth of effective control strategies. Bacteriophages (phages) have shown promise as therapeutic agents for the efficient management of bacterial infections in aquaculture. In the current study, a variety of investigations were conducted to determine if utilizing lytic phages to reduce Aeromonas spp. infection in fish aquaculture was appropriate. Motile Aeromonas septicaemia is a fish disease that has caused financial harm to the aquaculture sector. Currently, the production of aquaculture depends significantly on antibiotics, which adds to the worldwide problem of the rise of bacteria that are resistant to medicines and resistance genes. To decrease the usage of antibiotics in aquaculture systems, it is crucial to create efficient antibiotic substitutes. Bacteriophages are capable of acting as a natural antagonist, mostly because of their great specificity, capacity for self-replication, and ability to quickly eradicate dangerous bacteria. There is a need for research that goes beyond just isolating and characterising lytic bacteriophages to examine their morphology, stability, and efficacy in various environmental conditions. Bacteriophage (or phage) therapy is a promising technique to control dangerous microbes in farmed fish. More phage therapy research in aquaculture is required in order to effectively employ phage treatment to lessen infection in fish brought on by Aeromonas.

Keywords: aquaculture, bacteriophages, fish, freshwater

Procedia PDF Downloads 110
2183 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)

Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud

Abstract:

The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.

Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing

Procedia PDF Downloads 81
2182 Evaluation of Antagonistic and Aggregation Property of Probiotic Lactic Acid Bacteria Isolated from Bovine Milk

Authors: Alazar Nebyou, Sujata Pandit

Abstract:

Lactic acid bacteria (LAB) are essential ingredients in probiotic foods, intestinal microflora, and dairy products that are capable of coping up with harsh gastrointestinal tract conditions and are available in a variety of environments. The objective of this study is to evaluate the probiotic property of LAB isolated from bovine milk. Milk samples were collected from local dairy farms. Samples were obtained using sterile test tubes and transported to a laboratory in the icebox for further biochemical characterization. Preliminary physiological and biochemical identification of LAB isolates was conducted by growing on MRS agar after ten-fold serial dilution. Seven of the best isolates were selected for the evaluation of the probiotic property. The LAB isolates were checked for resistance to antibiotics and their antimicrobial activity by disc diffusion assay and agar well diffusion assay respectively. Bile salt hydrolase activity of isolates was studied by growing isolates in a BSH medium with bile salt. Cell surface property of isolates was assayed by studying their autoaggregation and coaggregation percentage with S. aerues. All isolates were found BSH positive. In addition, BCM2 and BGM1 were susceptible to all antibiotic disks except BBM1 which was resistant to all antibiotic disks. BCM1 and BGM1 had the highest autoaggregation and coaggregation potential respectively. Since all LAB isolates showed gastrointestinal tolerance and good cell surface property they could be considered as good potential probiotic candidates for treatment and probiotic starter culture preparation.

Keywords: probiotic, aggregation, lactic acid bacteria, antimicrobial activity

Procedia PDF Downloads 217
2181 A Low-Cost of Foot Plantar Shoes for Gait Analysis

Authors: Zulkifli Ahmad, Mohd Razlan Azizan, Nasrul Hadi Johari

Abstract:

This paper presents a study on development and conducting of a wearable sensor system for gait analysis measurement. For validation, the method of plantar surface measurement by force plate was prepared. In general gait analysis, force plate generally represents a studies about barefoot in whole steps and do not allow analysis of repeating movement step in normal walking and running. The measurements that were usually perform do not represent the whole daily plantar pressures in the shoe insole and only obtain the ground reaction force. The force plate measurement is usually limited a few step and it is done indoor and obtaining coupling information from both feet during walking is not easily obtained. Nowadays, in order to measure pressure for a large number of steps and obtain pressure in each insole part, it could be done by placing sensors within an insole. With this method, it will provide a method for determine the plantar pressures while standing, walking or running of a shoe wearing subject. Inserting pressure sensors in the insole will provide specific information and therefore the point of the sensor placement will result in obtaining the critical part under the insole. In the wearable shoe sensor project, the device consists left and right shoe insole with ten FSR. Arduino Mega was used as a micro-controller that read the analog input from FSR. The analog inputs were transmitted via bluetooth data transmission that gains the force data in real time on smartphone. Blueterm software which is an android application was used as an interface to read the FSR reading on the shoe wearing subject. The subject consist of two healthy men with different age and weight doing test while standing, walking (1.5 m/s), jogging (5 m/s) and running (9 m/s) on treadmill. The data obtain will be saved on the android device and for making an analysis and comparison graph.

Keywords: gait analysis, plantar pressure, force plate, earable sensor

Procedia PDF Downloads 456
2180 Evaluating Cyanide Biodegradation by Bacteria Isolated from Gold Mine Effluents in Bulawayo, Zimbabwe

Authors: Ngonidzashe Mangoma, Caroline Marigold Sebata

Abstract:

The release of cyanide-rich effluents from gold mines, and other industries, into the environment, is a global concern considering the well-known metabolic effects of cyanide in all forms of life. Such effluents need to be treated to remove cyanide, among other pollutants, before their disposal. This study aimed at investigating the possible use of bacteria in the biological removal of cyanide from cyanide-rich effluents. Firstly, cyanide-degrading bacteria were isolated from gold mine effluents and characterised. The isolates were then tested for their ability to grow in the presence of cyanide and their tolerance to increasing levels of the compound. To evaluate each isolate’s cyanide-degrading activities, isolates were grown in the simulated and actual effluent, and a titrimetric method was used to quantify residual cyanide over a number of days. Cyanide degradation efficiency (DE) was then calculated for each isolate. Identification of positive isolates involved 16S rRNA gene amplification and sequence analysis through BLAST. Six cyanide-utilising bacterial strains were isolated. Two of the isolates were identified as Klebsiella spp. while the other two were shown to be different strains of Clostridium bifermentans. All isolates showed normal growth in the presence of cyanide, with growth being inhibited at 700 mg/L cyanide and beyond. Cyanide degradation efficiency for all isolates in the simulated effluent ranged from 79% to 97%. All isolates were able to remove cyanide from actual gold mine effluent with very high DE values (90 – 94%) being recorded. Isolates obtained in this study were able to efficiently remove cyanide from both simulated and actual effluent. This observation clearly demonstrates the feasibility of the biological removal of cyanide from cyanide-rich gold mine effluents and should, therefore, motivate research towards the possible large-scale application of this technology.

Keywords: cyanide effluent, bioremediation, Clostridium bifermentans, Klebsiella spp, environment

Procedia PDF Downloads 181
2179 Design and Development of Optical Sensor Based Ground Reaction Force Measurement Platform for GAIT and Geriatric Studies

Authors: K. Chethana, A. S. Guru Prasad, S. N. Omkar, B. Vadiraj, S. Asokan

Abstract:

This paper describes an ab-initio design, development and calibration results of an Optical Sensor Ground Reaction Force Measurement Platform (OSGRFP) for gait and geriatric studies. The developed system employs an array of FBG sensors to measure the respective ground reaction forces from all three axes (X, Y and Z), which are perpendicular to each other. The novelty of this work is two folded. One is in its uniqueness to resolve the tri axial resultant forces during the stance in to the respective pure axis loads and the other is the applicability of inherently advantageous FBG sensors which are most suitable for biomechanical instrumentation. To validate the response of the FBG sensors installed in OSGRFP and to measure the cross sensitivity of the force applied in other directions, load sensors with indicators are used. Further in this work, relevant mathematical formulations are presented for extracting respective ground reaction forces from wavelength shifts/strain of FBG sensors on the OSGRFP. The result of this device has implications in understanding the foot function, identifying issues in gait cycle and measuring discrepancies between left and right foot. The device also provides a method to quantify and compare relative postural stability of different subjects under test, which has implications in post surgical rehabilitation, geriatrics and optimizing training protocols for sports personnel.

Keywords: balance and stability, gait analysis, FBG applications, optical sensor ground reaction force platform

Procedia PDF Downloads 404
2178 Purification of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from Fish Oil Using HPLC Method and Investigation of Their Antibacterial Effects on Some Pathogenic Bacteria

Authors: Yılmaz Uçar, Fatih Ozogul, Mustafa Durmuş, Yesim Ozogul, Ali Rıza Köşker, Esmeray Kuley Boğa, Deniz Ayas

Abstract:

The aim of this study was to purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), that are essential oils from trout oil, using high-performance liquid chromatography (HPLC) method, bioconverted EPA and DHA into bioconverted EPA (bEPA), bioconverted DHA (bDHA) extracts by P. aeruginosa PR3. Moreover, in vitro antibacterial activity of bEPA and bDHA was investigated using disc diffusion methods and minimum inhibitory concentration (MIC). EPA and DHA concentration of 11.1% and 15.9% in trout oil increased in 58.64% and 40.33% after HPLC optimisation, respectively. In this study, EPA and DHA enriched products were obtained which are to be used as valuable supplements for food and pharmaceutical purposes. The bioconverted EPA and DHA exhibited antibacterial activities against two Gram-positive bacteria (Listeria monocytogenes ATCC 7677 and Staphylococcus aureus ATCC 29213) and six Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC700603, Enterococcus faecalis ATCC 29212, Aeromonas hydrophila NCIMB 1135, and Salmonella Paratyphi A NCTC 13). Inhibition zones and MIC value of bEPA and bDHA against bacterial strains ranged from 7 to 12 mm and from 350 to 2350 μg/mL, respectively. Our results suggested that the crude extracts of bioconversion of EPA and DHA by P. aeruginosa PR3 can be considered as promising antimicrobials in improving food safety by controlling foodborne pathogens.

Keywords: High-Performance Liquid Chromatography (HPLC), docosahexaenoic acid, DHA, eicosapentaenoic acid, EPA, minimum inhibitory concentration, MIC, Pseudomonas aeruginosa PR3

Procedia PDF Downloads 502
2177 Antibacterial Activity of Flavonoids from Corn Silk (Zea mays L.) in Propionibacterium acne, Staphylococcus Aureus and Staphylococcus Epidermidis

Authors: Fitri Ayu, Nadia, Tanti, Putri, Fatkhan, Pasid Harlisa, Suparmi

Abstract:

Acne is a skin abnormal conditions experienced by many teens, this is caused by various factors such as the climate is hot, humid and excessive sun exposure can aggravate acne because it will lead to excess oil production. Flavonoids form complex compounds against extracellular proteins that disrupt the integrity of bacterial cell membrane in a way denature bacterial cell proteins and bacterial cell membrane damage. This study aimed to test the antibacterial activity of corn silk extract with a concentration of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and 100 % in vitro by measuring the inhibition of the growth of bacteria Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis then compared with the standard antibiotic clindamycin. Extracts tested by Disk Diffusion Method, in which the blank disc soaked with their respective corn silk extract concentration for 15-30 minutes and then the medium of bacteria that have been planted with Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis in the given disk that already contains extracts with various concentration. Incubated for 24 hours and then measured the growth inhibition zone Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermidis. Corn silk contains flavonoids, is shown by the test of flavonoids in corn silk extract by using a tube heating and without heating. Flavonoid in corn silk potentially as anti acne by inhibiting the growth of bacteria that cause acne. Corn silk extract concentration which has the highest antibacterial activity is then performed in a cream formulation and evaluation test of physical and chemical properties of the resulting cream preparation.

Keywords: antibacterial, flavonoid, corn silk, acne

Procedia PDF Downloads 514
2176 A Hybrid MAC Protocol for Delay Constrained Mobile Wireless Sensor Networks

Authors: Hanefi Cinar, Musa Cibuk, Ismail Erturk, Fikri Aggun, Munip Geylani

Abstract:

Mobile Wireless Sensor Networks (MWSNs) carry heterogeneous data traffic with different urgency and quality of service (QoS) requirements. There are a lot of studies made on energy efficiency, bandwidth, and communication methods in literature. But delay, high throughput, utility parameters are not well considered. Increasing demand for real-time data transfer makes these parameters more important. In this paper we design new MAC protocol which is delay constrained and targets for improving delay, utility, and throughput performance of the network and finding solutions on collision and interference problems. Protocol improving QoS requirements by using TDMA, FDM, and OFDMA hybrid communication methods with multi-channel communication.

Keywords: MWSN, delay, hybrid MAC, TDMA, FDM, OFDMA

Procedia PDF Downloads 482
2175 Force Feedback Enabled Syringe for Aspiration and Biopsy

Authors: Pelin Su Firat, Sohyung Cho

Abstract:

Biopsy or aspiration procedures are known to be complicated as they involve the penetration of a needle through human tissues, including vital organs. This research presents the design of a force sensor-guided device to be used with syringes and needles for aspiration and biopsy. The development of the device was aimed to help accomplish accurate needle placement and increase the performance of the surgeon in navigating the tool and tracking the target. Specifically, a prototype for a force-sensor embedded syringe has been created using 3D (3-Dimensional) modeling and printing techniques in which two different force sensors were used to provide significant force feedback to users during the operations when needles pernitrate different tissues. From the extensive tests using synthetic tissues, it is shown that the proposed syringe design has accomplished the desired accuracy, efficiency, repeatability, and effectiveness. Further development is desirable through usability tests.

Keywords: biopsy, syringe, force sensors, haptic feedback

Procedia PDF Downloads 75
2174 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials

Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries

Abstract:

Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.

Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring

Procedia PDF Downloads 106
2173 Multidrug Resistance Mechanisms among Gram Negative Clinical Isolates from Egypt

Authors: Mona T. Kashef, Omneya M. Helmy

Abstract:

Multidrug resistant (MDR) bacteria have become a significant public health threat. The prevalence rates, of Gram negative MDR bacteria, are in continuous increase. However, few data are available about these resistant strains. Since, third generation cephalosporins are one of the most commonly used antimicrobials, we set out to investigate the prevalence, different mechanisms and clonal relatedness of multidrug resistance among third generation resistant Gram negative clinical isolates. A total of 114 Gram negative clinical isolates, previously characterized as being resistant to at least one of 3rd generation cephalosporins, were included in this study. Each isolate was tested, using Kirby Bauer disk diffusion method, against its assigned categories of antimicrobials. The role of efflux pump in resistance development was tested by the efflux pump inhibitor-based microplate assay using chloropromazine as an inhibitor. Detecting different aminoglycosides, β-lactams and quinolones resistance genes was done using polymerase chain reaction. The genetic diversity of MDR isolates was investigated using Random Amplification of Polymorphic DNA technique. MDR phenotype was detected in 101 isolates (89%). Efflux pump mediated resistance was detected in 49/101 isolates. Aminoglycosides resistance genes; armA and aac(6)-Ib were detected in one and 53 isolates, respectively. The aac(6)-Ib-cr allele, that also confers resistance to floroquinolones, was detected in 28/53 isolates. β-lactam resistance genes; blaTEM, blaSHV, blaCTX-M group 1 and group 9 were detected in 52, 29, 61 and 35 isolates, respectively. Quinolone resistance genes; qnrA, qnrB and qnrS were detectable in 2, 14, 8 isolates respectively, while qepA was not detectable at all. High diversity was observed among tested MDR isolates. MDR is common among 3rd generation cephalosporins resistant Gram negative bacteria, in Egypt. In most cases, resistance was caused by different mechanisms. Therefore, new treatment strategies should be implemented.

Keywords: gram negative, multidrug resistance, RAPD typing, resistance genes

Procedia PDF Downloads 321
2172 Anti-Infective Potential of Selected Philippine Medicinal Plant Extracts against Multidrug-Resistant Bacteria

Authors: Demetrio L. Valle Jr., Juliana Janet M. Puzon, Windell L. Rivera

Abstract:

From the various medicinal plants available in the Philippines, crude ethanol extracts of twelve (12) Philippine medicinal plants, namely: Senna alata L. Roxb. (akapulko), Psidium guajava L. (bayabas), Piper betle L. (ikmo), Vitex negundo L. (lagundi), Mitrephora lanotan (Blanco) Merr. (Lanotan), Zingiber officinale Roscoe (luya), Curcuma longa L. (Luyang dilaw), Tinospora rumphii Boerl (Makabuhay), Moringga oleifera Lam. (malunggay), Phyllanthus niruri L. (sampa-sampalukan), Centella asiatica (L.) Urban (takip kuhol), and Carmona retusa (Vahl) Masam (tsaang gubat) were studied. In vitro methods of evaluation against selected Gram-positive and Gram-negative multidrug-resistant (MDR), bacteria were performed on the plant extracts. Although five of the plants showed varying antagonistic activities against the test organisms, only Piper betle L. exhibited significant activities against both Gram-negative and Gram-positive multidrug-resistant bacteria, exhibiting wide zones of growth inhibition in the disk diffusion assay, and with the lowest concentrations of the extract required to inhibit the growth of the bacteria, as supported by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Further antibacterial studies of the Piper betle L. leaf, obtained by three extraction methods (ethanol, methanol, supercritical CO2), revealed similar inhibitory activities against a multitude of Gram-positive and Gram-negative MDR bacteria. Thin layer chromatography (TLC) assay of the leaf extract revealed a maximum of eight compounds with Rf values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV-366 nm. TLC- agar overlay bioautography of the isolated compounds showed the compounds with Rf values of 0.86 and 0.13 having inhibitory activities against Gram-positive MDR bacteria (MRSA and VRE). The compound with an Rf value of 0.86 also possesses inhibitory activity against Gram-negative MDR bacteria (CRE Klebsiella pneumoniae and MBL Acinetobacter baumannii). Gas Chromatography-Mass Spectrometry (GC-MS) was able to identify six volatile compounds, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include 4-(2-propenyl)phenol and eugenol; and the new four compounds were ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, and 3-fluoro-2-propynenitrite. Phytochemical screening and investigation of its antioxidant, cytotoxic, possible hemolytic activities, and mechanisms of antibacterial activity were also done. The results showed that the local variant of Piper betle leaf extract possesses significant antioxidant, anti-cancer and antimicrobial properties, attributed to the presence of bioactive compounds, particularly of flavonoids (condensed tannin, leucoanthocyanin, gamma benzopyrone), anthraquinones, steroids/triterpenes and 2-deoxysugars. Piper betle L. is also traditionally known to enhance wound healing, which could be primarily due to its antioxidant, anti-inflammatory and antimicrobial activities. In vivo studies on mice using 2.5% and 5% of the ethanol leaf extract cream formulations in the excised wound models significantly increased the process of wound healing in the mice subjects, the results and values of which are at par with the current antibacterial cream (Mupirocin). From the results of the series of studies, we have definitely proven the value of Piper betle L. as a source of bioactive compounds that could be developed into therapeutic agents against MDR bacteria.

Keywords: Philippine herbal medicine, multidrug-resistant bacteria, Piper betle, TLC-bioautography

Procedia PDF Downloads 774
2171 Simulation and Analysis of Mems-Based Flexible Capacitive Pressure Sensors with COMSOL

Authors: Ding Liangxiao

Abstract:

The technological advancements in Micro-Electro-Mechanical Systems (MEMS) have significantly contributed to the development of new, flexible capacitive pressure sensors,which are pivotal in transforming wearable and medical device technologies. This study employs the sophisticated simulation tools available in COMSOL Multiphysics® to develop and analyze a MEMS-based sensor with a tri-layered design. This sensor comprises top and bottom electrodes made from gold (Au), noted for their excellent conductivity, a middle dielectric layer made from a composite of Silver Nanowires (AgNWs) embedded in Thermoplastic Polyurethane (TPU), and a flexible, durable substrate of Polydimethylsiloxane (PDMS). This research was directed towards understanding how changes in the physical characteristics of the AgNWs/TPU dielectric layer—specifically, its thickness and surface area—impact the sensor's operational efficacy. We assessed several key electrical properties: capacitance, electric potential, and membrane displacement under varied pressure conditions. These investigations are crucial for enhancing the sensor's sensitivity and ensuring its adaptability across diverse applications, including health monitoring systems and dynamic user interface technologies. To ensure the reliability of our simulations, we applied the Effective Medium Theory to calculate the dielectric constant of the AgNWs/TPU composite accurately. This approach is essential for predicting how the composite material will perform under different environmental and operational stresses, thus facilitating the optimization of the sensor design for enhanced performance and longevity. Moreover, we explored the potential benefits of innovative three-dimensional structures for the dielectric layer compared to traditional flat designs. Our hypothesis was that 3D configurations might improve the stress distribution and optimize the electrical field interactions within the sensor, thereby boosting its sensitivity and accuracy. Our simulation protocol includes comprehensive performance testing under simulated environmental conditions, such as temperature fluctuations and mechanical pressures, which mirror the actual operational conditions. These tests are crucial for assessing the sensor's robustness and its ability to function reliably over extended periods, ensuring high reliability and accuracy in complex real-world environments. In our current research, although a full dynamic simulation analysis of the three-dimensional structures has not yet been conducted, preliminary explorations through three-dimensional modeling have indicated the potential for mechanical and electrical performance improvements over traditional planar designs. These initial observations emphasize the potential advantages and importance of incorporating advanced three-dimensional modeling techniques in the development of Micro-Electro-Mechanical Systems (MEMS)sensors, offering new directions for the design and functional optimization of future sensors. Overall, this study not only highlights the powerful capabilities of COMSOL Multiphysics® for modeling sophisticated electronic devices but also underscores the potential of innovative MEMS technology in advancing the development of more effective, reliable, and adaptable sensor solutions for a broad spectrum of technological applications.

Keywords: MEMS, flexible sensors, COMSOL Multiphysics, AgNWs/TPU, PDMS, 3D modeling, sensor durability

Procedia PDF Downloads 50
2170 Gas Sensor Based on Carbon Nanotubes: A Review

Authors: Brian Yuliarto, Ni Luh Wulan Septiani

Abstract:

Carbon nanotubes are one of the carbon nanomaterial that very popular in the field of gas sensors. It has unique properties, large surface area and has hollow structure that makes its potentially used as a gas sensor. Several attempts have been made to improve the sensitivity and selectivity of CNTs by modifying CNTs with a noble metals, metal oxides and polymers. From these studies, there are evidents that modification of CNTs with these materials can improve the sensitivity and selectivity of CNTs against some harmful gases. Decorating carbon nano tubes with metal oxides improve CNTs with the highest sensitivity and increased sensitivity of polymer/CNTs is higher than the metal/CNTs. The used of metal in CNTs aims to accelerate the reaction surface and as channel for electrons path from or to the CNTs. The used of metal oxides on CNTs built a p-n junction that can increase sensitivity. While the addition of polymer can increase the charge carriers density in CNTs.

Keywords: carbon nanotubes, gas sensors, modification of CNT, sensitivity

Procedia PDF Downloads 488
2169 Development of MEMS Based 3-Axis Accelerometer for Hand Movement Monitoring

Authors: Zohra Aziz Ali Manjiyani, Renju Thomas Jacob, Keerthan Kumar

Abstract:

This project develops a hand movement monitoring system, which feeds the data into the computer and gives the 3D image rotation according to the direction of the tilt and hence monitoring the movement of the hand in context to its tilt. Advancement of MEMS Technology has enabled us to get very small and low-cost accelerometer ICs which is based on capacitive principle. Accelerometer based Tilt sensor ADXL335 is used in this paper, based on MEMS technology and the project emphasis on the development of the MEMS-based accelerometer to measure the tilt, interfacing the hardware with the LabVIEW and showing the 3D rotation to the user, which is in his understandable form and tilt data can be saved in the computer. It provides an experience of working on emerging technologies like MEMS and design software like LabVIEW.

Keywords: MEMS accelerometer, tilt sensor ADXL335, LabVIEW simulation, 3D animation

Procedia PDF Downloads 519
2168 A Retrospective Cross Sectional Study of Blood Culture Results in a Tertiary Hospital, Ekiti, Nigeria

Authors: S. I. Nwadioha, M. S. Odimayo, J. A. Omotayo, A. Olu Taiwo, O. E. Olabiyi

Abstract:

The current study was conducted to determine the epidemiology and antibiotic sensitivity pattern of bacteria isolated from blood of septicemic patients for improved antibiotic therapy. A three-year descriptive study has been carried out at Microbiology Laboratory, Ekiti State University Teaching Hospital, Ado Ekiti, from April 2012 to April 2015. Information compiled from patients’ records includes age, sex, isolated organisms and antibiotic susceptibility patterns. Three hundred and thirteen blood cultures were collected from neonatology and pediatrics wards, Out Patients’ Department (OPD) and from other adult patients. Forty-one cultures yielded mono microbial growth (no polymicrobial growth), giving an incidence of 13.1% positive blood culture (N=41/313). There were 58.4% Gram-negative bacilli and 41.6% Gram-positive cocci in the microbial growth. Bacteria isolated were Staphylococcus aureus 34%(14/41), Klebsiella species22% (9/41), Enterococci 17%(7/41), Proteus species12%(5/41), Escherichia coli 7%(3/41) and Streptococcal pneumoniae 7%(3/41). There was a (35%) higher occurrence of septicemia in neonates than in any other age groups in the hospital. Bacterial sensitivity to 13 antibiotic agents was determined by antibiotics disc diffusion using modified Kirby Bauer’s method. Gram-positive organisms showed a higher antibiotic sensitivity ranging from 14- 100% than the Gram-negative bacteria (11-80%). Staphylococcus aureus and Klebsiella species are the most prevalent organisms. The third generation Cephalosporins (Ceftriaxone) and Floroquinolone(Levofloxacin, Ofloxacin) have proved reliable for management of these blood infections.

Keywords: blood cultures, septicemia, antibiogram, Nigeria

Procedia PDF Downloads 238
2167 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks

Authors: Afnan Al-Romi, Iman Al-Momani

Abstract:

The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.

Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN

Procedia PDF Downloads 324
2166 Damage to Strawberries Caused by Simulated Transport

Authors: G. La Scalia, M. Enea, R. Micale, O. Corona, L. Settanni

Abstract:

The quality and condition of perishable products delivered to the market and their subsequent selling prices are directly affected by the care taken during harvesting and handling. Mechanical injury, in fact, occurs at all stages, from pre-harvest operations through post-harvest handling, packing and transport to the market. The main implications of this damage are the reduction of the product’s quality and economical losses related to the shelf life diminution. For most perishable products, the shelf life is relatively short and it is typically dictated by microbial growth related to the application of dynamic and static loads during transportation. This paper presents the correlation between vibration levels and microbiological growth on strawberries and woodland strawberries and detects the presence of volatile organic compounds (VOC) in order to develop an intelligent logistic unit capable of monitoring VOCs using a specific sensor system. Fresh fruits were exposed to vibrations by means of a vibrating table in a temperature-controlled environment. Microbiological analyses were conducted on samples, taken at different positions along the column of the crates. The values obtained were compared with control samples not exposed to vibrations and the results show that different positions along the column influence the development of bacteria, yeasts and filamentous fungi.

Keywords: microbiological analysis, shelf life, transport damage, volatile organic compounds

Procedia PDF Downloads 428
2165 Evaluation of Bacterial Composition of the Aerosol of Selected Abattoirs in Akure, South Western Nigeria

Authors: Funmilola O. Omoya, Joseph O. Obameso, Titus A. Olukibiti

Abstract:

This study was carried out to reveal the bacterial composition of aerosol in the studied abattoirs. Bacteria isolated were characterized according to microbiological standards. Factors such as temperature and distance were considered as variable in this study. The isolation was carried out at different temperatures such as 27oC, 31oC and 29oC and at various distances of 100meters and 200meters away from the slaughter sites. Result obtained showed that strains of Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Lactobacillus alimentarius and Micrococcus sp. were identified. The total viable counts showed that more microorganisms were present in the morning while the least viable count of 388 cfu was recorded in the evening period of this study. This study also showed that more microbial loads were recorded the further the distance is to the slaughter site. Conclusively, the array of bacteria isolated suggests that abattoir sites may be a potential source of pathogenic organisms to commuters if located within residential environment.

Keywords: abattoir, aerosol, bacterial composition, environment

Procedia PDF Downloads 255
2164 The Implantable MEMS Blood Pressure Sensor Model With Wireless Powering And Data Transmission

Authors: Vitaliy Petrov, Natalia Shusharina, Vitaliy Kasymov, Maksim Patrushev, Evgeny Bogdanov

Abstract:

The leading worldwide death reasons are ischemic heart disease and other cardiovascular illnesses. Generally, the common symptom is high blood pressure. Long-time blood pressure control is very important for the prophylaxis, correct diagnosis and timely therapy. Non-invasive methods which are based on Korotkoff sounds are impossible to apply often and for a long time. Implantable devices can combine longtime monitoring with high accuracy of measurements. The main purpose of this work is to create a real-time monitoring system for decreasing the death rate from cardiovascular diseases. These days implantable electronic devices began to play an important role in medicine. Usually implantable devices consist of a transmitter, powering which could be wireless with a special made battery and measurement circuit. Common problems in making implantable devices are short lifetime of the battery, big size and biocompatibility. In these work, blood pressure measure will be the focus because it’s one of the main symptoms of cardiovascular diseases. Our device will consist of three parts: the implantable pressure sensor, external transmitter and automated workstation in a hospital. The Implantable part of pressure sensors could be based on piezoresistive or capacitive technologies. Both sensors have some advantages and some limitations. The Developed circuit is based on a small capacitive sensor which is made of the technology of microelectromechanical systems (MEMS). The Capacitive sensor can provide high sensitivity, low power consumption and minimum hysteresis compared to the piezoresistive sensor. For this device, it was selected the oscillator-based circuit where frequency depends from the capacitance of sensor hence from capacitance one can calculate pressure. The external device (transmitter) used for wireless charging and signal transmission. Some implant devices for these applications are passive, the external device sends radio wave signal on internal LC circuit device. The external device gets reflected the signal from the implant and from a change of frequency is possible to calculate changing of capacitance and then blood pressure. However, this method has some disadvantages, such as the patient position dependence and static using. Developed implantable device doesn’t have these disadvantages and sends blood pressure data to the external part in real-time. The external device continuously sends information about blood pressure to hospital cloud service for analysis by a physician. Doctor’s automated workstation at the hospital also acts as a dashboard, which displays actual medical data of patients (which require attention) and stores it in cloud service. Usually, critical heart conditions occur few hours before heart attack but the device is able to send an alarm signal to the hospital for an early action of medical service. The system was tested with wireless charging and data transmission. These results can be used for ASIC design for MEMS pressure sensor.

Keywords: MEMS sensor, RF power, wireless data, oscillator-based circuit

Procedia PDF Downloads 593
2163 Antimicrobial Activity of Some Plant Extracts against Clinical Pathogen and Candida Species

Authors: Marwan Khalil Qader, Arshad Mohammad Abdullah

Abstract:

Antimicrobial resistance is a major cause of significant morbidity and mortality globally. Seven plant extracts (Plantago mediastepposa, Quercusc infectoria, Punic granatum, Thymus lcotschyana, Ginger officeinals, Rhus angustifolia and Cinnamon) were collected from different regions of Kurdistan region of Iraq. These plants’ extracts were dissolved in absolute ethanol and distillate water, after which they were assayed in vitro as an antimicrobial activity against Candida tropicalis, Candida albicanus, Candida dublinensis, Candida krusei and Candida glabrata also against 2 Gram-positive (Bacillus subtilis and Staphylococcus aureus) and 3 Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Klebsilla pneumonia). The antimicrobial activity was determined in ethanol extracts and distilled water extracts of these plants. The ethanolic extracts of Q. infectoria showed the maximum activity against all species of Candida fungus. The minimum inhibition zone of the Punic granatum ethanol extracts was 0.2 mg/ml for all microorganisms tested. Klebsilla pneumonia was the most sensitive bacterial strain to Quercusc infectoria and Rhus angustifolia ethanol extracts. Among both Gram-positive and Gram-negative bacteria tested with MIC of 0.2 mg/ml, the minimum inhibition zone of Ginger officeinals D. W. extracts was 0.2 mg/mL against Pseudomonas aeruginosa and Klebsilla pneumonia. The most sensitive bacterial strain to Thymus lcotschyana and Plantago mediastepposa D.W. extracts was S. aureus and E. coli.

Keywords: antimicrobial activity, pathogenic bacteria, plant extracts, chemical systems engineering

Procedia PDF Downloads 341