Search results for: Markov deterioration models
39 VIAN-DH: Computational Multimodal Conversation Analysis Software and Infrastructure
Authors: Teodora Vukovic, Christoph Hottiger, Noah Bubenhofer
Abstract:
The development of VIAN-DH aims at bridging two linguistic approaches: conversation analysis/interactional linguistics (IL), so far a dominantly qualitative field, and computational/corpus linguistics and its quantitative and automated methods. Contemporary IL investigates the systematic organization of conversations and interactions composed of speech, gaze, gestures, and body positioning, among others. These highly integrated multimodal behaviour is analysed based on video data aimed at uncovering so called “multimodal gestalts”, patterns of linguistic and embodied conduct that reoccur in specific sequential positions employed for specific purposes. Multimodal analyses (and other disciplines using videos) are so far dependent on time and resource intensive processes of manual transcription of each component from video materials. Automating these tasks requires advanced programming skills, which is often not in the scope of IL. Moreover, the use of different tools makes the integration and analysis of different formats challenging. Consequently, IL research often deals with relatively small samples of annotated data which are suitable for qualitative analysis but not enough for making generalized empirical claims derived quantitatively. VIAN-DH aims to create a workspace where many annotation layers required for the multimodal analysis of videos can be created, processed, and correlated in one platform. VIAN-DH will provide a graphical interface that operates state-of-the-art tools for automating parts of the data processing. The integration of tools that already exist in computational linguistics and computer vision, facilitates data processing for researchers lacking programming skills, speeds up the overall research process, and enables the processing of large amounts of data. The main features to be introduced are automatic speech recognition for the transcription of language, automatic image recognition for extraction of gestures and other visual cues, as well as grammatical annotation for adding morphological and syntactic information to the verbal content. In the ongoing instance of VIAN-DH, we focus on gesture extraction (pointing gestures, in particular), making use of existing models created for sign language and adapting them for this specific purpose. In order to view and search the data, VIAN-DH will provide a unified format and enable the import of the main existing formats of annotated video data and the export to other formats used in the field, while integrating different data source formats in a way that they can be combined in research. VIAN-DH will adapt querying methods from corpus linguistics to enable parallel search of many annotation levels, combining token-level and chronological search for various types of data. VIAN-DH strives to bring crucial and potentially revolutionary innovation to the field of IL, (that can also extend to other fields using video materials). It will allow the processing of large amounts of data automatically and, the implementation of quantitative analyses, combining it with the qualitative approach. It will facilitate the investigation of correlations between linguistic patterns (lexical or grammatical) with conversational aspects (turn-taking or gestures). Users will be able to automatically transcribe and annotate visual, spoken and grammatical information from videos, and to correlate those different levels and perform queries and analyses.Keywords: multimodal analysis, corpus linguistics, computational linguistics, image recognition, speech recognition
Procedia PDF Downloads 11538 Determination of Aquifer Geometry Using Geophysical Methods: A Case Study from Sidi Bouzid Basin, Central Tunisia
Authors: Dhekra Khazri, Hakim Gabtni
Abstract:
Because of Sidi Bouzid water table overexploitation, this study aims at integrating geophysical methods to determinate aquifers geometry assessing their geological situation and geophysical characteristics. However in highly tectonic zones controlled by Atlassic structural features with NE-SW major directions (central Tunisia), Bouguer gravimetric responses of some areas can be as much dominated by the regional structural tendency, as being non-identified or either defectively interpreted such as the case of Sidi Bouzid basin. This issue required a residual gravity anomaly elaboration isolating the Sidi Bouzid basin gravity response ranging between -8 and -14 mGal and crucial for its aquifers geometry characterization. Several gravity techniques helped constructing the Sidi Bouzid basin's residual gravity anomaly, such as Upwards continuation compared to polynomial regression trends and power spectrum analysis detecting deep basement sources at (3km), intermediate (2km) and shallow sources (1km). A 3D Euler Deconvolution was also performed detecting deepest accidents trending NE-SW, N-S and E-W with depth values reaching 5500 m and delineating the main outcropping structures of the study area. Further gravity treatments highlighted the subsurface geometry and structural features of Sidi Bouzid basin over Horizontal and vertical gradient, and also filters based on them such as Tilt angle and Source Edge detector locating rooted edges or peaks from potential field data detecting a new E-W lineament compartmentalizing the Sidi Bouzid gutter into two unequally residual anomaly and subsiding domains. This subsurface morphology is also detected by the used 2D seismic reflection sections defining the Sidi Bouzid basin as a deep gutter within a tectonic set of negative flower structures, and collapsed and tilted blocks. Furthermore, these structural features were confirmed by forward gravity modeling process over several modeled residual gravity profiles crossing the main area. Sidi Bouzid basin (central Tunisia) is also of a big interest cause of the unknown total thickness and the undefined substratum of its siliciclastic Tertiary package, and its aquifers unbounded structural subsurface features and deep accidents. The Combination of geological, hydrogeological and geophysical methods is then of an ultimate need. Therefore, a geophysical methods integration based on gravity survey supporting available seismic data through forward gravity modeling, enhanced lateral and vertical extent definition of the basin's complex sedimentary fill via 3D gravity models, improved depth estimation by a depth to basement modeling approach, and provided 3D isochronous seismic mapping visualization of the basin's Tertiary complex refining its geostructural schema. A subsurface basin geomorphology mapping, over an ultimate matching between the basin's residual gravity map and the calculated theoretical signature map, was also displayed over the modeled residual gravity profiles. An ultimate multidisciplinary geophysical study of the Sidi Bouzid basin aquifers can be accomplished via an aeromagnetic survey and a 4D Microgravity reservoir monitoring offering temporal tracking of the target aquifer's subsurface fluid dynamics enhancing and rationalizing future groundwater exploitation in this arid area of central Tunisia.Keywords: aquifer geometry, geophysics, 3D gravity modeling, improved depths, source edge detector
Procedia PDF Downloads 28837 Optimizing the Residential Design Process Using Automated Technologies
Authors: Milena Nanova, Martin Georgiev, Damyan Damov
Abstract:
Modern residential architecture is increasingly influenced by rapid urbanization, technological advancements, and growing investor expectations. The integration of AI and digital tools such as CAD and BIM (Building Information Modelling) is transforming the design process by improving efficiency, accuracy, and speed. However, urban development faces challenges, including the high competition for viable sites and the time-consuming nature of traditional investment feasibility studies and architectural planning. Finding and analyzing suitable sites for residential development is complicated by intense competition and rising investor demands. Investors require quick assessments of property potential to avoid missing opportunities, while traditional architectural design processes rely on the experience of the team and can be time-consuming, adding pressure to make fast, effective decisions. The widespread use of CAD tools has sped up the drafting process, enhancing both accuracy and efficiency. Digital tools allow designers to manipulate drawings quickly, reducing the time spent on revisions. BIM further advances this by enabling native 3D modelling, where changes to a design in one view are automatically reflected in all others, minimizing errors and saving time. AI is becoming an integral part of architectural design software. While AI is currently being incorporated into existing programs like AutoCAD, Revit, and ArchiCAD, its full potential is reached in parametric modelling. In this process, designers define parameters (e.g., building size, layout, and materials), and the software generates multiple design variations based on those inputs. This method accelerates the design process by automating decisions and enabling the quick generation of alternative solutions. The study utilizes generative design, a specific application of parametric modelling that uses Machine Learning (ML) to explore a wide range of design possibilities based on predefined criteria. It optimizes designs through iterations, testing many variations to find the best solutions. This process is particularly beneficial in the early stages of design, where multiple options are explored before refining the best ones. ML’s ability to handle complex mathematical tasks allows it to generate unconventional yet effective designs that a human designer might overlook. Residential architecture, with its anticipated and typical layouts and modular nature, is especially suitable for generative design. The relationships between rooms and the overall organization of apartment units follow logical patterns, making it an ideal candidate for parametric modelling. Using these tools, architects can quickly explore various apartment configurations, considering factors like apartment sizes, types, and circulation patterns, and identify the most efficient layout for a given site. Parametric modelling and generative design offer significant benefits to residential architecture by streamlining the design process, enabling faster decision-making, and optimizing building layouts. These technologies allow architects and developers to analyze numerous design possibilities, improving outcomes while responding to the challenges of urban development. By integrating ML-driven generative design, the architecture industry can enhance creativity, efficiency, and adaptability in residential projects.Keywords: architectural design, generative design, parametric models, residential buildings, workflow optimization
Procedia PDF Downloads 1536 Anajaa-Visual Substitution System: A Navigation Assistive Device for the Visually Impaired
Authors: Juan Pablo Botero Torres, Alba Avila, Luis Felipe Giraldo
Abstract:
Independent navigation and mobility through unknown spaces pose a challenge for the autonomy of visually impaired people (VIP), who have relied on the use of traditional assistive tools like the white cane and trained dogs. However, emerging visually assistive technologies (VAT) have proposed several human-machine interfaces (HMIs) that could improve VIP’s ability for self-guidance. Hereby, we introduce the design and implementation of a visually assistive device, Anajaa – Visual Substitution System (AVSS). This system integrates ultrasonic sensors with custom electronics, and computer vision models (convolutional neural networks), in order to achieve a robust system that acquires information of the surrounding space and transmits it to the user in an intuitive and efficient manner. AVSS consists of two modules: the sensing and the actuation module, which are fitted to a chest mount and belt that communicate via Bluetooth. The sensing module was designed for the acquisition and processing of proximity signals provided by an array of ultrasonic sensors. The distribution of these within the chest mount allows an accurate representation of the surrounding space, discretized in three different levels of proximity, ranging from 0 to 6 meters. Additionally, this module is fitted with an RGB-D camera used to detect potentially threatening obstacles, like staircases, using a convolutional neural network specifically trained for this purpose. Posteriorly, the depth data is used to estimate the distance between the stairs and the user. The information gathered from this module is then sent to the actuation module that creates an HMI, by the means of a 3x2 array of vibration motors that make up the tactile display and allow the system to deliver haptic feedback. The actuation module uses vibrational messages (tactones); changing both in amplitude and frequency to deliver different awareness levels according to the proximity of the obstacle. This enables the system to deliver an intuitive interface. Both modules were tested under lab conditions, and the HMI was additionally tested with a focal group of VIP. The lab testing was conducted in order to establish the processing speed of the computer vision algorithms. This experimentation determined that the model can process 0.59 frames per second (FPS); this is considered as an adequate processing speed taking into account that the walking speed of VIP is 1.439 m/s. In order to test the HMI, we conducted a focal group composed of two females and two males between the ages of 35-65 years. The subject selection was aided by the Colombian Cooperative of Work and Services for the Sightless (COOTRASIN). We analyzed the learning process of the haptic messages throughout five experimentation sessions using two metrics: message discrimination and localization success. These correspond to the ability of the subjects to recognize different tactones and locate them within the tactile display. Both were calculated as the mean across all subjects. Results show that the focal group achieved message discrimination of 70% and a localization success of 80%, demonstrating how the proposed HMI leads to the appropriation and understanding of the feedback messages, enabling the user’s awareness of its surrounding space.Keywords: computer vision on embedded systems, electronic trave aids, human-machine interface, haptic feedback, visual assistive technologies, vision substitution systems
Procedia PDF Downloads 8735 Nonlinear Homogenized Continuum Approach for Determining Peak Horizontal Floor Acceleration of Old Masonry Buildings
Authors: Andreas Rudisch, Ralf Lampert, Andreas Kolbitsch
Abstract:
It is a well-known fact among the engineering community that earthquakes with comparatively low magnitudes can cause serious damage to nonstructural components (NSCs) of buildings, even when the supporting structure performs relatively well. Past research works focused mainly on NSCs of nuclear power plants and industrial plants. Particular attention should also be given to architectural façade elements of old masonry buildings (e.g. ornamental figures, balustrades, vases), which are very vulnerable under seismic excitation. Large numbers of these historical nonstructural components (HiNSCs) can be found in highly frequented historical city centers and in the event of failure, they pose a significant danger to persons. In order to estimate the vulnerability of acceleration sensitive HiNSCs, the peak horizontal floor acceleration (PHFA) is used. The PHFA depends on the dynamic characteristics of the building, the ground excitation, and induced nonlinearities. Consequently, the PHFA can not be generalized as a simple function of height. In the present research work, an extensive case study was conducted to investigate the influence of induced nonlinearity on the PHFA for old masonry buildings. Probabilistic nonlinear FE time-history analyses considering three different hazard levels were performed. A set of eighteen synthetically generated ground motions was used as input to the structure models. An elastoplastic macro-model (multiPlas) for nonlinear homogenized continuum FE-calculation was calibrated to multiple scales and applied, taking specific failure mechanisms of masonry into account. The macro-model was calibrated according to the results of specific laboratory and cyclic in situ shear tests. The nonlinear macro-model is based on the concept of multi-surface rate-independent plasticity. Material damage or crack formation are detected by reducing the initial strength after failure due to shear or tensile stress. As a result, shear forces can only be transmitted to a limited extent by friction when the cracking begins. The tensile strength is reduced to zero. The first goal of the calibration was the consistency of the load-displacement curves between experiment and simulation. The calibrated macro-model matches well with regard to the initial stiffness and the maximum horizontal load. Another goal was the correct reproduction of the observed crack image and the plastic strain activities. Again the macro-model proved to work well in this case and shows very good correlation. The results of the case study show that there is significant scatter in the absolute distribution of the PHFA between the applied ground excitations. An absolute distribution along the normalized building height was determined in the framework of probability theory. It can be observed that the extent of nonlinear behavior varies for the three hazard levels. Due to the detailed scope of the present research work, a robust comparison with code-recommendations and simplified PHFA distributions are possible. The chosen methodology offers a chance to determine the distribution of PHFA along the building height of old masonry structures. This permits a proper hazard assessment of HiNSCs under seismic loads.Keywords: nonlinear macro-model, nonstructural components, time-history analysis, unreinforced masonry
Procedia PDF Downloads 17134 Phenotype and Psychometric Characterization of Phelan-Mcdermid Syndrome Patients
Authors: C. Bel, J. Nevado, F. Ciceri, M. Ropacki, T. Hoffmann, P. Lapunzina, C. Buesa
Abstract:
Background: The Phelan-McDermid syndrome (PMS) is a genetic disorder caused by the deletion of the terminal region of chromosome 22 or mutation of the SHANK3 gene. Shank3 disruption in mice leads to dysfunction of synaptic transmission, which can be restored by epigenetic regulation with both Lysine Specific Demethylase 1 (LSD1) inhibitors. PMS subjects result in a variable degree of intellectual disability, delay or absence of speech, autistic spectrum disorders symptoms, low muscle tone, motor delays and epilepsy. Vafidemstat is an LSD1 inhibitor in Phase II clinical development with a well-established and favorable safety profile, and data supporting the restoration of memory and cognition defects as well as reduction of agitation and aggression in several animal models and clinical studies. Therefore, vafidemstat has the potential to become a first-in-class precision medicine approach to treat PMS patients. Aims: The goal of this research is to perform an observational trial to psychometrically characterize individuals carrying deletions in SHANK3 and build a foundation for subsequent precision psychiatry clinical trials with vafidemstat. Methodology: This study is characterizing the clinical profile of 20 to 40 subjects, > 16-year-old, with genotypically confirmed PMS diagnosis. Subjects will complete a battery of neuropsychological scales, including the Repetitive Behavior Questionnaire (RBQ), Vineland Adaptive Behavior Scales, Escala de Observación para el Diagnostico del Autismo (Autism Diagnostic Observational Scale) (ADOS)-2, the Battelle Developmental Inventory and the Behavior Problems Inventory (BPI). Results: By March 2021, 19 patients have been enrolled. Unsupervised hierarchical clustering of the results obtained so far identifies 3 groups of patients, characterized by different profiles of cognitive and behavioral scores. The first cluster is characterized by low Battelle age, high ADOS and low Vineland, RBQ and BPI scores. Low Vineland, RBQ and BPI scores are also detected in the second cluster, which in contrast has high Battelle age and low ADOS scores. The third cluster is somewhat in the middle for the Battelle, Vineland and ADOS scores while displaying the highest levels of aggression (high BPI) and repeated behaviors (high RBQ). In line with the observation that female patients are generally affected by milder forms of autistic symptoms, no male patients are present in the second cluster. Dividing the results by gender highlights that male patients in the third cluster are characterized by a higher frequency of aggression, whereas female patients from the same cluster display a tendency toward higher repetitive behavior. Finally, statistically significant differences in deletion sizes are detected comparing the three clusters (also after correcting for gender), and deletion size appears to be positively correlated with ADOS and negatively correlated with Vineland A and C scores. No correlation is detected between deletion size and the BPI and RBQ scores. Conclusions: Precision medicine may open a new way to understand and treat Central Nervous System disorders. Epigenetic dysregulation has been proposed to be an important mechanism in the pathogenesis of schizophrenia and autism. Vafidemstat holds exciting therapeutic potential in PMS, and this study will provide data regarding the optimal endpoints for a future clinical study to explore vafidemstat ability to treat shank3-associated psychiatric disorders.Keywords: autism, epigenetics, LSD1, personalized medicine
Procedia PDF Downloads 16833 Digital Mapping of First-Order Drainages and Springs of the Guajiru River, Northeast of Brazil, Based on Satellite and Drone Images
Authors: Sebastião Milton Pinheiro da Silva, Michele Barbosa da Rocha, Ana Lúcia Fernandes Campos, Miquéias Rildo de Souza Silva
Abstract:
Water is an essential natural resource for life on Earth. Rivers, lakes, lagoons and dams are the main sources of water storage for human consumption. The costs of extracting and using these water sources are lower than those of exploiting groundwater on transition zones to semi-arid terrains. However, the volume of surface water has decreased over time, with the depletion of first-order drainage and the disappearance of springs, phenomena which are easily observed in the field. Climate change worsens water scarcity, compromising supply and hydric security for rural populations. To minimize the expected impacts, producing and storing water through watershed management planning requires detailed cartographic information on the relief and topography, and updated data on the stage and intensity of catchment basin environmental degradation problems. The cartography available of the Brazilian northeastern territory dates to the 70s, with topographic maps, printed, at a scale of 1:100,000 which does not meet the requirements to execute this project. Exceptionally, there are topographic maps at scales of 1:50,000 and 1:25,000 of some coastal regions in northeastern Brazil. Still, due to scale limitations and outdatedness, they are products of little utility for mapping low-order watersheds drainage and springs. Remote sensing data and geographic information systems can contribute to guiding the process of mapping and environmental recovery by integrating detailed relief and topographic data besides social and other environmental information in the Guajiru River Basin, located on the east coast of Rio Grande do Norte, on the Northeast region of Brazil. This study aimed to recognize and map catchment basin, springs and low-order drainage features along estimating morphometric parameters. Alos PALSAR and Copernicus DEM digital elevation models were evaluated and provided regional drainage features and the watersheds limits extracted with Terraview/Terrahidro 5.0 software. CBERS 4A satellite images with 2 m spatial resolution, processed with ESA SNAP Toolbox, allowed generating land use land cover map of Guajiru River. A Mappir Survey 3 multiespectral camera onboard of a DJI Phantom 4, a Mavic 2 Pro PPK Drone and an X91 GNSS receiver to collect the precised position of selected points were employed to detail mapping. Satellite images enabled a first knowledge approach of watershed areas on a more regional scale, yet very current, and drone images were essential in mapping details of catchment basins. The drone multispectral image mosaics, the digital elevation model, the contour lines and geomorphometric parameters were generated using OpenDroneMap/ODM and QGis softwares. The drone images generated facilitated the location, understanding and mapping of watersheds, recharge areas and first-order ephemeral watercourses on an adequate scale and will be used in the following project’s phases: watershed management planning, recovery and environmental protection of Rio's springs Guajiru. Environmental degradation is being analyzed from the perspective of the availability and quality of surface water supply.Keywords: imaging, relief, UAV, water
Procedia PDF Downloads 3632 TeleEmergency Medicine: Transforming Acute Care through Virtual Technology
Authors: Ashley L. Freeman, Jessica D. Watkins
Abstract:
TeleEmergency Medicine (TeleEM) is an innovative approach leveraging virtual technology to deliver specialized emergency medical care across diverse healthcare settings, including internal acute care and critical access hospitals, remote patient monitoring, and nurse triage escalation, in addition to external emergency departments, skilled nursing facilities, and community health centers. TeleEM represents a significant advancement in the delivery of emergency medical care, providing healthcare professionals the capability to deliver expertise that closely mirrors in-person emergency medicine, exceeding geographical boundaries. Through qualitative research, the extension of timely, high-quality care has proven to address the critical needs of patients in remote and underserved areas. TeleEM’s service design allows for the expansion of existing services and the establishment of new ones in diverse geographic locations. This ensures that healthcare institutions can readily scale and adapt services to evolving community requirements by leveraging on-demand (non-scheduled) telemedicine visits through the deployment of multiple video solutions. In terms of financial management, TeleEM currently employs billing suppression and subscription models to enhance accessibility for a wide range of healthcare facilities. Plans are in motion to transition to a billing system routing charges through a third-party vendor, further enhancing financial management flexibility. To address state licensure concerns, a patient location verification process has been integrated through legal counsel and compliance authorities' guidance. The TeleEM workflow is designed to terminate if the patient is not physically located within licensed regions at the time of the virtual connection, alleviating legal uncertainties. A distinctive and pivotal feature of TeleEM is the introduction of the TeleEmergency Medicine Care Team Assistant (TeleCTA) role. TeleCTAs collaborate closely with TeleEM Physicians, leading to enhanced service activation, streamlined coordination, and workflow and data efficiencies. In the last year, more than 800 TeleEM sessions have been conducted, of which 680 were initiated by internal acute care and critical access hospitals, as evidenced by quantitative research. Without this service, many of these cases would have necessitated patient transfers. Barriers to success were examined through thorough medical record review and data analysis, which identified inaccuracies in documentation leading to activation delays, limitations in billing capabilities, and data distortion, as well as the intricacies of managing varying workflows and device setups. TeleEM represents a transformative advancement in emergency medical care that nurtures collaboration and innovation. Not only has advanced the delivery of emergency medicine care virtual technology through focus group participation with key stakeholders, rigorous attention to legal and financial considerations, and the implementation of robust documentation tools and the TeleCTA role, but it’s also set the stage for overcoming geographic limitations. TeleEM assumes a notable position in the field of telemedicine by enhancing patient outcomes and expanding access to emergency medical care while mitigating licensure risks and ensuring compliant billing.Keywords: emergency medicine, TeleEM, rural healthcare, telemedicine
Procedia PDF Downloads 8831 Increasing Student Engagement through Culturally-Responsive Classroom Management
Authors: Catherine P. Bradshaw, Elise T. Pas, Katrina J. Debnam, Jessika H. Bottiani, Michael Rosenberg
Abstract:
Worldwide, ethnically and culturally diverse students are at increased risk for school failure, discipline problems, and dropout. Despite decades of concern about this issue of disparities in education and other fields (e.g., 'school to prison pipeline'), there has been limited empirical examination of models that can actually reduce these gaps in schools. Moreover, few studies have examined the effectiveness of in-service teacher interventions and supports specifically designed to reduce discipline disparities and improve student engagement. This session provides an overview of the evidence-based Double Check model which serves as a framework for teachers to use culturally-responsive strategies to engage ethnically and culturally diverse students in the classroom and reduce discipline problems. Specifically, Double Check is a school-based prevention program which includes three core components: (a) enhancements to the school-wide Positive Behavioral Interventions and Supports (PBIS) tier-1 level of support; (b) five one-hour professional development training sessions, each of which addresses five domains of cultural competence (i.e., connection to the curriculum, authentic relationships, reflective thinking, effective communication, and sensitivity to students’ culture); and (c) coaching of classroom teachers using an adapted version of the Classroom Check-Up, which intends to increase teachers’ use of effective classroom management and culturally-responsive strategies using research-based motivational interviewing and data-informed problem-solving approaches. This paper presents findings from a randomized controlled trial (RCT) testing the impact of Double Check, on office discipline referrals (disaggregated by race) and independently observed and self-reported culturally-responsive practices and classroom behavior management. The RCT included 12 elementary and middle schools; 159 classroom teachers were randomized either to receive coaching or serve as comparisons. Specifically, multilevel analyses indicated that teacher self-reported culturally responsive behavior management improved over the course of the school year for teachers who received the coaching and professional development. However, the average annual office discipline referrals issued to black students were reduced among teachers who were randomly assigned to receive coaching relative to comparison teachers. Similarly, observations conducted by trained external raters indicated significantly more teacher proactive behavior management and anticipation of student problems, higher student compliance, less student non-compliance, and less socially disruptive behaviors in classrooms led by coached teachers than classrooms led teachers randomly assigned to the non-coached condition. These findings indicated promising effects of the Double Check model on a range of teacher and student outcomes, including disproportionality in office discipline referrals among Black students. These results also suggest that the Double Check model is one of only a few systematic approaches to promoting culturally-responsive behavior management which has been rigorously tested and shown to be associated with improvements in either student or staff outcomes indicated significant reductions in discipline problems and improvements in behavior management. Implications of these findings are considered within the broader context of globalization and demographic shifts, and their impacts on schools. These issues are particularly timely, given growing concerns about immigration policies in the U.S. and abroad.Keywords: ethnically and culturally diverse students, student engagement, school-based prevention, academic achievement
Procedia PDF Downloads 28630 Working at the Interface of Health and Criminal Justice: An Interpretative Phenomenological Analysis Exploration of the Experiences of Liaison and Diversion Nurses – Emerging Findings
Authors: Sithandazile Masuku
Abstract:
Introduction: Public health approaches to offender mental health are driven by international policies and frameworks in response to the disproportionately large representation of people with mental health problems within the offender pathway compared to the general population. Public health service innovations include mental health courts in the US, restorative models in Singapore and, liaison and diversion services in Australia, the UK, and some other European countries. Mental health nurses are at the forefront of offender health service innovations. In the U.K. context, police custody has been identified as an early point within the offender pathway where nurses can improve outcomes by offering assessments and share information with criminal justice partners. This scope of nursing practice has introduced challenges related to skills and support required for nurses working at the interface of health and the criminal justice system. Parallel literature exploring experiences of nurses working in forensic settings suggests the presence of compassion fatigue, burnout and vicarious trauma that may impede risk harm to the nurses in these settings. Published research explores mainly service-level outcomes including monitoring of figures indicative of a reduction in offending behavior. There is minimal research exploring the experiences of liaison and diversion nurses who are situated away from a supportive clinical environment and engaged in complex autonomous decision-making. Aim: This paper will share qualitative findings (in progress) from a PhD study that aims to explore the experiences of liaison and diversion nurses in one service in the U.K. Methodology: This is a qualitative interview study conducted using an Interpretative Phenomenological Analysis to gain an in-depth analysis of lived experiences. Methods: A purposive sampling technique was used to recruit n=8 mental health nurses registered with the UK professional body, Nursing and Midwifery Council, from one UK Liaison and Diversion service. All participants were interviewed online via video call using semi-structured interview topic guide. Data were recorded and transcribed verbatim. Data were analysed using the seven steps of the Interpretative Phenomenological Analysis data analysis method. Emerging Findings Analysis to date has identified pertinent themes: • Difficulties of meaning-making for nurses because of the complexity of their boundary spanning role. • Emotional burden experienced in a highly emotive and fast-changing environment. • Stress and difficulties with role identity impacting on individual nurses’ ability to be resilient. • Challenges to wellbeing related to a sense of isolation when making complex decisions. Conclusion Emerging findings have highlighted the lived experiences of nurses working in liaison and diversion as challenging. The nature of the custody environment has an impact on role identity and decision making. Nurses left feeling isolated and unsupported are less resilient and may go on to experience compassion fatigue. The findings from this study thus far point to a need to connect nurses working in these boundary spanning roles with a supportive infrastructure where the complexity of their role is acknowledged, and they can be connected with a health agenda. In doing this, the nurses would be protected from harm and the likelihood of sustained positive outcomes for service users is optimised.Keywords: liaison and diversion, nurse experiences, offender health, staff wellbeing
Procedia PDF Downloads 14129 Impact of Simulated Brain Interstitial Fluid Flow on the Chemokine CXC-Chemokine-Ligand-12 Release From an Alginate-Based Hydrogel
Authors: Wiam El Kheir, Anais Dumais, Maude Beaudoin, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon
Abstract:
The high infiltrative pattern of glioblastoma multiforme cells (GBM) is the main cause responsible for the actual standard treatments failure. The tumor high heterogeneity, the interstitial fluid flow (IFF) and chemokines guides GBM cells migration in the brain parenchyma resulting in tumor recurrence. Drug delivery systems emerged as an alternative approach to develop effective treatments for the disease. Some recent studies have proposed to harness the effect CXC-lchemokine-ligand-12 to direct and control the cancer cell migration through delivery system. However, the dynamics of the brain environment on the delivery system remains poorly understood. Nanoparticles (NPs) and hydrogels are known as good carriers for the encapsulation of different agents and control their release. We studied the release of CXCL12 (free or loaded into NPs) from an alginate-based hydrogel under static and indirect perfusion (IP) conditions. Under static conditions, the main phenomena driving CXCL12 release from the hydrogel was diffusion with the presence of strong interactions between the positively charged CXCL12 and the negatively charge alginate. CXCL12 release profiles were independent from the initial mass loadings. Afterwards, we demonstrated that the release could tuned by loading CXCL12 into Alginate/Chitosan-Nanoparticles (Alg/Chit-NPs) and embedded them into alginate-hydrogel. The initial burst release was substantially attenuated and the overall cumulative release percentages of 21%, 16% and 7% were observed for initial mass loadings of 0.07, 0.13 and 0.26 µg, respectively, suggesting stronger electrostatic interactions. Results were mathematically modeled based on Fick’s second law of diffusion framework developed previously to estimate the effective diffusion coefficient (Deff) and the mass transfer coefficient. Embedding the CXCL12 into NPs decreased the Deff an order of magnitude, which was coherent with experimental data. Thereafter, we developed an in-vitro 3D model that takes into consideration the convective contribution of the brain IFF to study CXCL12 release in an in-vitro microenvironment that mimics as faithfully as possible the human brain. From is unique design, the model also allowed us to understand the effect of IP on CXCL12 release in respect to time and space. Four flow rates (0.5, 3, 6.5 and 10 µL/min) which may increase CXCL12 release in-vivo depending on the tumor location were assessed. Under IP, cumulative percentages varying between 4.5-7.3%, 23-58.5%, 77.8-92.5% and 89.2-95.9% were released for the three initial mass loadings of 0.08, 0.16 and 0.33 µg, respectively. As the flow rate increase, IP culture conditions resulted in a higher release of CXCL12 compared to static conditions as the convection contribution became the main driving mass transport phenomena. Further, depending on the flow rate, IP had a direct impact on CXCL12 distribution within the simulated brain tissue, which illustrates the importance of developing such 3D in-vitro models to assess the efficiency of a delivery system targeting the brain. In future work, using this very model, we aim to understand the impact of the different phenomenon occurring on GBM cell behaviors in response to the resulting chemokine gradient subjected to various flow while allowing them to express their invasive characteristics in an in-vitro microenvironment that mimics the in-vivo brain parenchyma.Keywords: 3D culture system, chemokines gradient, glioblastoma multiforme, kinetic release, mathematical modeling
Procedia PDF Downloads 9228 Taiwanese Pre-Service Elementary School EFL Teachers’ Perception and Practice of Station Teaching in English Remedial Education
Authors: Chien Chin-Wen
Abstract:
Collaborative teaching has different teaching models and station teaching is one type of collaborative teaching. Station teaching is not commonly practiced in elementary school English education and introduced in language teacher education programs in Taiwan. In station teaching, each teacher takes a small part of instructional content, working with a small number of students. Students rotate between stations where they receive the assignments and instruction from different teachers. The teachers provide the same content to each group, but the instructional method can vary based upon the needs of each group of students. This study explores thirty-four Taiwanese pre-service elementary school English teachers’ knowledge about station teaching and their competence demonstrated in designing activities for and delivering of station teaching in an English remedial education to six sixth graders in a local elementary school in northern Taiwan. The participants simultaneously enrolled in this Elementary School English Teaching Materials and Methods class, a part of an elementary school teacher education program in a northern Taiwan city. The instructor (Jennifer, pseudonym) in this Elementary School English Teaching Materials and Methods class collaborated with an English teacher (Olivia, pseudonym) in Maureen Elementary School (pseudonym), an urban elementary school in a northwestern Taiwan city. Of Olivia’s students, four male and two female sixth graders needed to have remedial English education. Olivia chose these six elementary school students because they were in the lowest 5 % of their class in terms of their English proficiency. The thirty-four pre-service English teachers signed up for and took turns in teaching these six sixth graders every Thursday afternoon from four to five o’clock for twelve weeks. While three participants signed up as a team and taught these six sixth graders, the last team consisted of only two pre-service teachers. Each team designed a 40-minute lesson plan on the given language focus (words, sentence patterns, dialogue, phonics) of the assigned unit. Data in this study included the KWLA chart, activity designs, and semi-structured interviews. Data collection lasted for four months, from September to December 2014. Data were analyzed as follows. First, all the notes were read and marked with appropriate codes (e.g., I don’t know, co-teaching etc.). Second, tentative categories were labeled (e.g., before, after, process, future implication, etc.). Finally, the data were sorted into topics that reflected the research questions on the basis of their relevance. This study has the following major findings. First of all, the majority of participants knew nothing about station teaching at the beginning of the study. After taking the course Elementary School English Teaching Materials and Methods and after designing and delivering the station teaching in an English remedial education program to six sixth graders, they learned that station teaching is co-teaching, and that it includes activity designs for different stations and students’ rotating from station to station. They demonstrated knowledge and skills in activity designs for vocabulary, sentence patterns, dialogue, and phonics. Moreover, they learned to interact with individual learners and guided them step by step in learning vocabulary, sentence patterns, dialogue, and phonics. However, they were still incompetent in classroom management, time management, English, and designing diverse and meaningful activities for elementary school students at different English proficiency levels. Hence, language teacher education programs are recommended to integrate station teaching to help pre-service teachers be equipped with eight knowledge and competences, including linguistic knowledge, content knowledge, general pedagogical knowledge, curriculum knowledge, knowledge of learners and their characteristics, pedagogical content knowledge, knowledge of education content, and knowledge of education’s ends and purposes.Keywords: co-teaching, competence, knowledge, pre-service teachers, station teaching
Procedia PDF Downloads 43127 Solid State Fermentation: A Technological Alternative for Enriching Bioavailability of Underutilized Crops
Authors: Vipin Bhandari, Anupama Singh, Kopal Gupta
Abstract:
Solid state fermentation, an eminent bioconversion technique for converting many biological substrates into a value-added product, has proven its role in the biotransformation of crops by nutritionally enriching them. Hence, an effort was made for nutritional enhancement of underutilized crops viz. barnyard millet, amaranthus and horse gram based composite flour using SSF. The grains were given pre-treatments before fermentation and these pre-treatments proved quite effective in diminishing the level of antinutrients in grains and in improving their nutritional characteristics. The present study deals with the enhancement of nutritional characteristics of underutilized crops viz. barnyard millet, amaranthus and horsegram based composite flour using solid state fermentation (SSF) as the principle bioconversion technique to convert the composite flour substrate into a nutritionally enriched value added product. Response surface methodology was used to design the experiments. The variables selected for the fermentation experiments were substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content having three levels of each. Seventeen designed experiments were conducted randomly to find the effect of these variables on microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index. The data from all experiments were analyzed using Design Expert 8.0.6 and the response functions were developed using multiple regression analysis and second order models were fitted for each response. Results revealed that pretreatments proved quite handful in diminishing the level of antinutrients and thus enhancing the nutritional value of the grains appreciably, for instance, there was about 23% reduction in phytic acid levels after decortication of barnyard millet. The carbohydrate content of the decorticated barnyard millet increased to 81.5% from initial value of 65.2%. Similarly popping and puffing of horsegram and amaranthus respectively greatly reduced the trypsin inhibitor activity. Puffing of amaranthus also reduced the tannin content appreciably. Bacillus subtilis was used as the inoculating specie since it is known to produce phytases in solid state fermentation systems. These phytases remarkably reduce the phytic acid content which acts as a major antinutritional factor in food grains. Results of solid state fermentation experiments revealed that phytic acid levels reduced appreciably when fermentation was allowed to continue for 72 hours at a temperature of 35°C. Particle size and substrate blend ratio also affected the responses positively. All the parameters viz. substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content affected the responses namely microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index but the effect of fermentation time was found to be most significant on all the responses. Statistical analysis resulted in the optimum conditions (particle size 355µ, substrate blend ratio 50:20:30 of barnyard millet, amaranthus and horsegram respectively, fermentation time 68 hrs, fermentation temperature 35°C and moisture content 47%) for maximum reduction in phytic acid. The model F- value was found to be highly significant at 1% level of significance in case of all the responses. Hence, second order model could be fitted to predict all the dependent parameters. The effect of fermentation time was found to be most significant as compared to other variables.Keywords: composite flour, solid state fermentation, underutilized crops, cereals, fermentation technology, food processing
Procedia PDF Downloads 33026 Interpretable Deep Learning Models for Medical Condition Identification
Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji
Abstract:
Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.Keywords: deep learning, interpretability, attention, big data, medical conditions
Procedia PDF Downloads 9525 MusicTherapy for Actors: An Exploratory Study Applied to Students from University Theatre Faculty
Authors: Adriana De Serio, Adrian Korek
Abstract:
Aims: This experiential research work presents a Group-MusicTherapy-Theatre-Plan (MusThePlan) the authors have carried out to support the actors. The MusicTherapy gives rise to individual psychophysical feedback and influences the emotional centres of the brain and the subconsciousness. Therefore, the authors underline the effectiveness of the preventive, educational, and training goals of the MusThePlan to lead theatre students and actors to deal with anxiety and to overcome psychophysical weaknesses, shyness, emotional stress in stage performances, to increase flexibility, awareness of one's identity and resources for a positive self-development and psychophysical health, to develop and strengthen social bonds, increasing a network of subjects working for social inclusion and reduction of stigma. Materials-Methods: Thirty students from the University Theatre Faculty participated in weekly music therapy sessions for two months; each session lasted 120 minutes. MusThePlan: Each session began with a free group rhythmic-sonorous-musical-production by body-percussion, voice-canto, instruments, to stimulate communication. Then, a synchronized-structured bodily-rhythmic-sonorous-musical production also involved acting, dances, movements of hands and arms, hearing, and more sensorial perceptions and speech to balance motor skills and the muscular tone. Each student could be the director-leader of the group indicating a story to inspire the group's musical production. The third step involved the students in rhythmic speech and singing drills and in vocal exercises focusing on the musical pitch to improve the intonation and on the diction to improve the articulation and lead up it to an increased intelligibility. At the end of each musictherapy session and of the two months, the Musictherapy Assessment Document was drawn up by analysis of observation protocols and two Indices by the authors: Patient-Environment-Music-Index (time to - tn) to estimate the behavior evolution, Somatic Pattern Index to monitor subject’s eye and mouth and limb motility, perspiration, before, during and after musictherapy sessions. Results: After the first month, the students (non musicians) learned to play percussion instruments and formed a musical band that played classical/modern music on the percussion instruments with the musictherapist/pianist/conductor in a public concert. At the end of the second month, the students performed a public musical theatre show, acting, dancing, singing, and playing percussion instruments. The students highlighted the importance of the playful aspects of the group musical production in order to achieve emotional contact and harmony within the group. The students said they had improved kinetic and vocal and all the skills useful for acting activity and the nourishment of the bodily and emotional balance. Conclusions: The MusThePlan makes use of some specific MusicTherapy methodological models, techniques, and strategies useful for the actors. The MusThePlan can destroy the individual "mask" and can be useful when the verbal language is unable to undermine the defense mechanisms of the subject. The MusThePlan improves actor’s psychophysical activation, motivation, gratification, knowledge of one's own possibilities, and the quality of life. Therefore, the MusThePlan could be useful to carry out targeted interventions for the actors with characteristics of repeatability, objectivity, and predictability of results. Furthermore, it would be useful to plan a University course/master in “MusicTherapy for the Theatre”.Keywords: musictherapy, sonorous-musical energy, quality of life, theatre
Procedia PDF Downloads 8624 The Proposal for a Framework to Face Opacity and Discrimination ‘Sins’ Caused by Consumer Creditworthiness Machines in the EU
Authors: Diogo José Morgado Rebelo, Francisco António Carneiro Pacheco de Andrade, Paulo Jorge Freitas de Oliveira Novais
Abstract:
Not everything in AI-power consumer credit scoring turns out to be a wonder. When using AI in Creditworthiness Assessment (CWA), opacity and unfairness ‘sins’ must be considered to the task be deemed Responsible. AI software is not always 100% accurate, which can lead to misclassification. Discrimination of some groups can be exponentiated. A hetero personalized identity can be imposed on the individual(s) affected. Also, autonomous CWA sometimes lacks transparency when using black box models. However, for this intended purpose, human analysts ‘on-the-loop’ might not be the best remedy consumers are looking for in credit. This study seeks to explore the legality of implementing a Multi-Agent System (MAS) framework in consumer CWA to ensure compliance with the regulation outlined in Article 14(4) of the Proposal for an Artificial Intelligence Act (AIA), dated 21 April 2021 (as per the last corrigendum by the European Parliament on 19 April 2024), Especially with the adoption of Art. 18(8)(9) of the EU Directive 2023/2225, of 18 October, which will go into effect on 20 November 2026, there should be more emphasis on the need for hybrid oversight in AI-driven scoring to ensure fairness and transparency. In fact, the range of EU regulations on AI-based consumer credit will soon impact the AI lending industry locally and globally, as shown by the broad territorial scope of AIA’s Art. 2. Consequently, engineering the law of consumer’s CWA is imperative. Generally, the proposed MAS framework consists of several layers arranged in a specific sequence, as follows: firstly, the Data Layer gathers legitimate predictor sets from traditional sources; then, the Decision Support System Layer, whose Neural Network model is trained using k-fold Cross Validation, provides recommendations based on the feeder data; the eXplainability (XAI) multi-structure comprises Three-Step-Agents; and, lastly, the Oversight Layer has a 'Bottom Stop' for analysts to intervene in a timely manner. From the analysis, one can assure a vital component of this software is the XAY layer. It appears as a transparent curtain covering the AI’s decision-making process, enabling comprehension, reflection, and further feasible oversight. Local Interpretable Model-agnostic Explanations (LIME) might act as a pillar by offering counterfactual insights. SHapley Additive exPlanation (SHAP), another agent in the XAI layer, could address potential discrimination issues, identifying the contribution of each feature to the prediction. Alternatively, for thin or no file consumers, the Suggestion Agent can promote financial inclusion. It uses lawful alternative sources such as the share of wallet, among others, to search for more advantageous solutions to incomplete evaluation appraisals based on genetic programming. Overall, this research aspires to bring the concept of Machine-Centered Anthropocentrism to the table of EU policymaking. It acknowledges that, when put into service, credit analysts no longer exert full control over the data-driven entities programmers have given ‘birth’ to. With similar explanatory agents under supervision, AI itself can become self-accountable, prioritizing human concerns and values. AI decisions should not be vilified inherently. The issue lies in how they are integrated into decision-making and whether they align with non-discrimination principles and transparency rules.Keywords: creditworthiness assessment, hybrid oversight, machine-centered anthropocentrism, EU policymaking
Procedia PDF Downloads 3823 Sinhala Sign Language to Grammatically Correct Sentences using NLP
Authors: Anjalika Fernando, Banuka Athuraliya
Abstract:
This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired communityKeywords: Sinhala sign language, sign Language, NLP, LSTM, NMT
Procedia PDF Downloads 11022 Geospatial and Statistical Evidences of Non-Engineered Landfill Leachate Effects on Groundwater Quality in a Highly Urbanised Area of Nigeria
Authors: David A. Olasehinde, Peter I. Olasehinde, Segun M. A. Adelana, Dapo O. Olasehinde
Abstract:
An investigation was carried out on underground water system dynamics within Ilorin metropolis to monitor the subsurface flow and its corresponding pollution. Africa population growth rate is the highest among the regions of the world, especially in urban areas. A corresponding increase in waste generation and a change in waste composition from predominantly organic to non-organic waste has also been observed. Percolation of leachate from non-engineered landfills, the chief means of waste disposal in many of its cities, constitutes a threat to the underground water bodies. Ilorin city, a transboundary town in southwestern Nigeria, is a ready microcosm of Africa’s unique challenge. In spite of the fact that groundwater is naturally protected from common contaminants such as bacteria as the subsurface provides natural attenuation process, groundwater samples have been noted to however possesses relatively higher dissolved chemical contaminants such as bicarbonate, sodium, and chloride which poses a great threat to environmental receptors and human consumption. The Geographic Information System (GIS) was used as a tool to illustrate, subsurface dynamics and the corresponding pollutant indicators. Forty-four sampling points were selected around known groundwater pollutant, major old dumpsites without landfill liners. The results of the groundwater flow directions and the corresponding contaminant transport were presented using expert geospatial software. The experimental results were subjected to four descriptive statistical analyses, namely: principal component analysis, Pearson correlation analysis, scree plot analysis, and Ward cluster analysis. Regression model was also developed aimed at finding functional relationships that can adequately relate or describe the behaviour of water qualities and the hypothetical factors landfill characteristics that may influence them namely; distance of source of water body from dumpsites, static water level of groundwater, subsurface permeability (inferred from hydraulic gradient), and soil infiltration. The regression equations developed were validated using the graphical approach. Underground water seems to flow from the northern portion of Ilorin metropolis down southwards transporting contaminants. Pollution pattern in the study area generally assumed a bimodal pattern with the major concentration of the chemical pollutants in the underground watershed and the recharge. The correlation between contaminant concentrations and the spread of pollution indicates that areas of lower subsurface permeability display a higher concentration of dissolved chemical content. The principal component analysis showed that conductivity, suspended solids, calcium hardness, total dissolved solids, total coliforms, and coliforms were the chief contaminant indicators in the underground water system in the study area. Pearson correlation revealed a high correlation of electrical conductivity for many parameters analyzed. In the same vein, the regression models suggest that the heavier the molecular weight of a chemical contaminant of a pollutant from a point source, the greater the pollution of the underground water system at a short distance. The study concludes that the associative properties of landfill have a significant effect on groundwater quality in the study area.Keywords: dumpsite, leachate, groundwater pollution, linear regression, principal component
Procedia PDF Downloads 12121 Cardiolipin-Incorporated Liposomes Carrying Curcumin and Nerve Growth Factor to Rescue Neurons from Apoptosis for Alzheimer’s Disease Treatment
Authors: Yung-Chih Kuo, Che-Yu Lin, Jay-Shake Li, Yung-I Lou
Abstract:
Curcumin (CRM) and nerve growth factor (NGF) were entrapped in liposomes (LIP) with cardiolipin (CL) to downregulate the phosphorylation of mitogen-activated protein kinases for Alzheimer’s disease (AD) management. AD belongs to neurodegenerative disorder with a gradual loss of memory, yielding irreversible dementia. CL-conjugated LIP loaded with CRM (CRM-CL/LIP) and that with NGF (NGF-CL/LIP) were applied to AD models of SK-N-MC cells and Wistar rats with an insult of β-amyloid peptide (Aβ). Lipids comprising 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (Avanti Polar Lipids, Alabaster, AL), 1',3'-bis[1,2- dimyristoyl-sn-glycero-3-phospho]-sn-glycerol (CL; Avanti Polar Lipids), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy(polyethylene glycol)-2000] (Avanti Polar Lipids), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (Avanti Polar Lipids) and CRM (Sigma–Aldrich, St. Louis, MO) were dissolved in chloroform (J. T. Baker, Phillipsburg, NJ) and condensed using a rotary evaporator (Panchum, Kaohsiung, Taiwan). Human β-NGF (Alomone Lab, Jerusalem, Israel) was added in the aqueous phase. Wheat germ agglutinin (WGA; Medicago AB, Uppsala, Sweden) was grafted on LIP loaded with CRM for (WGA-CRM-LIP) and CL-conjugated LIP loaded with CRM (WGA-CRM-CL/LIP) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (Sigma–Aldrich) and N-hydroxysuccinimide (Alfa Aesar, Ward Hill, MA). The protein samples of SK-N-MC cells (American Type Tissue Collection, Rockville, MD) were used for sodium dodecyl sulfate (Sigma–Aldrich) polyacrylamide gel (Sigma–Aldrich) electrophoresis. In animal study, the LIP formulations were administered by intravenous injection via a tail vein of male Wistar rats (250–280 g, 8 weeks, BioLasco, Taipei, Taiwan), which were housed in the Animal Laboratory of National Chung Cheng University in accordance with the institutional guidelines and the guidelines of Animal Protection Committee under the Council of Agriculture of the Republic of China. We found that CRM-CL/LIP could inhibit the expressions of phosphorylated p38 (p-p38), p-Jun N-terminal kinase (p-JNK), and p-tau protein at serine 202 (p-Ser202) to retard the neuronal apoptosis. Free CRM and released CRM from CRM-LIP and CRM-CL/LIP were not in a straightforward manner to effectively inhibit the expression of p-p38 and p-JNK in the cytoplasm. In addition, NGF-CL/LIP enhanced the quantities of p-neurotrophic tyrosine kinase receptor type 1 (p-TrkA) and p-extracellular-signal-regulated kinase 5 (p-ERK5), preventing the Aβ-induced degeneration of neurons. The membrane fusion of NGF-LIP activated the ERK5 pathway and the targeting capacity of NGF-CL/LIP enhanced the possibility of released NGF to affect the TrkA level. Moreover, WGA-CRM-LIP improved the permeation of CRM across the blood–brain barrier (BBB) and significantly reduced the Aβ plaque deposition and malondialdehyde level and increased the percentage of normal neurons and cholinergic function in the hippocampus of AD rats. This was mainly because the encapsulated CRM was protected by LIP against a rapid degradation in the blood. Furthermore, WGA on LIP could target N-acetylglucosamine on endothelia and increased the quantity of CRM transported across the BBB. In addition, WGA-CRM-CL/LIP could be effective in suppressing the synthesis of acetylcholinesterase and reduced the decomposition of acetylcholine for better neurotransmission. Based on the in vitro and in vivo evidences, WGA-CRM-CL/LIP can rescue neurons from apoptosis in the brain and can be a promising drug delivery system for clinical AD therapy.Keywords: Alzheimer’s disease, β-amyloid, liposome, mitogen-activated protein kinase
Procedia PDF Downloads 33320 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 7419 Social Enterprises over Microfinance Institutions: The Challenges of Governance and Management
Authors: Dean Sinković, Tea Golja, Morena Paulišić
Abstract:
Upon the end of the vicious war in former Yugoslavia in 1995, international development community widely promoted microfinance as the key development framework to eradicate poverty, create jobs, increase income. Widespread claims were made that microfinance institutions would play vital role in creating a bedrock for sustainable ‘bottom-up’ economic development trajectory, thus, helping newly formed states to find proper way from economic post-war depression. This uplifting neoliberal narrative has no empirical support in the Republic of Croatia. Firstly, the type of enterprises created via microfinance sector are small, unskilled, labor intensive, no technology and with huge debt burden. This results in extremely high failure rates of microenterprises and poor individuals plunging into even deeper poverty, acute indebtedness and social marginalization. Secondly, evidence shows that microcredit is exact reflection of dangerous and destructive sub-prime lending model with ‘boom-to-bust’ scenarios in which benefits are solely extracted by the tiny financial and political elite working around the microfinance sector. We argue that microcredit providers are not proper financial structures through which developing countries should look way out of underdevelopment and poverty. In order to achieve sustainable long-term growth goals, public policy needs to focus on creating, supporting and facilitating the small and mid-size enterprises development. These enterprises should be technically sophisticated, capable of creating new capabilities and innovations, with managerial expertise (skills formation) and inter-connected with other organizations (i.e. clusters, networks, supply chains, etc.). Evidence from South-East Europe suggest that such structures are not created via microfinance model but can be fostered through various forms of social enterprises. Various legal entities may operate as social enterprises: limited liability private company, limited liability public company, cooperative, associations, foundations, institutions, Mutual Insurances and Credit union. Our main hypothesis is that cooperatives are potential agents of social and economic transformation and community development in the region. Financial cooperatives are structures that can foster more efficient allocation of financial resources involving deeper democratic arrangements and more socially just outcomes. In Croatia, pioneers of the first social enterprises were civil society organizations whilst forming a separated legal entity. (i.e. cooperatives, associations, commercial companies working on the principles of returning the investment to the founder). Ever since 1995 cooperatives in Croatia have not grown by pursuing their own internal growth but mostly by relying on external financial support. The greater part of today’s registered cooperatives tend to be agricultural (39%), followed by war veterans cooperatives (38%) and others. There are no financial cooperatives in Croatia. Due to the above mentioned we look at the historical developments and the prevailing social enterprises forms and discuss their advantages and disadvantages as potential agents for social and economic transformation and community development in the region. There is an evident lack of understanding of this business model and of its potential for social and economic development followed by an unfavorable institutional environment. Thus, we discuss the role of governance and management in the formation of social enterprises in Croatia, stressing the challenges for the governance of the country’s social enterprise movement.Keywords: financial cooperatives, governance and management models, microfinance institutions, social enterprises
Procedia PDF Downloads 28018 Anti-Infective Potential of Selected Philippine Medicinal Plant Extracts against Multidrug-Resistant Bacteria
Authors: Demetrio L. Valle Jr., Juliana Janet M. Puzon, Windell L. Rivera
Abstract:
From the various medicinal plants available in the Philippines, crude ethanol extracts of twelve (12) Philippine medicinal plants, namely: Senna alata L. Roxb. (akapulko), Psidium guajava L. (bayabas), Piper betle L. (ikmo), Vitex negundo L. (lagundi), Mitrephora lanotan (Blanco) Merr. (Lanotan), Zingiber officinale Roscoe (luya), Curcuma longa L. (Luyang dilaw), Tinospora rumphii Boerl (Makabuhay), Moringga oleifera Lam. (malunggay), Phyllanthus niruri L. (sampa-sampalukan), Centella asiatica (L.) Urban (takip kuhol), and Carmona retusa (Vahl) Masam (tsaang gubat) were studied. In vitro methods of evaluation against selected Gram-positive and Gram-negative multidrug-resistant (MDR), bacteria were performed on the plant extracts. Although five of the plants showed varying antagonistic activities against the test organisms, only Piper betle L. exhibited significant activities against both Gram-negative and Gram-positive multidrug-resistant bacteria, exhibiting wide zones of growth inhibition in the disk diffusion assay, and with the lowest concentrations of the extract required to inhibit the growth of the bacteria, as supported by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Further antibacterial studies of the Piper betle L. leaf, obtained by three extraction methods (ethanol, methanol, supercritical CO2), revealed similar inhibitory activities against a multitude of Gram-positive and Gram-negative MDR bacteria. Thin layer chromatography (TLC) assay of the leaf extract revealed a maximum of eight compounds with Rf values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV-366 nm. TLC- agar overlay bioautography of the isolated compounds showed the compounds with Rf values of 0.86 and 0.13 having inhibitory activities against Gram-positive MDR bacteria (MRSA and VRE). The compound with an Rf value of 0.86 also possesses inhibitory activity against Gram-negative MDR bacteria (CRE Klebsiella pneumoniae and MBL Acinetobacter baumannii). Gas Chromatography-Mass Spectrometry (GC-MS) was able to identify six volatile compounds, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include 4-(2-propenyl)phenol and eugenol; and the new four compounds were ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, and 3-fluoro-2-propynenitrite. Phytochemical screening and investigation of its antioxidant, cytotoxic, possible hemolytic activities, and mechanisms of antibacterial activity were also done. The results showed that the local variant of Piper betle leaf extract possesses significant antioxidant, anti-cancer and antimicrobial properties, attributed to the presence of bioactive compounds, particularly of flavonoids (condensed tannin, leucoanthocyanin, gamma benzopyrone), anthraquinones, steroids/triterpenes and 2-deoxysugars. Piper betle L. is also traditionally known to enhance wound healing, which could be primarily due to its antioxidant, anti-inflammatory and antimicrobial activities. In vivo studies on mice using 2.5% and 5% of the ethanol leaf extract cream formulations in the excised wound models significantly increased the process of wound healing in the mice subjects, the results and values of which are at par with the current antibacterial cream (Mupirocin). From the results of the series of studies, we have definitely proven the value of Piper betle L. as a source of bioactive compounds that could be developed into therapeutic agents against MDR bacteria.Keywords: Philippine herbal medicine, multidrug-resistant bacteria, Piper betle, TLC-bioautography
Procedia PDF Downloads 77417 EcoTeka, an Open-Source Software for Urban Ecosystem Restoration through Technology
Authors: Manon Frédout, Laëtitia Bucari, Mathias Aloui, Gaëtan Duhamel, Olivier Rovellotti, Javier Blanco
Abstract:
Ecosystems must be resilient to ensure cleaner air, better water and soil quality, and thus healthier citizens. Technology can be an excellent tool to support urban ecosystem restoration projects, especially when based on Open Source and promoting Open Data. This is the goal of the ecoTeka application: one single digital tool for tree management which allows decision-makers to improve their urban forestry practices, enabling more responsible urban planning and climate change adaptation. EcoTeka provides city councils with three main functionalities tackling three of their challenges: easier biodiversity inventories, better green space management, and more efficient planning. To answer the cities’ need for reliable tree inventories, the application has been first built with open data coming from the websites OpenStreetMap and OpenTrees, but it will also include very soon the possibility of creating new data. To achieve this, a multi-source algorithm will be elaborated, based on existing artificial intelligence Deep Forest, integrating open-source satellite images, 3D representations from LiDAR, and street views from Mapillary. This data processing will permit identifying individual trees' position, height, crown diameter, and taxonomic genus. To support urban forestry management, ecoTeka offers a dashboard for monitoring the city’s tree inventory and trigger alerts to inform about upcoming due interventions. This tool was co-constructed with the green space departments of the French cities of Alès, Marseille, and Rouen. The third functionality of the application is a decision-making tool for urban planning, promoting biodiversity and landscape connectivity metrics to drive ecosystem restoration roadmap. Based on landscape graph theory, we are currently experimenting with new methodological approaches to scale down regional ecological connectivity principles to local biodiversity conservation and urban planning policies. This methodological framework will couple graph theoretic approach and biological data, mainly biodiversity occurrences (presence/absence) data available on both international (e.g., GBIF), national (e.g., Système d’Information Nature et Paysage) and local (e.g., Atlas de la Biodiversté Communale) biodiversity data sharing platforms in order to help reasoning new decisions for ecological networks conservation and restoration in urban areas. An experiment on this subject is currently ongoing with Montpellier Mediterranee Metropole. These projects and studies have shown that only 26% of tree inventory data is currently geo-localized in France - the rest is still being done on paper or Excel sheets. It seems that technology is not yet used enough to enrich the knowledge city councils have about biodiversity in their city and that existing biodiversity open data (e.g., occurrences, telemetry, or genetic data), species distribution models, landscape graph connectivity metrics are still underexploited to make rational decisions for landscape and urban planning projects. This is the goal of ecoTeka: to support easier inventories of urban biodiversity and better management of urban spaces through rational planning and decisions relying on open databases. Future studies and projects will focus on the development of tools for reducing the artificialization of soils, selecting plant species adapted to climate change, and highlighting the need for ecosystem and biodiversity services in cities.Keywords: digital software, ecological design of urban landscapes, sustainable urban development, urban ecological corridor, urban forestry, urban planning
Procedia PDF Downloads 8216 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid
Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang
Abstract:
Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal
Procedia PDF Downloads 8615 Socio-Sensorial Assessment of Nursing Homes in Singapore: Towards Integrated Enabling Design
Authors: Zdravko Trivic, John Chye Fung, Ruzica Bozovic-Stamenovic
Abstract:
Within the context of rapidly ageing population in Singapore and the pressing demands on both caregivers and care providers, an integrated approach to ageing-friendly and ability-sensitive enabling environment becomes an imperative. This particularly applies to nursing home environments and their immediate surroundings, as they are becoming one of the main available options of long-term care for many senior adults who are unable to age at home. Yet, despite the considerable efforts to break the still predominant clinical approach to eldercare and to introduce more home-like design and person-centric care model, nursing homes keep being stigmatised and perceived as not so desirable environments to grow old in. The challenges are further emphasised by the associated physical, sensorial, psychological and cognitive declines that are the common consequences of ageing. Such declines have an immense impact on almost all aspects of older adults’ daily functioning, including problems with mobility and spatial orientation, difficulties in communication, withdrawal from social interaction, higher level of depression and decreased sense of independence and autonomy. However, typical nursing home designs tend to neglect the full capacities of balanced and carefully integrated multisensory stimuli as active component of care and ability building. This paper outlines part of a larger multi-disciplinary study of six nursing homes in Singapore, with overarching objectives to create new models of supportive nursing home environments that go beyond the clinical care model and encourage community integration with the nursing home settings. The paper focuses on the largely neglected aspects of sensorial comfort and multi-sensorial properties of nursing homes, including both indoor and immediate outdoor spaces (boundaries). The objective was to investigate the sensory rhythms and explore their role in nursing home users’ daily routine and therapeutic capacities. Socio-sensory rhythms were captured and analysed through a combination of on-site sensory recordings of “objective” quantitative sensory data (air temperature and humidity, sound level and luminance) using multi-function environment meter, perceived experienced data, spatial mapping, first-person observations of nursing home users’ activity patterns, and interviews. This was done in addition to employment of available assessment tools, such as Wisconsin Person Directed Care assessment tool, Dementia Quality of Life [DQoL] instrument, and Resident Environment Impact Scale [REIS], as these tools address the issues of sensorial experience insufficiently and selectively. Key findings indicate varied levels of sensory comfort, as well as diversity, intensity, and customisation of multi-sensory conditions within different nursing home spaces. Sensory stimulation is typically concentrated in communal living areas of the nursing homes or in the areas that often provide controlled or limited access, including specifically designed sensory rooms and outdoor green spaces (gardens and terraces). Opportunities for sensory stimulation are particularly limited for bed-bound senior residents and within more functional areas, such as corridors. This suggests that the capacities of nursing home designs to provide more diverse and better integrated pleasant sensory conditions as integrated “therapeutic devices” to build nursing home residents’ physical and mental abilities, encourage activity and improve wellbeing are far from exhausted.Keywords: ageing-supportive environment, enabling design, multi-sensory assessment, nursing home environment
Procedia PDF Downloads 17814 Investigation of Delamination Process in Adhesively Bonded Hardwood Elements under Changing Environmental Conditions
Authors: M. M. Hassani, S. Ammann, F. K. Wittel, P. Niemz, H. J. Herrmann
Abstract:
Application of engineered wood, especially in the form of glued-laminated timbers has increased significantly. Recent progress in plywood made of high strength and high stiffness hardwoods, like European beech, gives designers in general more freedom by increased dimensional stability and load-bearing capacity. However, the strong hygric dependence of basically all mechanical properties renders many innovative ideas futile. The tendency of hardwood for higher moisture sorption and swelling coefficients lead to significant residual stresses in glued-laminated configurations, cross-laminated patterns in particular. These stress fields cause initiation and evolution of cracks in the bond-lines resulting in: interfacial de-bonding, loss of structural integrity, and reduction of load-carrying capacity. Subsequently, delamination of glued-laminated timbers made of hardwood elements can be considered as the dominant failure mechanism in such composite elements. In addition, long-term creep and mechano-sorption under changing environmental conditions lead to loss of stiffness and can amplify delamination growth over the lifetime of a structure even after decades. In this study we investigate the delamination process of adhesively bonded hardwood (European beech) elements subjected to changing climatic conditions. To gain further insight into the long-term performance of adhesively bonded elements during the design phase of new products, the development and verification of an authentic moisture-dependent constitutive model for various species is of great significance. Since up to now, a comprehensive moisture-dependent rheological model comprising all possibly emerging deformation mechanisms was missing, a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive material model for wood, with all material constants being defined as a function of moisture content, was developed. Apart from the solid wood adherends, adhesive layer also plays a crucial role in the generation and distribution of the interfacial stresses. Adhesive substance can be treated as a continuum layer constructed from finite elements, represented as a homogeneous and isotropic material. To obtain a realistic assessment on the mechanical performance of the adhesive layer and a detailed look at the interfacial stress distributions, a generic constitutive model including all potentially activated deformation modes, namely elastic, plastic, and visco-elastic creep was developed. We focused our studies on the three most common adhesive systems for structural timber engineering: one-component polyurethane adhesive (PUR), melamine-urea-formaldehyde (MUF), and phenol-resorcinol-formaldehyde (PRF). The corresponding numerical integration approaches, with additive decomposition of the total strain are implemented within the ABAQUS FEM environment by means of user subroutine UMAT. To predict the true stress state, we perform a history dependent sequential moisture-stress analysis using the developed material models for both wood substrate and adhesive layer. Prediction of the delamination process is founded on the fracture mechanical properties of the adhesive bond-line, measured under different levels of moisture content and application of the cohesive interface elements. Finally, we compare the numerical predictions with the experimental observations of de-bonding in glued-laminated samples under changing environmental conditions.Keywords: engineered wood, adhesive, material model, FEM analysis, fracture mechanics, delamination
Procedia PDF Downloads 43913 A Study of the Trap of Multi-Homing in Customers: A Comparative Case Study of Digital Payments
Authors: Shari S. C. Shang, Lynn S. L. Chiu
Abstract:
In the digital payment market, some consumers use only one payment wallet while many others play multi-homing with a variety of payment services. With the diffusion of new payment systems, we examined the determinants of the adoption of multi-homing behavior. This study aims to understand how a digital payment provider dynamically expands business touch points with cross-business strategies to enrich the digital ecosystem and avoid the trap of multi-homing in customers. By synthesizing platform ecosystem literature, we constructed a two-dimensional research framework with one determinant of user digital behavior from offline to online intentions and the other determinant of digital payment touch points from convenient accessibility to cross-business platforms. To explore on a broader scale, we selected 12 digital payments from 5 countries of UK, US, Japan, Korea, and Taiwan. With the interplays of user digital behaviors and payment touch points, we group the study cases into four types: (1) Channel Initiated: users originated from retailers with high access to in-store shopping with face-to-face guidance for payment adoption. Providers offer rewards for customer loyalty and secure the retailer’s efficient cash flow management. (2) Social Media Dependent: users usually are digital natives with high access to social media or the internet who shop and pay digitally. Providers might not own physical or online shops but are licensed to aggregate money flows through virtual ecosystems. (3) Early Life Engagement: digital banks race to capture the next generation from popularity to profitability. This type of payment aimed to give children a taste of financial freedom while letting parents track their spending. Providers are to capitalize on the digital payment and e-commerce boom and hold on to new customers into adulthood. (4) Traditional Banking: plastic credit cards are purposely designed as a control group to track the evolvement of business strategies in digital payments. Traditional credit card users may follow the bank’s digital strategy to land on different types of digital wallets or mostly keep using plastic credit cards. This research analyzed business growth models and inter-firms’ coopetition strategies of the selected cases. Results of the multiple case analysis reveal that channel initiated payments bundled rewards with retailer’s business discount for recurring purchases. They also extended other financial services, such as insurance, to fulfill customers’ new demands. Contrastively, social media dependent payments developed new usages and new value creation, such as P2P money transfer through network effects among the virtual social ties, while early life engagements offer virtual banking products to children who are digital natives but overlooked by incumbents. It has disrupted the banking business domains in preparation for the metaverse economy. Lastly, the control group of traditional plastic credit cards has gradually converted to a BaaS (banking as a service) model depending on customers’ preferences. The multi-homing behavior is not avoidable in digital payment competitions. Payment providers may encounter multiple waves of a multi-homing threat after a short period of success. A dynamic cross-business collaboration strategy should be explored to continuously evolve the digital ecosystems and allow users for a broader shopping experience and continual usage.Keywords: digital payment, digital ecosystems, multihoming users, cross business strategy, user digital behavior intentions
Procedia PDF Downloads 16812 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent
Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar
Abstract:
Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.Keywords: artificial intelligence, trustworthiness, voice, adolescent
Procedia PDF Downloads 6711 Computational Fluid Dynamics Simulation of a Nanofluid-Based Annular Solar Collector with Different Metallic Nano-Particles
Authors: Sireetorn Kuharat, Anwar Beg
Abstract:
Motivation- Solar energy constitutes the most promising renewable energy source on earth. Nanofluids are a very successful family of engineered fluids, which contain well-dispersed nanoparticles suspended in a stable base fluid. The presence of metallic nanoparticles (e.g. gold, silver, copper, aluminum etc) significantly improves the thermo-physical properties of the host fluid and generally results in a considerable boost in thermal conductivity, density, and viscosity of nanofluid compared with the original base (host) fluid. This modification in fundamental thermal properties has profound implications in influencing the convective heat transfer process in solar collectors. The potential for improving solar collector direct absorber efficiency is immense and to gain a deeper insight into the impact of different metallic nanoparticles on efficiency and temperature enhancement, in the present work, we describe recent computational fluid dynamics simulations of an annular solar collector system. The present work studies several different metallic nano-particles and compares their performance. Methodologies- A numerical study of convective heat transfer in an annular pipe solar collector system is conducted. The inner tube contains pure water and the annular region contains nanofluid. Three-dimensional steady-state incompressible laminar flow comprising water- (and other) based nanofluid containing a variety of metallic nanoparticles (copper oxide, aluminum oxide, and titanium oxide nanoparticles) is examined. The Tiwari-Das model is deployed for which thermal conductivity, specific heat capacity and viscosity of the nanofluid suspensions is evaluated as a function of solid nano-particle volume fraction. Radiative heat transfer is also incorporated using the ANSYS solar flux and Rosseland radiative models. The ANSYS FLUENT finite volume code (version 18.1) is employed to simulate the thermo-fluid characteristics via the SIMPLE algorithm. Mesh-independence tests are conducted. Validation of the simulations is also performed with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation achieved. The influence of volume fraction on temperature, velocity, pressure contours is computed and visualized. Main findings- The best overall performance is achieved with copper oxide nanoparticles. Thermal enhancement is generally maximized when water is utilized as the base fluid, although in certain cases ethylene glycol also performs very efficiently. Increasing nanoparticle solid volume fraction elevates temperatures although the effects are less prominent in aluminum and titanium oxide nanofluids. Significant improvement in temperature distributions is achieved with copper oxide nanofluid and this is attributed to the superior thermal conductivity of copper compared to other metallic nano-particles studied. Important fluid dynamic characteristics are also visualized including circulation and temperature shoots near the upper region of the annulus. Radiative flux is observed to enhance temperatures significantly via energization of the nanofluid although again the best elevation in performance is attained consistently with copper oxide. Conclusions-The current study generalizes previous investigations by considering multiple metallic nano-particles and furthermore provides a good benchmark against which to calibrate experimental tests on a new solar collector configuration currently being designed at Salford University. Important insights into the thermal conductivity and viscosity with metallic nano-particles is also provided in detail. The analysis is also extendable to other metallic nano-particles including gold and zinc.Keywords: heat transfer, annular nanofluid solar collector, ANSYS FLUENT, metallic nanoparticles
Procedia PDF Downloads 14610 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations
Authors: Nanine Fouche
Abstract:
The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance
Procedia PDF Downloads 180