Search results for: solar–climatic data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26751

Search results for: solar–climatic data

19341 Comparison of Receiver Operating Characteristic Curve Smoothing Methods

Authors: D. Sigirli

Abstract:

The Receiver Operating Characteristic (ROC) curve is a commonly used statistical tool for evaluating the diagnostic performance of screening and diagnostic test with continuous or ordinal scale results which aims to predict the presence or absence probability of a condition, usually a disease. When the test results were measured as numeric values, sensitivity and specificity can be computed across all possible threshold values which discriminate the subjects as diseased and non-diseased. There are infinite numbers of possible decision thresholds along the continuum of the test results. The ROC curve presents the trade-off between sensitivity and the 1-specificity as the threshold changes. The empirical ROC curve which is a non-parametric estimator of the ROC curve is robust and it represents data accurately. However, especially for small sample sizes, it has a problem of variability and as it is a step function there can be different false positive rates for a true positive rate value and vice versa. Besides, the estimated ROC curve being in a jagged form, since the true ROC curve is a smooth curve, it underestimates the true ROC curve. Since the true ROC curve is assumed to be smooth, several smoothing methods have been explored to smooth a ROC curve. These include using kernel estimates, using log-concave densities, to fit parameters for the specified density function to the data with the maximum-likelihood fitting of univariate distributions or to create a probability distribution by fitting the specified distribution to the data nd using smooth versions of the empirical distribution functions. In the present paper, we aimed to propose a smooth ROC curve estimation based on the boundary corrected kernel function and to compare the performances of ROC curve smoothing methods for the diagnostic test results coming from different distributions in different sample sizes. We performed simulation study to compare the performances of different methods for different scenarios with 1000 repetitions. It is seen that the performance of the proposed method was typically better than that of the empirical ROC curve and only slightly worse compared to the binormal model when in fact the underlying samples were generated from the normal distribution.

Keywords: empirical estimator, kernel function, smoothing, receiver operating characteristic curve

Procedia PDF Downloads 152
19340 Adsorption of Malachite Green Dye on Graphene Oxide Nanosheets from Aqueous Solution: Kinetics and Thermodynamics Studies

Authors: Abeer S. Elsherbiny, Ali H. Gemeay

Abstract:

In this study, graphene oxide (GO) nanosheets have been synthesized and characterized using different spectroscopic tools such as X-ray diffraction spectroscopy, infrared Fourier transform (FT-IR) spectroscopy, BET specific surface area and Transmission Electronic Microscope (TEM). The prepared GO was investigated for the removal of malachite green, a cationic dye from aqueous solution. The removal methods of malachite green has been proceeded via adsorption process. GO nanosheets can be predicted as a good adsorbent material for the adsorption of cationic species. The adsorption of the malachite green onto the GO nanosheets has been carried out at different experimental conditions such as adsorption kinetics, concentration of adsorbate, pH, and temperature. The kinetics of the adsorption data were analyzed using four kinetic models such as the pseudo first-order model, pseudo second-order model, intraparticle diffusion, and the Boyd model to understand the adsorption behavior of malachite green onto the GO nanosheets and the mechanism of adsorption. The adsorption isotherm of adsorption of the malachite green onto the GO nanosheets has been investigated at 25, 35 and 45 °C. The equilibrium data were fitted well to the Langmuir model. Various thermodynamic parameters such as the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) change were also evaluated. The interaction of malachite green onto the GO nanosheets has been investigated by infrared Fourier transform (FT-IR) spectroscopy.

Keywords: adsorption, graphene oxide, kinetics, malachite green

Procedia PDF Downloads 411
19339 Youths, Gender and Media Portrayal: An Examination of the Relationship between Youths’ Perceptions and the Perceived Portrayal of Female Artistes in Nigerian Hip Hop Music Videos

Authors: Aminat Sheriff Owolabi

Abstract:

This study focused on what and how viewers perceive female portrayal in Nigerian Hip Hop music video based on scholars’ submission that Hip Hop music video is one of the media contents that objectifies women the most. However, this study examined how female artistes are portrayed sexually in Nigerian Hip Hop music videos. A model was developed in this study to examine the relationship between viewers’ perceptions and female portrayal in Nigerian Hip Hop music videos and from this model; three hypotheses were formulated and tested. Objectification theory of the psychology was also used to examine the manner at which women are portrayed in Nigerian Hip Hop Music as well as the relationship between the perceived portrayal and viewers’ perceptions. Survey research method was equally employed to gather data from 300 undergraduates in Kwara State and two Nigerian Hip Hop music producers who form the population of this study. From the result of the analyzed data and the tested hypotheses, it was discovered that there is a significant relationship between portrayal of female artistes in Nigerian Hip Hop music and viewers’ perception. As part of the suggestions, further study should include examination of how other media content portrays women.

Keywords: female artistes, Hip Hop, objectification, portrayal

Procedia PDF Downloads 280
19338 Confidence Building Strategies Adopted in an EAP Speaking Course at METU and Their Effectiveness: A Case Study

Authors: Canan Duzan

Abstract:

For most language learners, mastery of the speaking skill is the proof of the mastery of the foreign language. On the other hand, the speaking skill is considered as the most difficult aspect of language learning to develop for both learners and teachers. Especially in countries like Turkey where exposure to the target language is minimum and resources and opportunities provided for language practice are scarce, teaching and learning to speak the language become a real struggle for teachers and learners alike. Data collected from students, instructors, faculty members and the business sector in needs analysis studies conducted previously at Middle East Technical University (METU) consistently revealed the need for addressing the problem of lack of confidence in speaking English. Action was taken during the design of the only EAP speaking course offered in Modern Languages Department since lack of confidence is considered to be a serious barrier for effective communication and causes learners to suffer from insecurity, uncertainty and fear. “Confidence building” served as the guiding principle in the syllabus design, nature of the tasks created for the course and the assessment procedures to help learners become more confident speakers of English. In order to see the effectiveness of the decisions made during the design phase of the course and whether students become more confident speakers upon completion of the course, a case study was carried out with 100 students at METU. A questionnaire including both Likert-Scale and open-ended items were administered to students to collect data and this data were analyzed using the SPSS program. Group interviews were also carried out to gain more insight into the effectiveness of the course in terms of building speaking confidence. This presentation will explore the specific actions taken to develop students’ confidence based on the findings of program evaluation studies and to what extent the students believe these actions to be effective in improving their confidence. The unique design of this course and strategies adopted for confidence building are highly applicable in other EAP contexts and may yield similar positive results.

Keywords: confidence, EAP, speaking, strategy

Procedia PDF Downloads 401
19337 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 84
19336 A Qualitative Study of Children's Growth in Creative Dance: An Example of Cloud Gate Dance School in Taiwan

Authors: Chingwen Yeh, Yu Ru Chen

Abstract:

This paper aims to explore the growth and development of children in the creative dance class of Cloud Gate Dance School in Taichung Taiwan. Professor Chingwen Yeh’s qualitative research method was applied in this study. First of all, application of Dalcroze Eurhythmic teaching materials such as music, teaching aids, speaking language through classroom situation was collected and exam. Second, the in-class observation on the participation of the young children's learning situation was recorded both by words and on video screen as the research data. Finally, data analysis was categorized into the following aspects: children's body movement coordination, children’s mind concentration and imagination and children’s verbal expression. Through the in-depth interviews with the in-class teachers, parents of participating children and other in class observers were conducted from time to time; this research found the children's body rhythm, language skills, and social learning growth were improved in certain degree through the creative dance training. These authors hope the study can contribute as the further research reference on the related topic.

Keywords: Cloud Gate Dance School, creative dance, Dalcroze, Eurhythmic

Procedia PDF Downloads 297
19335 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 199
19334 The Effect of Collapse Structure on Economic Growth and Influence of Soil Investigation

Authors: Fatai Shola Afolabi

Abstract:

The study identified and evaluates the causes of building failure and examined the effects of building failure with respect to cost in Lagos State, Nigeria. The method employed in the collection of data includes the administration of questionnaire to professionals in the construction industry and case studies for the sites. A purposive sampling technique was used for selecting the sites visited, and selecting the construction professionals. Descriptive statistical techniques such as frequency distribution and percentages and mean response analysis were used to analyze data. The study revealed that the major causes of building failures were bad design, faulty construction, over loading, non-possession of approved drawings, Possession of approved drawings but non-compliance, and the use of quarks. In the two case studies considered, the total direct loss to the building owners was thirty eight million three hundred and eight five thousand, seven hundred and twenty one naira (38,385,721) which is about One hundred and ninety four thousand, eighty hundred and fifty one dollars ($194,851) at one hundred and ninety seven naira to one US dollars, central bank Nigeria of exchange rate as at 14th March, 2015.

Keywords: building structures, building failure, building collapse, structural failure, cost, direct loss

Procedia PDF Downloads 263
19333 The Use of Visual Drawing and Writing Techniques to Elicit Adult Perceptions of Sex Offenders

Authors: Sasha Goodwin

Abstract:

Public perceptions can play a crucial role in influencing criminal justice policy and legislation, particularly concerning sex offenders. Studies have found a proximate relationship between public perception and policy to manage the risks posed by sex offenders. A significant body of research on public perceptions about sex offenders primarily uses survey methods and standardised instruments such as the Community Attitude Towards Sex Offenders (CATSO) and Perceptions of Sex Offenders (PSO) scales and finds a mostly negative and punitive attitude informed by common misconceptions. A transformative methodology from the emerging sub-field of visual criminology is where the construction of offences and offenders are understood via novel ways of collecting and analysing data. This research paper examines the public perceptions of sex offenders through the utilization of a content analysis of drawings. The study aimed to disentangle the emotions, stereotypes, and myths embedded in public perceptions by analysing the graphic representations and specific characteristics depicted by participants. Preliminary findings highlight significant discrepancies between public perceptions and empirical profiles of sex offenders, shedding light on the misunderstandings surrounding this heterogeneous group. By employing visual data, this research contributes to a deeper understanding of the complex interplay between societal perceptions and the realities of sex offenders.

Keywords: emotions, figural drawings, public perception, sex offenders

Procedia PDF Downloads 69
19332 Robson System Analysis in Kyiv Perinatal Centre

Authors: Victoria Bila, Iryna Ventskivska, Oleksandra Zahorodnia

Abstract:

The goal of the study: To study the distribution of patients of the Kiyv Perinatal Center according to the Robson system and compare it with world data. Materials and methods: a comparison of the distribution of patients of Kiyv Perinatal center according to the Robson system for 2 periods - the first quarter of 2019 and 2020. For each group, 3 indicators were analyzed - the share of this group in the overall structure of patients of the Perinatal Center for the reporting period, the frequency of abdominal delivery in this group, as well as the contribution of this group to the total number of abdominal delivery. Obtained data were compared with those of the WHO in the guidelines for the implementation of the Robson system in 2017. Results and its discussion: The distribution of patients of the Perinatal Center into groups in the Robson classification is not much different from that recommended by the author. So, among all women, patients of group 1 dominate; this indicator does not change in dynamics. A slight increase in the share of group 2 (6.7% in 2019 and 9.3% - 2020) was due to an increase in the number of labor induction. At the same time, the number of patients of groups 1 and 2 in the Perinatal Center is greater than in the world population, which is determined by the hospitalization of primiparous women with reproductive losses in the past. The Perinatal Center is distinguished from the world population and the proportion of women of group 5 - it was 5.4%, in the world - 7.6%. The frequency of caesarean section in the Perinatal Center is within limits typical for most countries (20.5-20.8%). Moreover, the dominant groups in the structure of caesarean sections are group 5 (21-23.3%) and group 2 (21.9-22.9%), which are the reserve for reducing the number of abdominal delivery. In group 2, certain results have already been achieved in this matter - the frequency of cesarean section in 2019 here amounted to 67.8%, in the first quarter of 2020 - 51.6%. This happened due to a change in the leading method of induction of labor. Thus, the Robson system is a convenient and affordable tool for assessing the structure of caesarean sections. The analysis showed that, in general, the structure of caesarean sections in the Perinatal Center is close to world data, and the identified deviations have explanations related to the specialization of the Center.

Keywords: cesarian section, Robson system, Kyiv Perinatal Center, labor induction

Procedia PDF Downloads 137
19331 Multifunctional Epoxy/Carbon Laminates Containing Carbon Nanotubes-Confined Paraffin for Thermal Energy Storage

Authors: Giulia Fredi, Andrea Dorigato, Luca Fambri, Alessandro Pegoretti

Abstract:

Thermal energy storage (TES) is the storage of heat for later use, thus filling the gap between energy request and supply. The most widely used materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin. These materials store/release a high amount of latent heat thanks to their high specific melting enthalpy, operate in a narrow temperature range and have a tunable working temperature. However, they suffer from a low thermal conductivity and need to be confined to prevent leakage. These two issues can be tackled by confining PCMs with carbon nanotubes (CNTs). TES applications include the buildings industry, solar thermal energy collection and thermal management of electronics. In most cases, TES systems are an additional component to be added to the main structure, but if weight and volume savings are key issues, it would be advantageous to embed the TES functionality directly in the structure. Such multifunctional materials could be employed in the automotive industry, where the diffusion of lightweight structures could complicate the thermal management of the cockpit environment or of other temperature sensitive components. This work aims to produce epoxy/carbon structural laminates containing CNT-stabilized paraffin. CNTs were added to molten paraffin in a fraction of 10 wt%, as this was the minimum amount at which no leakage was detected above the melting temperature (45°C). The paraffin/CNT blend was cryogenically milled to obtain particles with an average size of 50 µm. They were added in various percentages (20, 30 and 40 wt%) to an epoxy/hardener formulation, which was used as a matrix to produce laminates through a wet layup technique, by stacking five plies of a plain carbon fiber fabric. The samples were characterized microstructurally, thermally and mechanically. Differential scanning calorimetry (DSC) tests showed that the paraffin kept its ability to melt and crystallize also in the laminates, and the melting enthalpy was almost proportional to the paraffin weight fraction. These thermal properties were retained after fifty heating/cooling cycles. Laser flash analysis showed that the thermal conductivity through the thickness increased with an increase of the PCM, due to the presence of CNTs. The ability of the developed laminates to contribute to the thermal management was also assessed by monitoring their cooling rates through a thermal camera. Three-point bending tests showed that the flexural modulus was only slightly impaired by the presence of the paraffin/CNT particles, while a more sensible decrease of the stress and strain at break and the interlaminar shear strength was detected. Optical and scanning electron microscope images revealed that these could be attributed to the preferential location of the PCM in the interlaminar region. These results demonstrated the feasibility of multifunctional structural TES composites and highlighted that the PCM size and distribution affect the mechanical properties. In this perspective, this group is working on the encapsulation of paraffin in a sol-gel derived organosilica shell. Submicron spheres have been produced, and the current activity focuses on the optimization of the synthesis parameters to increase the emulsion efficiency.

Keywords: carbon fibers, carbon nanotubes, lightweight materials, multifunctional composites, thermal energy storage

Procedia PDF Downloads 160
19330 Analysis of Impact of Flu Vaccination on Acute Respiratory Viral Infections (ARVI) Morbidity among Population in South Kazakhstan Region, 2010-2015

Authors: Karlygash Tulendieva

Abstract:

Presently vaccination is the most effective method of prevention of flu and its complications. The purpose of this study was to analyze the impact of the increase of coverage of the population of South Kazakhstan region with flu vaccination and decrease of the ARVI morbidity. The analysis was performed on the data of flu vaccination of risk groups, including children under one year and pregnant women. Data on ARVI morbidity during 2010-2015 and data on vaccination were taken from the reports of the Epidemiological Surveillance Unit of Department of Consumers’ Rights Protection of South Kazakhstan region. Coverage with flu vaccination of the risk groups was annually increasing and in 2015 it reached 16% (450,000/2,800,682) from the total population. The ARVI morbidity rate in the entire population in 2010 was 2,010.4 per 100,000 of the population and decreased 3.2 times to 609.9 per 100,000 of the population in 2015. Annual growth was observed from 2010 to 2015 of specific weight of the vaccinated main risk groups: healthcare workers by 51% (from 17,331 in 2010 to 33,538 in 2015), children with chronic pulmonary and cardio-vascular diseases, immune deficiency, weak and sickly children above six months by 39% (from 63,122 in 2010 to 158,023 in 2015), adults with chronic co-morbidities by 27% (from 44,271 in 2010 to 162,595 in 2015), persons above 65 by 17% (from 10,276 in 2010 to 57,875 in 2015), and annual coverage of pregnant women on second or third trimester from 34,443 in 2010 to 37,969 in 2015. Starting from 2013 and until 2015 vaccination was performed in the region with coverage of at least 90% of children from 6 months to one year. The ARVI morbidity in this age group decreased 3.3 times from 8,687.8 per 100,000 of the population in 2010 to 2,585.8 per 100,000 of the population in 2015. Vaccination of pregnant women on 2-3 trimester was started in the region in 2012. Annual increase of vaccination coverage of pregnant women from 86.1% (34,443/40,000) in 2012 to 95% (37,969/40,000) in 2015 decreased the morbidity 1.5 times from 4,828.8 per 100,000 of population in 2012 to 3,022.7 per 100,000 of population in 2015. Following the increase of vaccination coverage of the population in South Kazakhstan region, the trend was observed of decrease of ARVI morbidity rates among the population and main risk groups, among pregnant women and children under one year.

Keywords: acute respiratory viral infections, flu, risk groups, vaccination

Procedia PDF Downloads 241
19329 Development of K-Factor for Road Geometric Design: A Case Study of North Coast Road in Java

Authors: Edwin Hidayat, Redi Yulianto, Disi Hanafiah

Abstract:

On the one hand, parameters which are used for determining the number of lane on the new road construction are average annual average daily traffic (AADT) and peak hour factor (K-factor). On the other hand, the value of K-factor listed in the guidelines and manual for road planning in Indonesia is a value of adoption or adaptation from foreign guidelines or manuals. Thus, the value is less suitable for Indonesian condition due to differences in road conditions, vehicle type, and driving behavior. The purpose of this study is to provide an example on how to determine k-factor values at a road segment with particular conditions in north coast road, West Java. The methodology is started with collecting traffic volume data for 24 hours over 365 days using PLATO (Automated Traffic Counter) with the approach of video image processing. Then, the traffic volume data is divided into per hour and analyzed by comparing the peak traffic volume in the 30th hour (or other) with the AADT in the same year. The analysis has resulted that for the 30th peak hour the K-factor is 0.97. This value can be used for planning road geometry or evaluating the road capacity performance for the 4/2D interurban road.

Keywords: road geometry, K-factor, annual average daily traffic, north coast road

Procedia PDF Downloads 161
19328 Influence of Coatings on Energy Conservation in Construction Industry

Authors: Nancy Sakr, Mohamed Abou-Zeid

Abstract:

World energy consumption has increased rapidly in the past few years. Due to population growth, total energy consumption is increasing; a large amount of energy is wasted on the cooling and heating processes in buildings. However, using thermal heating management can minimize costs, heat consumption and create a management system for the heat insulation for buildings. This concept is being implemented through different approaches. Based on analysis and research, there is evidence in the energy consumption before and after testing and applying construction approaches for thermal heating management in building units. This investigation addresses the evaluation of the influence of external coatings on energy consumption. Coatings are considered one of the smart effective available approaches for energy efficiency. Unfortunately, this approach is not widely applied in the construction industry. It needs more data to prove effectiveness and credibility between people to use it as a smart thermal insulation approach. Two precedents have been analyzed in order to monitor buildings’ heat exposure, and how the buildings will be affected by thermal insulation materials. Data sheets from chemical companies which produce similar coatings are compared with the usual products and the protective thermal products.

Keywords: energy consumption, building envelope, thermal insulation, protective coatings

Procedia PDF Downloads 144
19327 AI for Efficient Geothermal Exploration and Utilization

Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson

Abstract:

Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.

Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal

Procedia PDF Downloads 53
19326 Digital Transformation in Education: Artificial Intelligence Awareness of Preschool Teachers

Authors: Cansu Bozer, Saadet İrem Turgut

Abstract:

Artificial intelligence (AI) has become one of the most important technologies of the digital age and is transforming many sectors, including education. The advantages offered by AI, such as automation, personalised learning, and data analytics, create new opportunities for both teachers and students in education systems. Preschool education plays a fundamental role in the cognitive, social, and emotional development of children. In this period, the foundations of children's creative thinking, problem-solving, and critical thinking skills are laid. Educational technologies, especially artificial intelligence-based applications, are thought to contribute to the development of these skills. For example, artificial intelligence-supported digital learning tools can support learning processes by offering activities that can be customised according to the individual needs of each child. However, the successful use of artificial intelligence-based applications in preschool education can be realised under the guidance of teachers who have the right knowledge about this technology. Therefore, it is of great importance to measure preschool teachers' awareness levels of artificial intelligence and to understand which variables affect this awareness. The aim of this study is to measure preschool teachers' awareness levels of artificial intelligence and to determine which factors are related to this awareness. In line with this purpose, teachers' level of knowledge about artificial intelligence, their thoughts about the role of artificial intelligence in education, and their attitudes towards artificial intelligence will be evaluated. The study will be conducted with 100 teachers working in Turkey using a descriptive survey model. In this context, ‘Artificial Intelligence Awareness Level Scale for Teachers’ developed by Ferikoğlu and Akgün (2022) will be used. The collected data will be analysed using SPSS (Statistical Package for the Social Sciences) software. Descriptive statistics (frequency, percentage, mean, standard deviation) and relationship analyses (correlation and regression analyses) will be used in data analysis. As a result of the study, the level of artificial intelligence awareness of preschool teachers will be determined, and the factors affecting this awareness will be identified. The findings obtained will contribute to the determination of studies that can be done to increase artificial intelligence awareness in preschool education.

Keywords: education, child development, artificial intelligence, preschool teachers

Procedia PDF Downloads 19
19325 Community Music in Puerto Rico

Authors: Francisco Luis Reyes

Abstract:

The multiple-case study explores the intricacies of three Puerto Rican Community Music (CM) initiatives. This research concentrates on the teaching and learning dynamics of three of the nation’s traditional musical genres, Plena, Bomba, and Música Jíbara, which have survived for centuries through oral transmission and enculturation in community settings. Accordingly, this research focuses on how music education is carried out in Puerto Rican CM initiatives that foster and preserve the country’s traditional music. This study examines the CM initiatives of La Junta, in Santurce (Plena), Taller Tambuyé in Rio Piedras (Bomba), and Decimanía (Música Jíbara), an initiative that stems from the municipality of Hatillo. In terms of procedure, 45–60-minute semi-structured interviews were conducted with organizers and administrators of the CM initiatives to gain insight into the educational philosophy of each project. Following this, a second series of 45–60-minute semi-structured interviews were undertaken with CM educators to collect data on their musical development, teaching practices, and relationship with learners. Subsequently, four weeks were spent observing/participating in each of the three CM initiatives. In addition to participant observations in these projects, five CM learners from each locale were recruited for two one-on-one semi-structured interviews at the beginning and end of the data collection period. The initial interview centered on the participants’ rationale for joining the CM initiative whereas the exit interview focused on participants’ experience within it. Alumni from each of the CM initiatives partook in 45–60-minute semi-structured interviews to investigate their understanding of what it means to be a member of each musical community. Finally, observations and documentation of additional activities hosted/promoted by each initiative, such as festivals, concerts, social gatherings, and workshops, were undertaken. These three initiatives were chosen because of their robust and dynamic practices in fostering the musical expressions of Puerto Rico. Data collection consisted of participant observation, narrative inquiry, historical research, philosophical inquiry, and semi-structured interviews. Data analysis for this research involved relying on theoretical propositions, which entails comparing the results—from each case and as a collective— to the arguments that led to the basis of the research (e.g., literature review, research questions, hypothesis). Comparisons to the theoretical propositions were made through pattern matching, which requires comparing predicted patterns from the literature review to findings from each case. Said process led to the development of an analytic outlook of each CM case and a cross-case synthesis. The purpose of employing said data analysis methodology is to present robust findings about CM practices in Puerto Rico and elucidate similarities and differences between the cases that comprise this research and the relevant literature. Furthermore, through the use of Sound Links’ Nine Domains of Community Music, comparisons to other community projects are made in order to point out parallels and highlight particularities in Puerto Rico.

Keywords: community music, Puerto Rico, music learning, traditional music

Procedia PDF Downloads 28
19324 Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon

Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng

Abstract:

Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C.

Keywords: adsorption, isotherms, kinetics, marula nut shells activated carbon, thermodynamics

Procedia PDF Downloads 273
19323 Local Revenue Generation: Its Contribution to the Development of the Municipality of Bacolod, Lanao Del Sur

Authors: Louvill M. Ozarraga

Abstract:

this study was designed to ascertain the concept of the revenue generation system of Bacolod, Lanao del Norte, through the completely enumerated elected officials and permanent employees sample respondents. The pertinent data were obtained through the use of a structured questionnaire and with the help of key informants. The study utilized a cross-sectional survey design to analyze and interpret the data using frequency count, percentage distribution, and weighted mean. For the major findings, the local revenue generation of the Municipality has increased by Php 4,465,394.21, roughly 73.52%, from the years 2018 to 2020. Administrative activities help the Municipality cope with development, namely, the issuance of ordinances, personnel augmentation, and collection strategies. Moreover, respondents were undecided about whether revenue generation contributed to infrastructures and purchases of assets. The majority of the respondents agreed that the municipality’s local revenue generation contributes to the social welfare of its constituents. Also, the respondents disagreed that locally generated revenue augments the 20% development fund. The study revealed that there is a big difference between the 2018 and 2020 Real Property Tax (RPT) collection. No committee was created to monitor and supervise the municipal revenue generation system. The Municipality, through a partnership with TESDA, provides skilled-job opportunity to its constituents and participants

Keywords: Local Revenue Generation: Its Contribution To The Development Of The Municipality Of Bacolod, Lanao Del Sur

Procedia PDF Downloads 74
19322 Determinants Affecting to Adoption of Climate Smart Agriculture Technologies in the Northern Bangladesh

Authors: Md. Rezaul Karim, Andreas Thiel

Abstract:

Bangladesh is known as one of the most climate vulnerable countries in the world. Innovative technologies are always the key responses to the management of climate impacts. The objectives of this study are to determine the farmer’s perception of climate variability, to compare farmers’ perceptions with metrological data, and to explore the determinants that affect the likelihood of adoption of the selected Climate Smart Agricultural (CSA) technologies. Data regarding climate change perception, determinants and adoption were collected based on the household survey from stratified and randomly selected 365 farmers of the Biral sub-district under Dinajpur district in drought-prone northern Bangladesh. The likelihood of adoption of CSA technologies was analyzed following a multivariate probit model. The findings show that about 82.5% of the farmers perceived increasing temperature, and 75.1 % of farmers perceived decreasing dry season rainfall over the years, which is similarly relevant to metrological data. About 76.4.7% and 80.85% of farmers were aware of the drought tolerance crops and vermicompost, respectively; more than half of the farmers adopted these practices. Around 70.7% of farmers were aware of perching for insect control, but 46.3% of farmers adopted this practice. Although two-thirds of farmers were aware of crop diversification and pheromone trap, adoption was lower compared to the other three CSAs. Results also indicate that the likelihood of adoption of the selected CSAs is significantly influenced by different factors such as socio-economic characteristics, institutional factors and perceived technological or innovation attributes. The likelihood of adopting drought tolerance crops is affected by 11, while crop diversification and perching method by 7, pheromone trap by 9 and vermicompost by 8 determining factors. Lack of information and unavailability of input appear to be major obstacles to the non-adoption of CSA technologies. This study suggests that policy implications are necessary to promote extension services and overcome the obstacles to the non-adoption of individual CSA technologies. It further recommends that the research study should be conducted in a diverse context, nationally or globally.

Keywords: determinants, adoption, climate smart agriculture, northern Bangladesh

Procedia PDF Downloads 67
19321 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques

Authors: Joseph Wolff, Jeffrey Eilbott

Abstract:

Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.

Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences

Procedia PDF Downloads 209
19320 A Data-Driven Optimal Control Model for the Dynamics of Monkeypox in a Variable Population with a Comprehensive Cost-Effectiveness Analysis

Authors: Martins Onyekwelu Onuorah, Jnr Dahiru Usman

Abstract:

Introduction: In the realm of public health, the threat posed by Monkeypox continues to elicit concern, prompting rigorous studies to understand its dynamics and devise effective containment strategies. Particularly significant is its recurrence in variable populations, such as the observed outbreak in Nigeria in 2022. In light of this, our study undertakes a meticulous analysis, employing a data-driven approach to explore, validate, and propose optimized intervention strategies tailored to the distinct dynamics of Monkeypox within varying demographic structures. Utilizing a deterministic mathematical model, we delved into the intricate dynamics of Monkeypox, with a particular focus on a variable population context. Our qualitative analysis provided insights into the disease-free equilibrium, revealing its stability when R0 is less than one and discounting the possibility of backward bifurcation, as substantiated by the presence of a single stable endemic equilibrium. The model was rigorously validated using real-time data from the Nigerian 2022 recorded cases for Epi weeks 1 – 52. Transitioning from qualitative to quantitative, we augmented our deterministic model with optimal control, introducing three time-dependent interventions to scrutinize their efficacy and influence on the epidemic's trajectory. Numerical simulations unveiled a pronounced impact of the interventions, offering a data-supported blueprint for informed decision-making in containing the disease. A comprehensive cost-effectiveness analysis employing the Infection Averted Ratio (IAR), Average Cost-Effectiveness Ratio (ACER), and Incremental Cost-Effectiveness Ratio (ICER) facilitated a balanced evaluation of the interventions’ economic and health impacts. In essence, our study epitomizes a holistic approach to understanding and mitigating Monkeypox, intertwining rigorous mathematical modeling, empirical validation, and economic evaluation. The insights derived not only bolster our comprehension of Monkeypox's intricate dynamics but also unveil optimized, cost-effective interventions. This integration of methodologies and findings underscores a pivotal stride towards aligning public health imperatives with economic sustainability, marking a significant contribution to global efforts in combating infectious diseases.

Keywords: monkeypox, equilibrium states, stability, bifurcation, optimal control, cost-effectiveness

Procedia PDF Downloads 86
19319 The Career Success for Female Managers: A Case Study of The Primary Education Department, Thailand

Authors: Nipon Sasithornsaowapa

Abstract:

The purposes of this research was to study the female management career success of the primary education department of Thailand. The independent variable was human capital which included three factors: family status, personality, and knowledge-skill-experience, while the important dependent variable was the career success. The population of this study included 2,179 female management officials in the department of primary education. A total of 400 female managers were interviewed and utilized as a sample group. A questionnaire was developed and used as a main tool for collecting data. Content analysis was performed to get the quantitative data. Descriptive statistics in this research was done by SPSS program. The findings revealed that family and personality factors had a high influence on the human capital and, in turn, influenced the career success of female managers. On the other hand, knowledge-skill-experience had an insignificant influence to the human capital and the female career success. In addition, the findings from the in-depth interview revealed that the majority of respondents defined career success as the satisfaction in job duties, not money and position.

Keywords: career, female managers, primary education

Procedia PDF Downloads 300
19318 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes

Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales

Abstract:

In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.

Keywords: calibration, data modeling, industrial processes, machine learning

Procedia PDF Downloads 299
19317 Analysis of Vibration and Shock Levels during Transport and Handling of Bananas within the Post-Harvest Supply Chain in Australia

Authors: Indika Fernando, Jiangang Fei, Roger Stanley, Hossein Enshaei

Abstract:

Delicate produce such as fresh fruits are increasingly susceptible to physiological damage during the essential post-harvest operations such as transport and handling. Vibration and shock during the distribution are identified factors for produce damage within post-harvest supply chains. Mechanical damages caused during transit may significantly diminish the quality of fresh produce which may also result in a substantial wastage. Bananas are one of the staple fruit crops and the most sold supermarket produce in Australia. It is also the largest horticultural industry in the state of Queensland where 95% of the total production of bananas are cultivated. This results in significantly lengthy interstate supply chains where fruits are exposed to prolonged vibration and shocks. This paper is focused on determining the shock and vibration levels experienced by packaged bananas during transit from the farm gate to the retail market. Tri-axis acceleration data were captured by custom made accelerometer based data loggers which were set to a predetermined sampling rate of 400 Hz. The devices recorded data continuously for 96 Hours in the interstate journey of nearly 3000 Km from the growing fields in far north Queensland to the central distribution centre in Melbourne in Victoria. After the bananas were ripened at the ripening facility in Melbourne, the data loggers were used to capture the transport and handling conditions from the central distribution centre to three retail outlets within the outskirts of Melbourne. The quality of bananas were assessed before and after transport at each location along the supply chain. Time series vibration and shock data were used to determine the frequency and the severity of the transient shocks experienced by the packages. Frequency spectrogram was generated to determine the dominant frequencies within each segment of the post-harvest supply chain. Root Mean Square (RMS) acceleration levels were calculated to characterise the vibration intensity during transport. Data were further analysed by Fast Fourier Transform (FFT) and the Power Spectral Density (PSD) profiles were generated to determine the critical frequency ranges. It revealed the frequency range in which the escalated energy levels were transferred to the packages. It was found that the vertical vibration was the highest and the acceleration levels mostly oscillated between ± 1g during transport. Several shock responses were recorded exceeding this range which were mostly attributed to package handling. These detrimental high impact shocks may eventually lead to mechanical damages in bananas such as impact bruising, compression bruising and neck injuries which affect their freshness and visual quality. It was revealed that the frequency range between 0-5 Hz and 15-20 Hz exert an escalated level of vibration energy to the packaged bananas which may result in abrasion damages such as scuffing, fruit rub and blackened rub. Further research is indicated specially in the identified critical frequency ranges to minimise exposure of fruits to the harmful effects of vibration. Improving the handling conditions and also further study on package failure mechanisms when exposed to transient shock excitation will be crucial to improve the visual quality of bananas within the post-harvest supply chain in Australia.

Keywords: bananas, handling, post-harvest, supply chain, shocks, transport, vibration

Procedia PDF Downloads 190
19316 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering

Procedia PDF Downloads 354
19315 Interconnected Market Hypothesis: A Conceptual Model of Individualistic, Information-Based Interconnectedness

Authors: James Kinsella

Abstract:

There is currently very little understanding of how the interaction between in- vestors, consumers, the firms (agents) affect a) the transmission of information, and b) the creation and transfer of value and wealth between these two groups. Employing scholarly ideas from multiple research areas (behavioural finance, emotional finance, econo-biology, and game theory) we develop a conceptual the- oretic model (the ‘bow-tie’ model) as a framework for considering this interaction. Our bow-tie model views information transfer, value and wealth creation, and transfer through the lens of “investor-consumer connection facilitated through the communicative medium of the ‘firm’ (agents)”. We confront our bow-tie model with theoretical and practical examples. Next, we utilise consumer and business confidence data alongside index data, to conduct quantitative analy- sis, to support our bow-tie concept, and to introduce the concept of “investor- consumer connection”. We highlight the importance of information persuasiveness, knowledge, and emotional categorization of characteristics in facilitating a communicative relationship between investors, consumers, and the firm (agents), forming academic and practical applications of the conceptual bow-tie model, alongside applications to wider instances, such as those seen within the Covid-19 pandemic.

Keywords: behavioral finance, emotional finance, economy-biology, social mood

Procedia PDF Downloads 127
19314 A Methodological Approach to Digital Engineering Adoption and Implementation for Organizations

Authors: Sadia H. Syeda, Zain H. Malik

Abstract:

As systems continue to become more complex and the interdependencies of processes and sub-systems continue to grow and transform, the need for a comprehensive method of tracking and linking the lifecycle of the systems in a digital form becomes ever more critical. Digital Engineering (DE) provides an approach to managing an authoritative data source that links, tracks, and updates system data as it evolves and grows throughout the system development lifecycle. DE enables the developing, tracking, and sharing system data, models, and other related artifacts in a digital environment accessible to all necessary stakeholders. The DE environment provides an integrated electronic repository that enables traceability between design, engineering, and sustainment artifacts. The DE activities' primary objective is to develop a set of integrated, coherent, and consistent system models for the program. It is envisioned to provide a collaborative information-sharing environment for various stakeholders, including operational users, acquisition personnel, engineering personnel, and logistics and sustainment personnel. Examining the processes that DE can support in the systems engineering life cycle (SELC) is a primary step in the DE adoption and implementation journey. Through an analysis of the U.S Department of Defense’s (DoD) Office of the Secretary of Defense (OSD’s) Digital Engineering Strategy and their implementation, examples of DE implementation by the industry and technical organizations, this paper will provide descriptions of the current DE processes and best practices of implementing DE across an enterprise. This will help identify the capabilities, environment, and infrastructure needed to develop a potential roadmap for implementing DE practices consistent with its business strategy. A capability maturity matrix will be provided to assess the organization’s DE maturity emphasizing how all the SELC elements interlink to form a cohesive ecosystem. If implemented, DE can increase efficiency and improve the systems engineering processes' quality and outcomes.

Keywords: digital engineering, digital environment, digital maturity model, single source of truth, systems engineering life-cycle

Procedia PDF Downloads 93
19313 Scope of Implmenting Building Information Modeling in (Aec) Industry Firms in India

Authors: Padmini Raman

Abstract:

The architecture, engineering, and construction (AEC) industry is facing enormous technological and institutional changes and challenges including the information technology and appropriate application of sustainable practices. The engineer and architect must be able to handle with a rapid pace of technological change. BIM is a unique process of producing and managing a building by exploring a digital module before the actual project is constructed and later during its construction, facility operation and maintenance. BIM has been Adopted by construction contractors and architects in the western country mostly in US and UK to improve the planning and management of construction projects. In India, BIM is a basic stage of adoption only, several issues about data acquisition and management comes during the design formation and planning of a construction project due to the complexity, ambiguity, and fragmented nature of the Indian construction industry. This paper tells about the view a strategy for India’s AEC firms to successfully implement BIM in their current working processes. By surveying and collecting data about problems faced by these architectural firms, it will be analysed how to avoid those situations from rising and, thus, introducing BIM Capabilities in such firms in the most effective way. while this application is widely accepted throughout the industry in many countries for managing project information for cost control and facilities management.

Keywords: AEC industry, building information module, Indian industry, new technology, BIM implementation in India

Procedia PDF Downloads 445
19312 Predictive Power of Achievement Motivation on Student Engagement and Collaborative Problem Solving Skills

Authors: Theresa Marie Miller, Ma. Nympha Joaquin

Abstract:

The aim of this study was to check the predictive power of social-oriented and individual-oriented achievement motivation on student engagement and collaborative problem-solving skills in mathematics. A sample of 277 fourth year high school students from the Philippines were selected. Surveys and videos of collaborative problem solving activity were used to collect data from respondents. The mathematics teachers of the participants were interviewed to provide qualitative support on the data. Systemaitc correlation and regression analysis were employed. Results of the study showed that achievement motivations−SOAM and IOAM− linearly predicted student engagement but was not significantly associated to the collaborative problem-solving skills in mathematics. Student engagement correlated positively with collaborative problem-solving skills in mathematics. The results contribute to theorizing about the predictive power of achievement motivations, SOAM and IOAM on the realm of academic behaviors and outcomes as well as extend the understanding of collaborative problem-solving skills of 21st century learners.

Keywords: achievement motivation, collaborative problem-solving skills, individual-oriented achievement motivation, social-oriented achievement motivation, student engagement

Procedia PDF Downloads 314