Search results for: nation-state system
10396 Improvement of the Reliability and the Availability of a Production System
Authors: Lakhoua Najeh
Abstract:
Aims of the work: The aim of this paper is to improve the reliability and the availability of a Packer production line of cigarettes based on two methods: The SADT method (Structured Analysis Design Technique) and the FMECA approach (Failure Mode Effects and Critically Analysis). The first method enables us to describe the functionality of the Packer production line of cigarettes and the second method enables us to establish an FMECA analysis. Methods: The methodology adopted in order to contribute to the improvement of the reliability and the availability of a Packer production line of cigarettes has been proposed in this paper, and it is based on the use of Structured Analysis Design Technique (SADT) and Failure mode, effects, and criticality analysis (FMECA) methods. This methodology consists of using a diagnosis of the existing of all of the equipment of a production line of a factory in order to determine the most critical machine. In fact, we use, on the one hand, a functional analysis based on the SADT method of the production line and on the other hand, a diagnosis and classification of mechanical and electrical failures of the line production by their criticality analysis based on the FMECA approach. Results: Based on the methodology adopted in this paper, the results are the creation and the launch of a preventive maintenance plan. They contain the different elements of a Packer production line of cigarettes; the list of the intervention preventive activities and their period of realization. Conclusion: The diagnosis of the existing state helped us to found that the machine of cigarettes used in the Packer production line of cigarettes is the most critical machine in the factory. Then this enables us in the one hand, to describe the functionality of the production line of cigarettes by SADT method and on the other hand, to study the FMECA machine in order to improve the availability and the performance of this machine.Keywords: production system, diagnosis, SADT method, FMECA method
Procedia PDF Downloads 14710395 The Use of Spirulina during Aerobic Exercise on the Performance of Immune and Consumption Indicators (A Case Study: Young Men After Physical Training)
Authors: Vahab Behmanesh
Abstract:
One of the topics that has always attracted the attention of sports medicine and sports science experts is the positive or negative effect of sports activities on the functioning of the body's immune system. In the present research, a course of aerobic running with spirulina consumption has been studied on the maximum oxygen consumption and the performance of some indicators of the immune system of men who have trained after one session of physical activity. In this research, 50 trained students were studied randomly in four groups, spirulina- aerobic, spirulina, placebo- aerobic, and control. In order to test the research hypotheses, one-way statistical method of variance (ANOVA) was used considering the significance level of a=0.005 and post hoc test (LSD). A blood sample was taken from the participants in the first stage test in fasting and resting state immediately after Bruce's maximal test on the treadmill until complete relaxation was reached, and their Vo2max value was determined through the aforementioned test. The subjects of the spirulina-aerobic running and placebo-aerobic running groups took three 500 mg spirulina and 500 mg placebo pills a day for six weeks and ran three times a week for 30 minutes at the threshold of aerobic stimulation. The spirulina and placebo groups also consumed spirulina and placebo tablets in the above method for six weeks. Then they did the same first stage test as the second stage test. Blood samples were taken to measure the number of CD4+, CD8+, NK, and the ratio of CD4+ to CD8+ on four occasions before and after the first and second stage tests. The analysis of the findings showed that: aerobic running and spirulina supplement alone increase Vo2max. Aerobic running and consumption of spirulina increases Vo2max more than other groups (P<0.05), +CD4 and hemoglobin of the spirulina-aerobic running group was significantly different from other groups (P=0.002), +CD4 of the groups together There was no significant difference, NK increased in all groups, the ratio of CD4+ to CD8+ between the groups had a significant difference (P=0.002), the ratio of CD4+ to CD8+ in the spirulina- aerobic group was lower than the spirulina and placebo groups. All in all, it can be concluded that the supplement of spirulina and aerobic exercise may increase Vo2max and improve safety indicators.Keywords: spirulina (Q2), hemoglobin (Q3), aerobic exercise (Q3), residual activity (Q2), CD4+ to CD8+ ratio (Q3)
Procedia PDF Downloads 12810394 Advancement in Scour Protection with Flexible Solutions: Interpretation of Hydraulic Tests Data for Reno Mattresses in Open Channel Flow
Authors: Paolo Di Pietro, Matteo Lelli, Kinjal Parmar
Abstract:
Water hazards are consistently identified as among the highest global risks in terms of impact. Riverbank protection plays a key role in flood risk management. For erosion control and scour protection, flexible solutions like gabions & mattresses are being used since quite some time now. The efficacy of erosion control systems depends both on the ability to prevent soil loss underneath, as well as to maintain their integrity under the effects of the water flow. The paper presents the results of a research carried out at the Colorado State University on the performance of double twisted wire mesh products, known as Reno Mattresses, used as soil erosion control system. Mattresses were subjected to various flow conditions on a 10m long flume where they were placed on a 0.30 m thick soil layer. The performance against erosion was evaluated by assessing the effect of the stone motion inside the mattress combined with the condition of incipient soil erosion underneath, in relationship to the mattress thickness, the filling stone properties and under variable hydraulic flow regimes. While confirming the stability obtained using a conventional design approach (commonly referred to tractive force theories), the results of the research allowed to introduce a new performance limit based on incipient soil erosion underneath the revetment. Based on the research results, the authors propose to express the shear resistance of mattresses used as soil erosion control system as a function of the size of the filling stones, their uniformity, their unit weight, the thickness of the mattress, and the presence of vertical connecting elements between the mattress lid and bottom.Keywords: Reno Mattress, riverbank protection, hydraulics, full scale tests
Procedia PDF Downloads 3110393 Developing Research Involving Different Species: Opportunities and Empirical Foundations
Authors: A. V. Varfolomeeva, N. S. Tkachenko, A. G. Tishchenko
Abstract:
The problem of violation of internal validity in studies of psychological structures is considered. The role of epistemological attitudes of researchers in the planning of research within the methodology of the system-evolutionary approach is assessed. Alternative programs of psychological research involving representatives of different biological species are presented. On the example of the results of two research series the variants of solving the problem are discussed.Keywords: epistemological attitudes, experimental design, validity, psychological structure, learning
Procedia PDF Downloads 11810392 Lifespan Assessment of the Fish Crossing System of Itaipu Power Plant (Brazil/Paraguay) Based on the Reaching of Its Sedimentological Equilibrium Computed by 3D Modeling and Churchill Trapping Efficiency
Authors: Anderson Braga Mendes, Wallington Felipe de Almeida, Cicero Medeiros da Silva
Abstract:
This study aimed to assess the lifespan of the fish transposition system of the Itaipu Power Plant (Brazil/Paraguay) by using 3D hydrodynamic modeling and Churchill trapping effiency in order to identify the sedimentological equilibrium configuration in the main pond of the Piracema Channel, which is part of a 10 km hydraulic circuit that enables fish migration from downstream to upstream (and vice-versa) the Itaipu Dam, overcoming a 120 m water drop. For that, bottom data from 2002 (its opening year) and 2015 were collected and analyzed, besides bed material at 12 stations to the purpose of identifying their granulometric profiles. The Shields and Yalin and Karahan diagrams for initiation of motion of bed material were used to determine the critical bed shear stress for the sedimentological equilibrium state based on the sort of sediment (grain size) to be found at the bottom once the balance is reached. Such granulometry was inferred by analyzing the grosser material (fine and medium sands) which inflows the pond and deposits in its backwater zone, being adopted a range of diameters within the upper and lower limits of that sand stratification. The software Delft 3D was used in an attempt to compute the bed shear stress at every station under analysis. By modifying the input bathymetry of the main pond of the Piracema Channel so as to the computed bed shear stress at each station fell within the intervals of acceptable critical stresses simultaneously, it was possible to foresee the bed configuration of the main pond when the sedimentological equilibrium is reached. Under such condition, 97% of the whole pond capacity will be silted, and a shallow water course with depths ranging from 0.2 m to 1.5 m will be formed; in 2002, depths ranged from 2 m to 10 m. Out of that water path, the new bottom will be practically flat and covered by a layer of water 0.05 m thick. Thus, in the future the main pond of the Piracema Channel will lack its purpose of providing a resting place for migrating fish species, added to the fact that it may become an insurmountable barrier for medium and large sized specimens. Everything considered, it was estimated that its lifespan, from the year of its opening to the moment of the sedimentological equilibrium configuration, will be approximately 95 years–almost half of the computed lifespan of Itaipu Power Plant itself. However, it is worth mentioning that drawbacks concerning the silting in the main pond will start being noticed much earlier than such time interval owing to the reasons previously mentioned.Keywords: 3D hydrodynamic modeling, Churchill trapping efficiency, fish crossing system, Itaipu power plant, lifespan, sedimentological equilibrium
Procedia PDF Downloads 23710391 The Formation of Thin Copper Films on Graphite Surface Using Magnetron Sputtering Method
Authors: Zydrunas Kavaliauskas, Aleksandras Iljinas, Liutauras Marcinauskas, Mindaugas Milieska, Vitas Valincius
Abstract:
The magnetron sputtering deposition method is often used to obtain thin film coatings. The main advantage of magnetron vaporization compared to other deposition methods is the high rate erosion of the cathode material (e.g., copper, aluminum, etc.) and the ability to operate under low-pressure conditions. The structure of the formed coatings depends on the working parameters of the magnetron deposition system, which is why it is possible to influence the properties of the growing film, such as morphology, crystal orientation, and dimensions, stresses, adhesion, etc. The properties of these coatings depend on the distance between the substrate and the magnetron surface, the vacuum depth, the gas used, etc. Using this deposition technology, substrates are most often placed near the anode. The magnetic trap of the magnetrons for localization of electrons in the cathode region is formed using a permanent magnet system that is on the side of the cathode. The scientific literature suggests that, after insertion of a small amount of copper into graphite, the electronic conductivity of graphite increase. The aim of this work is to create thin (up to 300 nm) layers on a graphite surface using a magnetron evaporation method, to investigate the formation peculiarities and microstructure of thin films, as well as the mechanism of copper diffusion into graphite inner layers at different thermal treatment temperatures. The electron scanning microscope was used to investigate the microrelief of the coating surface. The chemical composition is determined using the EDS method, which shows that, with an increase of the thermal treatment of the copper-carbon layer from 200 °C to 400 °C, the copper content is reduced from 8 to 4 % in atomic mass units. This is because the EDS method captures only the amount of copper on the graphite surface, while the temperature of the heat treatment increases part of the copper because of the diffusion processes penetrates into the inner layers of the graphite. The XRD method shows that the crystalline copper structure is not affected by thermal treatment.Keywords: carbon, coatings, copper, magnetron sputtering
Procedia PDF Downloads 29710390 Ideal Posture in Regulating Legal Regulations in Indonesia
Authors: M Jeffri Arlinandes Chandra, Puwaningdyah Murti Wahyuni, Dewi Mutiara M Jeffri Arlinandes Chandra, Puwaningdyah Murti Wahyuni, Dewi Mutiara
Abstract:
Indonesia is a state of the law in accordance with article 1 paragraph 3 of the Constitution of the Republic of Indonesia (1945 Constitution), namely, 'the State of Indonesia is a state of law'. The consequences of the rule of law are making the law as the main commanding officer or making the law as a basis for carrying out an action taken by the state. The types of regulations and procedures for the formation of legislation in Indonesia are contained in Law Number 12 of 2011 concerning the Formation of Legislation. Various attempts were made to make quality regulations both in the formal hierarchy and material hierarchy such as synchronization and harmonization in the formation of laws and regulations so that there is no conflict between equal and hierarchical laws, but the fact is that there are still many conflicting regulations found between one another. This can be seen clearly in the many laws and regulations that were sued to judicial institutions such as the Constitutional Court (MK) and the Supreme Court (MA). Therefore, it is necessary to have a formulation regarding the governance of the formation of laws and regulations so as to minimize the occurrence of lawsuits to the court so that positive law can be realized which can be used today and for the future (ius constituendum). The research method that will be used in this research is a combination of normative research (library research) supported by empirical data from field research so that it can formulate concepts and answer the challenges being faced. First, the structuring of laws and regulations in Indonesia must start from the inventory of laws and regulations, whether they can be classified based on the type of legislation, what are they set about, the year of manufacture, etc. so that they can be clearly traced to the regulations relating to the formation of laws and regulations. Second, the search and revocation/revocation of laws and regulations that do not exist in the state registration system. Third, the periodic evaluation system is carried out at every level of the hierarchy of laws and regulations. These steps will form an ideal model of laws and regulations in Indonesia both in terms of content and material so that the instructions can be codified and clearly inventoried so that they can be accessed by the wider community as a concrete manifestation of the principle that all people know the law (presumptio iures de iure).Keywords: legislation, review, evaluation, reconstruction
Procedia PDF Downloads 15310389 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension
Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita
Abstract:
In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation
Procedia PDF Downloads 18510388 Collective Redress in Consumer Protection in South East Europe: Cross-National Comparisons, Issues of Commonality and Difference
Authors: Veronika Efremova
Abstract:
In recent decades, there have been significant developments in the European Union in the field of collective consumer redress. South East European countries (SEE) covered by this paper, in line with their EU accession priorities and duties under Stabilisation and Association Agreements, have to harmonize their national laws with the relevant EU acquis for consumer protection (Chapter 28: Health and Consumer). In these countries, only minimal compliance is achieved. SEE countries have introduced rudimentary collective redress mechanisms, with modest enforcement of collective redress and case law. This paper is based on comprehensive interdisciplinary research conducted for SEE countries on common principles for injunctive and compensatory collective redress mechanisms, emphasizing cross-national comparisons, underlining issues of commonality and difference aiming to develop recommendations for an adequate enforcement of collective redress. SEE countries are recognized by the sectoral approach for regulating collective redress contrary to the majority of EU Member States with having adopted horizontal approach to collective redress. In most SEE countries, the laws do not recognize compensatory but only injunctive collective redress in consumer protection. All responsible stakeholders for implementation of collective redress in SEE countries, lack information and awareness on collective redress mechanisms and the way they function in practice. Therefore, specific actions are needed in these countries to make the whole system of collective redress for consumer protection operational and efficient. Taking into consideration the various designated stakeholders in collective redress in each SEE countries, there is a need of their mutual coordination and cooperation in order to develop consumer protection system and policies. By putting into practice the national collective redress mechanisms, effective access to justice for all consumers, the principle of rule of law will be secured and appropriate procedural guarantees to avoid abusive litigation will be ensured.Keywords: collective redress mechanism, consumer protection, commonality and difference, South East Europe
Procedia PDF Downloads 22510387 Growth Performance Of fresh Water Microalgae Chlorella sp. Exposed to Carbon Dioxide
Authors: Titin Handayani, Adi Mulyanto, Fajar Eko Priyanto
Abstract:
It is generally recognized, that algae could be an interesting option for reducing CO₂ emissions. Based on light and CO₂, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient feeding of CO₂, especially on a large scale, is one of them. Current methods for CO₂ feeding to algae cultures rely on the sparging pure CO₂ or directly from flue gas. The limiting factor in this system is the solubility of CO₂ in water, which demands a considerable amount of energy for an effective gas to liquid transfer and leads to losses to the atmosphere. Due to the current ineffective methods for CO₂ introduction into algae ponds very large surface areas would be required for enough ponds to capture a considerable amount of the CO₂. The purpose of this study is to assess technology to capture carbon dioxide (CO₂) emissions generated by industry by utilizing of microalgae Chlorella sp. The microalgae were cultivated in a bioreactor culture pond raceway type. The result is expected to be useful in mitigating the effects of greenhouse gases in reducing the CO₂ emissions. The research activities include: (1) Characterization of boiler flue gas, (2) Operation of culture pond, (3) Sampling and sample analysis. The results of this study showed that the initial assessment absorption of the flue gas by microalgae using 1000 L raceway pond completed by heat exchanger were quite promising. The transfer of CO₂ into the pond culture system was run well. This identified from the success of cooling the boiler flue gas from the temperature of about 200 °C to below ambient temperature. Except for the temperature, the gas bubbles into the culture media were quite fine. Therefore, the contact between the gas and the media was well performed. The efficiency of CO₂ absorption by Chlorella sp reached 6.68 % with an average CO₂ loading of 0.29 g/L/day.Keywords: Chlorella sp., CO2 emission, heat exchange, microalgae, milk industry, raceway pond
Procedia PDF Downloads 21910386 Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company
Authors: Charles Chikwendu Okpala, Christopher Chukwutoo Ihueze
Abstract:
As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.Keywords: lean production system, single minute exchange of dies, signal to noise ratio, Taguchi robust design, waste
Procedia PDF Downloads 12910385 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.Keywords: image segmentation, hierarchical analysis, 2-D histogram, classification
Procedia PDF Downloads 38310384 A Robust Visual Simultaneous Localization and Mapping for Indoor Dynamic Environment
Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to collect information in unknown environments to realize simultaneous localization and environment map construction, which has a wide range of applications in autonomous driving, virtual reality and other related fields. At present, the related research achievements about VSLAM can maintain high accuracy in static environment. But in dynamic environment, due to the presence of moving objects in the scene, the movement of these objects will reduce the stability of VSLAM system, resulting in inaccurate localization and mapping, or even failure. In this paper, a robust VSLAM method was proposed to effectively deal with the problem in dynamic environment. We proposed a dynamic region removal scheme based on semantic segmentation neural networks and geometric constraints. Firstly, semantic extraction neural network is used to extract prior active motion region, prior static region and prior passive motion region in the environment. Then, the light weight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static region and dynamic region. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under high dynamic environment.Keywords: dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM
Procedia PDF Downloads 12110383 Investigation of Fusion Reactions in ¹⁶O + ¹⁵⁶Gd System
Authors: Rahbar Ali, Nitin Sharma, Dharmendra Singh, R. P. Singh, S. Muralithar, M. Afzal Ansari
Abstract:
Heavy-ion-induced reactions on intermediate-mass targets are inherently complex, particularly at low energy levels. The study of these nuclear reactions, especially complete and incomplete fusion reactions, is of utmost importance to nuclear physicists. Researchers have demonstrated interest in exploring the mechanisms of nuclear reactions using heavy-ion beams at energies below 10 MeV/nucleon. In this study, the reaction mechanism of ¹⁶O⁷+ projectiles incident on a ¹⁵⁶Gd target at beam energies ranging from 4 to 7 MeV/nucleon was investigated. To gain a comprehensive understanding of the underlying processes, the excitation functions of evaporation residues produced via complete fusion (CF) and/or incomplete fusion (ICF) were measured. The evaporation residues were populated through xn/pxn and αxn/αpxn emission channels. The measured cross-sections of these residues were compared with the predictions of the statistical model codes PACE-4 and EMPIRE. The measured excitation functions of reaction residues populated through xn and pxn channels are in good agreement with the predictions of the statistical model code PACE4 and EMPIRE. This confirms that the production of these residues is solely due to the CF process. However, a significant enhancement was observed in the measured cross-sections of residues populated through α-emitting channels compared to theoretical predictions. This enhancement in the cross sections for α-emitting channels is ascribed to the ICF processes. The fusion cross-section data were also analyzed within the universal fusion function (UFF) and universal reaction function (URF) approach. The observed fusion suppression is primarily attributed to the breakup of the projectile. The ICF contribution in the reaction is dependent on projectile energy, mass asymmetry of the system and deformation of the target.Keywords: nuclear reactions, above barrier reactions, evaporation residues, universal fusion function
Procedia PDF Downloads 1310382 Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production
Authors: Camilo A. Guerrero-Martin, Erik Montes Paez, Marcia C. K. Oliveira, Jonathan Campos, Elizabete F. Lucas
Abstract:
Asphaltenes precipitation is considered as a formation damage problem, which can reduce the oil recovery factor. It fouls piping and surface installations, as well as cause serious flow assurance complications and decline oil well production. Therefore, researchers have shown an interest in chemical treatments to control this phenomenon. The aim of this paper is to assess the asphaltenes precipitation onset of crude oils in the presence of cardanol, by titrating the crude with n-heptane. Moreover, based on this results obtained at atmosphere pressure, the asphaltenes precipitation onset pressure were calculated to predict asphaltenes precipitation in the reservoir, by using differential liberation and refractive index data of the oils. The influence of cardanol concentrations in the asphaltenes stabilization of three Brazilian crude oils samples (with similar API densities) was studied. Therefore, four formulations of cardanol in toluene were prepared: 0, 3, 5, 10 and 15 m/m%. The formulations were added to the crude at 2:98 ratio. The petroleum samples were characterized by API density, elemental analysis and differential liberation test. The asphaltenes precipitation onset (APO) was determined by titrating with n-heptane and monitoring with near-infrared (NIR). UV-Vis spectroscopy experiments were also done to assess the precipitate asphaltenes content. The asphaltenes precipitation envelopes (APE) were also determined by numerical simulation (Multiflash). In addition, the adequate artificial lift systems (ALS) for the oils were selected. It was based on the downhole well profile and a screening methodology. Finally, the oil flowrates were modelling by NODAL analysis production system in the PIPESIM software. The results of this study show that the asphaltenes precipitation onset of the crude oils were 2.2, 2.3 and 6.0 mL of n-heptane/g of oil. The cardanol was an effective inhibitor of asphaltenes precipitation for the crude oils used in this study, since it displaces the precipitation pressure of the oil to lower values. This indicates that cardanol can increase the oil wells productivity.Keywords: asphaltenes, NODAL analysis production system, precipitation pressure onset, inhibitory molecule
Procedia PDF Downloads 17810381 Study of Synergetic Effect by Combining Dielectric Barrier Discharge (DBD) Plasma and Photocatalysis for Abatement of Pollutants in Air Mixture System: Influence of Some Operating Conditions and Identification of Byproducts
Authors: Wala Abou Saoud, Aymen Amine Assadi, Monia Guiza, Abdelkrim Bouzaza, Wael Aboussaoud, Abdelmottaleb Ouederni, Dominique Wolbert
Abstract:
Volatile organic compounds (VOCs) constitute one of the most important families of chemicals involved in atmospheric pollution, causing damage to the environment and human health, and need, consequently, to be eliminated. Among the promising technologies, dielectric barrier discharge (DBD) plasma - photocatalysis coupling reveals very interesting prospects in terms of process synergy of compounds mineralization’s, with low energy consumption. In this study, the removal of organic compounds such butyraldehyde (BUTY) and dimethyl disulfide (DMDS) (exhaust gasses from animal quartering centers.) in air mixture using DBD plasma coupled with photocatalysis was tested, in order to determine whether or not synergy effect was present. The removal efficiency of these pollutants, a selectivity of CO₂ and CO, and byproducts formation such as ozone formation were investigated in order to evaluate the performance of the combined process. For this purpose, a series of experiments were carried out in a continuous reactor. Many operating parameters were also investigated such as the specific energy of discharge, the inlet concentration of pollutant and the flowrate. It appears from this study that, the performance of the process has enhanced and a synergetic effect is observed. In fact, we note an enhancement of 10 % on removal efficiency. It is interesting to note that the combined system leads to better CO₂ selectivity than for plasma. Consequently, intermediates by-products have been reduced due to various other species (O•, N, OH•, O₂•-, O₃, NO₂, NOx, etc.). Additionally, the behavior of combining DBD plasma and photocatalysis has shown that the ozone can be easily also decomposed in presence of photocatalyst.Keywords: combined process, DBD plasma, photocatalysis, pilot scale, synergetic effect, VOCs
Procedia PDF Downloads 33510380 Juvenile Justice in China: A Historical Approach
Authors: Xianlu Zeng
Abstract:
China has undergone rapid economic growth over the last three decades. During this time, China-focused study has become one of the most popular areas of research. However, even though China has one of the oldest legal traditions in the world, there is limited research available regarding the development and operation of China’s juvenile justice system. This article will provide general information about China’s juvenile justice tradition along with a review of its reformation in 2013. A discussion is presented that provides some thoughts about how successful these reforms have been and where China may need to head.Keywords: China, history, juvenile justice, legal traditions
Procedia PDF Downloads 50210379 Myosin-Driven Movement of Nanoparticles – An Approach to High-Speed Tracking
Authors: Sneha Kumari, Ravi Krishnan Elangovan
Abstract:
This abstract describes the development of a high-speed tracking method by modification in motor components for nanoparticle attachment. Myosin motors are nano-sized protein machines powering movement that defines life. These miniature molecular devices serve as engines utilizing chemical energy stored in ATP to produce useful mechanical energy in the form of a few nanometre displacement events leading to force generation that is required for cargo transport, cell division, cell locomotion, translated to macroscopic movements like running etc. With the advent of in vitro motility assay (IVMA), detailed functional studies of the actomyosin system could be performed. The major challenge with the currently available IVMA for tracking actin filaments is a resolution limitation of ± 50nm. To overcome this, we are trying to develop Single Molecule IVMA in which nanoparticle (GNP/QD) will be attached along or on the barbed end of actin filaments using CapZ protein and visualization by a compact TIRF module called ‘cTIRF’. The waveguide-based illumination by cTIRF offers a unique separation of excitation and collection optics, enabling imaging by scattering without emission filters. So, this technology is well equipped to perform tracking with high precision in temporal resolution of 2ms with significantly improved SNR by 100-fold as compared to conventional TIRF. Also, the nanoparticles (QD/GNP) attached to actin filament act as a point source of light coffering ease in filament tracking compared to conventional manual tracking. Moreover, the attachment of cargo (QD/GNP) to the thin filament paves the way for various nano-technological applications through their transportation to different predetermined locations on the chipKeywords: actin, cargo, IVMA, myosin motors and single-molecule system
Procedia PDF Downloads 9010378 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate
Authors: Beenish Saba, Ann D. Christy
Abstract:
Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.Keywords: microbial fuel cell, landfill leachate, power generation, MFC
Procedia PDF Downloads 32110377 Railway Composite Flooring Design: Numerical Simulation and Experimental Studies
Authors: O. Lopez, F. Pedro, A. Tadeu, J. Antonio, A. Coelho
Abstract:
The future of the railway industry lies in the innovation of lighter, more efficient and more sustainable trains. Weight optimizations in railway vehicles allow reducing power consumption and CO₂ emissions, increasing the efficiency of the engines and the maximum speed reached. Additionally, they reduce wear of wheels and rails, increase the space available for passengers, etc. Among the various systems that integrate railway interiors, the flooring system is one which has greater impact both on passenger safety and comfort, as well as on the weight of the interior systems. Due to the high weight saving potential, relative high mechanical resistance, good acoustic and thermal performance, ease of modular design, cost-effectiveness and long life, the use of new sustainable composite materials and panels provide the latest innovations for competitive solutions in the development of flooring systems. However, one of the main drawbacks of the flooring systems is their relatively poor resistance to point loads. Point loads in railway interiors can be caused by passengers or by components fixed to the flooring system, such as seats and restraint systems, handrails, etc. In this way, they can originate higher fatigue solicitations under service loads or zones with high stress concentrations under exceptional loads (higher longitudinal, transverse and vertical accelerations), thus reducing its useful life. Therefore, to verify all the mechanical and functional requirements of the flooring systems, many physical prototypes would be created during the design phase, with all of the high costs associated with it. Nowadays, the use of virtual prototyping methods by computer-aided design (CAD) and computer-aided engineering (CAE) softwares allow validating a product before committing to making physical test prototypes. The scope of this work was to current computer tools and integrate the processes of innovation, development, and manufacturing to reduce the time from design to finished product and optimise the development of the product for higher levels of performance and reliability. In this case, the mechanical response of several sandwich panels with different cores, polystyrene foams, and composite corks, were assessed, to optimise the weight and the mechanical performance of a flooring solution for railways. Sandwich panels with aluminum face sheets were tested to characterise its mechanical performance and determine the polystyrene foam and cork properties when used as inner cores. Then, a railway flooring solution was fully modelled (including the elastomer pads to provide the required vibration isolation from the car body) and perform structural simulations using FEM analysis to comply all the technical product specifications for the supply of a flooring system. Zones with high stress concentrations are studied and tested. The influence of vibration modes on the comfort level and stability is discussed. The information obtained with the computer tools was then completed with several mechanical tests performed on some solutions, and on specific components. The results of the numerical simulations and experimental campaign carried out are presented in this paper. This research work was performed as part of the POCI-01-0247-FEDER-003474 (coMMUTe) Project funded by Portugal 2020 through COMPETE 2020.Keywords: cork agglomerate core, mechanical performance, numerical simulation, railway flooring system
Procedia PDF Downloads 18210376 Digital Governance Decision-Making in the Aftermath of Cybersecurity Crises, Lessons from Estonia
Authors: Logan Carmichael
Abstract:
As the world’s governments seek to increasingly digitize their service provisions, there exists a subsequent and fully valid concern about the security underpinning these digital governance provisions. Estonia, a small and innovative Baltic nation, has been refining both its digital governance structure and cybersecurity mechanisms for over three decades and has been praised as global ‘best practice’ in both fields. However, the security of the Estonian digital governance system has been ever-evolving and significantly shaped by cybersecurity crises. This paper examines said crises – 2007 cyberattacks on Estonian government, banks, and news media; the 2017 e-ID crisis; the ongoing COVID-19 pandemic; and the 2022 Russian invasion of Ukraine – and how governance decision-making following these crises has shaped the cybersecurity of the digital governance structure in Estonia. This paper employs a blended constructivist and historical institutionalist theoretical approach as a useful means to view governance and decision-making in the wake of cybersecurity incidents affecting the Estonian digital governance structure. Together, these theoretical groundings frame the topics of cybersecurity and digital governance in an Estonian context through a lens of ideation and experience, as well as institutional path dependencies over time and cybersecurity crises as critical junctures to study. Furthermore, this paper takes a qualitative approach, employing discourse analysis, policy analysis, and elite interviewing of Estonian officials involved in digital governance and cybersecurity in order to glean nuanced perspectives into the processes that followed these four crises. Ultimately, the results of this paper will offer insight into how governments undertake policy-driven change following cybersecurity crises to ensure sufficient security of their digitized service provisions. This paper’s findings are informative not only in continued decision-making in the Estonian system but also in other states currently implementing a digital governance structure, for which security mechanisms are of the utmost importance.Keywords: cybersecurity, digital governance, Estonia, crisis management, governance in crisis
Procedia PDF Downloads 11610375 Defuzzification of Periodic Membership Function on Circular Coordinates
Authors: Takashi Mitsuishi, Koji Saigusa
Abstract:
This paper presents circular polar coordinates transformation of periodic fuzzy membership function. The purpose is identification of domain of periodic membership functions in consequent part of IF-THEN rules. The proposed methods are applied to the simple color construct system.Keywords: periodic membership function, polar coordinates transformation, defuzzification, circular coordinates
Procedia PDF Downloads 31510374 Orbit Determination from Two Position Vectors Using Finite Difference Method
Authors: Akhilesh Kumar, Sathyanarayan G., Nirmala S.
Abstract:
An unusual approach is developed to determine the orbit of satellites/space objects. The determination of orbits is considered a boundary value problem and has been solved using the finite difference method (FDM). Only positions of the satellites/space objects are known at two end times taken as boundary conditions. The technique of finite difference has been used to calculate the orbit between end times. In this approach, the governing equation is defined as the satellite's equation of motion with a perturbed acceleration. Using the finite difference method, the governing equations and boundary conditions are discretized. The resulting system of algebraic equations is solved using Tri Diagonal Matrix Algorithm (TDMA) until convergence is achieved. This methodology test and evaluation has been done using all GPS satellite orbits from National Geospatial-Intelligence Agency (NGA) precise product for Doy 125, 2023. Towards this, two hours of twelve sets have been taken into consideration. Only positions at the end times of each twelve sets are considered boundary conditions. This algorithm is applied to all GPS satellites. Results achieved using FDM compared with the results of NGA precise orbits. The maximum RSS error for the position is 0.48 [m] and the velocity is 0.43 [mm/sec]. Also, the present algorithm is applied on the IRNSS satellites for Doy 220, 2023. The maximum RSS error for the position is 0.49 [m], and for velocity is 0.28 [mm/sec]. Next, a simulation has been done for a Highly Elliptical orbit for DOY 63, 2023, for the duration of 6 hours. The RSS of difference in position is 0.92 [m] and velocity is 1.58 [mm/sec] for the orbital speed of more than 5km/sec. Whereas the RSS of difference in position is 0.13 [m] and velocity is 0.12 [mm/sec] for the orbital speed less than 5km/sec. Results show that the newly created method is reliable and accurate. Further applications of the developed methodology include missile and spacecraft targeting, orbit design (mission planning), space rendezvous and interception, space debris correlation, and navigation solutions.Keywords: finite difference method, grid generation, NavIC system, orbit perturbation
Procedia PDF Downloads 8810373 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.Keywords: improved quality of experience (QoE), OpenFlow SDN controller, IPTV service application, softwarization
Procedia PDF Downloads 15110372 Domestic Rooftop Rainwater Harvesting for Prevention of Urban Flood in the Gomti Nagar Region of Lucknow, Uttar Pradesh, India
Authors: Rajkumar Ghosh
Abstract:
Urban flooding is a common occurrence throughout Asia. Almost every city is vulnerable to urban floods in some fashion, and city people are particularly vulnerable. Pluvial and fluvial flooding are the most prominent causes of urban flooding in the Gomti Nagar region of Lucknow, Uttar Pradesh, India. The pluvial flooding is regarded to be less damaging because it is caused by heavy rainfall, Seasonal rainfall fluctuations, water flows off concrete infrastructures, blockages of the drainage system, and insufficient drainage capacity or low infiltration capacity. However, this study considers pluvial flooding in Lucknow to be a significant source of cumulative damage over time, and the risks of such events are increasing as a result of changes in ageing infrastructure, hazard exposure, rapid urbanization, massive water logging and global warming. As a result, urban flooding has emerged as a critical field of study. The popularity of analytical approaches to project the spatial extent of flood dangers has skyrocketed. To address future urban flood resilience, more effort is needed to enhance both hydrodynamic models and analytical tools to simulate risks under present and forecast conditions. Proper urban planning with drainage system and ample space for high infiltration capacity are required to reduce urban flooding. A better India with no urban flooding is a pipe dream that can be realized by putting household rooftop rainwater collection systems in every structure. According to the current study, domestic RTRWHs are strongly recommended as an alternative source of water, as well as to prevent surface runoff and urban floods in this region of Lucknow, urban areas of India.Keywords: rooftop rainwater harvesting, urban flood, pluvial flooding, fluvial flooding
Procedia PDF Downloads 9010371 Human Factors Integration of Chemical, Biological, Radiological and Nuclear Response: Systems and Technologies
Authors: Graham Hancox, Saydia Razak, Sue Hignett, Jo Barnes, Jyri Silmari, Florian Kading
Abstract:
In the event of a Chemical, Biological, Radiological and Nuclear (CBRN) incident rapidly gaining, situational awareness is of paramount importance and advanced technologies have an important role to play in improving detection, identification, monitoring (DIM) and patient tracking. Understanding how these advanced technologies can fit into current response systems is essential to ensure they are optimally designed, usable and meet end-users’ needs. For this reason, Human Factors (Ergonomics) methods have been used within an EU Horizon 2020 project (TOXI-Triage) to firstly describe (map) the hierarchical structure in a CBRN response with adapted Accident Map (AcciMap) methodology. Secondly, Hierarchical Task Analysis (HTA) has been used to describe and review the sequence of steps (sub-tasks) in a CBRN scenario response as a task system. HTA methodology was then used to map one advanced technology, ‘Tag and Trace’, which tags an element (people, sample and equipment) with a Near Field Communication (NFC) chip in the Hot Zone to allow tracing of (monitoring), for example casualty progress through the response. This HTA mapping of the Tag and Trace system showed how the provider envisaged the technology being used, allowing for review and fit with the current CBRN response systems. These methodologies have been found to be very effective in promoting and supporting a dialogue between end-users and technology providers. The Human Factors methods have given clear diagrammatic (visual) representations of how providers see their technology being used and how end users would actually use it in the field; allowing for a more user centered approach to the design process. For CBRN events usability is critical as sub-optimum design of technology could add to a responders’ workload in what is already a chaotic, ambiguous and safety critical environment.Keywords: AcciMap, CBRN, ergonomics, hierarchical task analysis, human factors
Procedia PDF Downloads 22510370 Analyzing Concrete Structures by Using Laser Induced Breakdown Spectroscopy
Authors: Nina Sankat, Gerd Wilsch, Cassian Gottlieb, Steven Millar, Tobias Guenther
Abstract:
Laser-Induced Breakdown Spectroscopy (LIBS) is a combination of laser ablation and optical emission spectroscopy, which in principle can simultaneously analyze all elements on the periodic table. Materials can be analyzed in terms of chemical composition in a two-dimensional, time efficient and minor destructive manner. These advantages predestine LIBS as a monitoring technique in the field of civil engineering. The decreasing service life of concrete infrastructures is a continuously growing problematic. A variety of intruding, harmful substances can damage the reinforcement or the concrete itself. To insure a sufficient service life a regular monitoring of the structure is necessary. LIBS offers many applications to accomplish a successful examination of the conditions of concrete structures. A selection of those applications are the 2D-evaluation of chlorine-, sodium- and sulfur-concentration, the identification of carbonation depths and the representation of the heterogeneity of concrete. LIBS obtains this information by using a pulsed laser with a short pulse length (some mJ), which is focused on the surfaces of the analyzed specimen, for this only an optical access is needed. Because of the high power density (some GW/cm²) a minimal amount of material is vaporized and transformed into a plasma. This plasma emits light depending on the chemical composition of the vaporized material. By analyzing the emitted light, information for every measurement point is gained. The chemical composition of the scanned area is visualized in a 2D-map with spatial resolutions up to 0.1 mm x 0.1 mm. Those 2D-maps can be converted into classic depth profiles, as typically seen for the results of chloride concentration provided by chemical analysis like potentiometric titration. However, the 2D-visualization offers many advantages like illustrating chlorine carrying cracks, direct imaging of the carbonation depth and in general allowing the separation of the aggregates from the cement paste. By calibrating the LIBS-System, not only qualitative but quantitative results can be obtained. Those quantitative results can also be based on the cement paste, while excluding the aggregates. An additional advantage of LIBS is its mobility. By using the mobile system, located at BAM, onsite measurements are feasible. The mobile LIBS-system was already used to obtain chloride, sodium and sulfur concentrations onsite of parking decks, bridges and sewage treatment plants even under hard conditions like ongoing construction work or rough weather. All those prospects make LIBS a promising method to secure the integrity of infrastructures in a sustainable manner.Keywords: concrete, damage assessment, harmful substances, LIBS
Procedia PDF Downloads 17710369 University Building: Discussion about the Effect of Numerical Modelling Assumptions for Occupant Behavior
Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli
Abstract:
The refurbishment of public buildings is one of the key factors of energy efficiency policy of European States. Educational buildings account for the largest share of the oldest edifice with interesting potentialities for demonstrating best practice with regards to high performance and low and zero-carbon design and for becoming exemplar cases within the community. In this context, this paper discusses the critical issue of dealing the energy refurbishment of a university building in heating dominated climate of South Italy. More in detail, the importance of using validated models will be examined exhaustively by proposing an analysis on uncertainties due to modelling assumptions mainly referring to the adoption of stochastic schedules for occupant behavior and equipment or lighting usage. Indeed, today, the great part of commercial tools provides to designers a library of possible schedules with which thermal zones can be described. Very often, the users do not pay close attention to diversify thermal zones and to modify or to adapt predefined profiles, and results of designing are affected positively or negatively without any alarm about it. Data such as occupancy schedules, internal loads and the interaction between people and windows or plant systems, represent some of the largest variables during the energy modelling and to understand calibration results. This is mainly due to the adoption of discrete standardized and conventional schedules with important consequences on the prevision of the energy consumptions. The problem is surely difficult to examine and to solve. In this paper, a sensitivity analysis is presented, to understand what is the order of magnitude of error that is committed by varying the deterministic schedules used for occupation, internal load, and lighting system. This could be a typical uncertainty for a case study as the presented one where there is not a regulation system for the HVAC system thus the occupant cannot interact with it. More in detail, starting from adopted schedules, created according to questioner’ s responses and that has allowed a good calibration of energy simulation model, several different scenarios are tested. Two type of analysis are presented: the reference building is compared with these scenarios in term of percentage difference on the projected total electric energy need and natural gas request. Then the different entries of consumption are analyzed and for more interesting cases also the comparison between calibration indexes. Moreover, for the optimal refurbishment solution, the same simulations are done. The variation on the provision of energy saving and global cost reduction is evidenced. This parametric study wants to underline the effect on performance indexes evaluation of the modelling assumptions during the description of thermal zones.Keywords: energy simulation, modelling calibration, occupant behavior, university building
Procedia PDF Downloads 14410368 A Constructed Wetland as a Reliable Method for Grey Wastewater Treatment in Rwanda
Authors: Hussein Bizimana, Osman Sönmez
Abstract:
Constructed wetlands are current the most widely recognized waste water treatment option, especially in developing countries where they have the potential for improving water quality and creating valuable wildlife habitat in ecosystem with treatment requirement relatively simple for operation and maintenance cost. Lack of grey waste water treatment facilities in Kigali İnstitute of Science and Technology in Rwanda, causes pollution in the surrounding localities of Rugunga sector, where already a problem of poor sanitation is found. In order to treat grey water produced at Kigali İnstitute of Science and Technology, with high BOD concentration, high nutrients concentration and high alkalinity; a Horizontal Sub-surface Flow pilot-scale constructed wetland was designed and can operate in Kigali İnstitute of Science and Technology. The study was carried out in a sedimentation tank of 5.5 m x 1.42 m x 1.2 m deep and a Horizontal Sub-surface constructed wetland of 4.5 m x 2.5 m x 1.42 m deep. The grey waste water flow rate of 2.5 m3/d flew through vegetated wetland and sandy pilot plant. The filter media consisted of 0.6 to 2 mm of coarse sand, 0.00003472 m/s of hydraulic conductivity and cattails (Typha latifolia spp) were used as plants species. The effluent flow rate of the plant is designed to be 1.5 m3/ day and the retention time will be 24 hrs. 72% to 79% of BOD, COD, and TSS removals are estimated to be achieved, while the nutrients (Nitrogen and Phosphate) removal is estimated to be in the range of 34% to 53%. Every effluent characteristic will meet exactly the Rwanda Utility Regulatory Agency guidelines primarily because the retention time allowed is enough to make the reduction of contaminants within effluent raw waste water. Treated water reuse system was developed where water will be used in the campus irrigation system again.Keywords: constructed wetlands, hydraulic conductivity, grey waste water, cattails
Procedia PDF Downloads 61110367 Energy System Analysis Using Data-Driven Modelling and Bayesian Methods
Authors: Paul Rowley, Adam Thirkill, Nick Doylend, Philip Leicester, Becky Gough
Abstract:
The dynamic performance of all energy generation technologies is impacted to varying degrees by the stochastic properties of the wider system within which the generation technology is located. This stochasticity can include the varying nature of ambient renewable energy resources such as wind or solar radiation, or unpredicted changes in energy demand which impact upon the operational behaviour of thermal generation technologies. An understanding of these stochastic impacts are especially important in contexts such as highly distributed (or embedded) generation, where an understanding of issues affecting the individual or aggregated performance of high numbers of relatively small generators is especially important, such as in ESCO projects. Probabilistic evaluation of monitored or simulated performance data is one technique which can provide an insight into the dynamic performance characteristics of generating systems, both in a prognostic sense (such as the prediction of future performance at the project’s design stage) as well as in a diagnostic sense (such as in the real-time analysis of underperforming systems). In this work, we describe the development, application and outcomes of a new approach to the acquisition of datasets suitable for use in the subsequent performance and impact analysis (including the use of Bayesian approaches) for a number of distributed generation technologies. The application of the approach is illustrated using a number of case studies involving domestic and small commercial scale photovoltaic, solar thermal and natural gas boiler installations, and the results as presented show that the methodology offers significant advantages in terms of plant efficiency prediction or diagnosis, along with allied environmental and social impacts such as greenhouse gas emission reduction or fuel affordability.Keywords: renewable energy, dynamic performance simulation, Bayesian analysis, distributed generation
Procedia PDF Downloads 499