Search results for: logistic model tree
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18099

Search results for: logistic model tree

10899 The Relationship between Interpersonal Relationship and the Subjective Well-Being of Chinese Primary and Secondary Teachers: A Mediated Moderation Model

Authors: Xuling Zhang, Yong Wang, Xingyun Liu, Shuangxue Xu

Abstract:

Based on positive psychology, this study presented a mediated moderation model in which character strengths moderated the relationship between interpersonal relationship, job satisfaction and subjective well-being, with job satisfaction taking the mediation role among them. A total of 912 teachers participated in four surveys, which include the Oxford Happiness Questionnaire, Values in Action Inventory of Strengths, job satisfaction questionnaire, and the interpersonal relationship questionnaire. The results indicated that: (1) Taking interpersonal relationship as a typical work environmental variable, the result shows that it is significantly correlated to subjective well-being. (2) The character strengths of "kindness", “authenticity” moderated the effect of the teachers’ interpersonal relationship on subjective well-being. (3) The teachers’ job satisfaction mediated the above mentioned moderation effects. In general, this study shows that the teachers’ interpersonal relationship affects their subjective well-being, with their job satisfaction as mediation and character strengths of “kindness” and “authenticity” as moderation. The managerial implications were also discussed.

Keywords: character strength, subjective well-being, job satisfaction, interpersonal relationship

Procedia PDF Downloads 313
10898 Social Ties and the Prevalence of Single Chronic Morbidity and Multimorbidity among the Elderly Population in Selected States of India

Authors: Sree Sanyal

Abstract:

Research in ageing often highlights the age-related health dimension more than the psycho-social characteristics of the elderly, which also influences and challenges the health outcomes. Multimorbidity is defined as the person having more than one chronic non-communicable diseases and their prevalence increases with ageing. The study aims to evaluate the influence of social ties on self-reported prevalence of multimorbidity (selected chronic non-communicable diseases) among the selected states of elderly population in India. The data is accessed from Building Knowledge Base on Population Ageing in India (BKPAI), collected in 2011 covering the self-reported chronic non-communicable diseases like arthritis, heart disease, diabetes, lung disease with asthma, hypertension, cataract, depression, dementia, Alzheimer’s disease, and cancer. The data of the above diseases were taken together and categorized as: ‘no disease’, ‘one disease’ and ‘multimorbidity’. The predicted variables were demographic, socio-economic, residential types, and the variable of social ties includes social support, social engagement, perceived support, connectedness, and importance of the elderly. Predicted probability for multiple logistic regression was used to determine the background characteristics of the old in association with chronic morbidities showing multimorbidity. The finding suggests that 24.35% of the elderly are suffering from multimorbidity. Research shows that with reference to ‘no disease’, according to the socio-economic characteristics of the old, the female oldest old (80+) from others in caste and religion, widowed, never had any formal education, ever worked in their life, coming from the second wealth quintile standard, from rural Maharashtra are more prone with ‘one disease’. From the social ties background, the elderly who perceives they are important to the family, after getting older their decision-making status has been changed, prefer to stay with son and spouse only, satisfied with the communication from their children are more likely to have less single morbidity and the results are significant. Again, with respect to ‘no disease’, the female oldest old (80+), who are others in caste, Christian in religion, widowed, having less than 5 years of education completed, ever worked, from highest wealth quintile, residing in urban Kerala are more associated with multimorbidity. The elderly population who are more socially connected through family visits, public gatherings, gets support in decision making, who prefers to spend their later years with son and spouse only but stays alone shows lesser prevalence of multimorbidity. In conclusion, received and perceived social integration and support from associated neighborhood in the older days, knowing about their own needs in life facilitates better health and wellbeing of the elderly population in selected states of India.

Keywords: morbidity, multi-morbidity, prevalence, social ties

Procedia PDF Downloads 127
10897 Biomechanics of Atalantoaxial Complex for Various Posterior Fixation Techniques

Authors: Arun C. O., Shrijith M. B., Thakur Rajesh Singh

Abstract:

The study aims to analyze and understand the biomechanical stability of the atlantoaxial complex under different posterior fixation techniques using the finite element method in the Indian context. The conventional cadaveric studies performed show heterogeneity in biomechanical properties. The finite element method being a versatile numerical tool, is being wisely used for biomechanics analysis of atlantoaxial complex. However, the biomechanics of posterior fixation techniques for an Indian subject is missing in the literature. It is essential to study in this context as the bone density and geometry of vertebrae vary from region to region, thereby requiring different screw lengths and it can affect the range of motion(ROM), stresses generated. The current study uses CT images for developing a 3D finite element model with C1-C2 geometry without ligaments. Instrumentation is added to this geometry to develop four models for four fixation techniques, namely C1-C2 TA, C1LM-C2PS, C1LM-C2Pars, C1LM-C2TL. To simulate Flexion, extension, lateral bending, axial rotation, 1.5 Nm is applied to C1 while the bottom nodes of C2 are fixed. Then Range of Motion (ROM) is compared with the unstable model(without ligaments). All the fixation techniques showed more than 97 percent reduction in the Range of Motion. The von-mises stresses developed in the screw constructs are obtained. From the studies, it is observed that Transarticular technique is most stable in Lateral Bending, C1LM-C2 Translaminar is found most stable in Flexion/extension. The Von-Mises stresses developed minimum in Trasarticular technique in lateral bending and axial rotation, whereas stress developed in C2 pars construct minimum in Flexion/ Extension. On average, the TA technique is stable in all motions and also stresses in constructs are less in TA. Tarnsarticular technique is found to be the best fixation technique for Indian subjects among the 4 methods.

Keywords: biomechanics, cervical spine, finite element model, posterior fixation

Procedia PDF Downloads 146
10896 Reliability and Availability Analysis of Satellite Data Reception System using Reliability Modeling

Authors: Ch. Sridevi, S. P. Shailender Kumar, B. Gurudayal, A. Chalapathi Rao, K. Koteswara Rao, P. Srinivasulu

Abstract:

System reliability and system availability evaluation plays a crucial role in ensuring the seamless operation of complex satellite data reception system with consistent performance for longer periods. This paper presents a novel approach for the same using a case study on one of the antenna systems at satellite data reception ground station in India. The methodology involves analyzing system's components, their failure rates, system's architecture, generation of logical reliability block diagram model and estimating the reliability of the system using the component level mean time between failures considering exponential distribution to derive a baseline estimate of the system's reliability. The model is then validated with collected system level field failure data from the operational satellite data reception systems that includes failure occurred, failure time, criticality of the failure and repair times by using statistical techniques like median rank, regression and Weibull analysis to extract meaningful insights regarding failure patterns and practical reliability of the system and to assess the accuracy of the developed reliability model. The study mainly focused on identification of critical units within the system, which are prone to failures and have a significant impact on overall performance and brought out a reliability model of the identified critical unit. This model takes into account the interdependencies among system components and their impact on overall system reliability and provides valuable insights into the performance of the system to understand the Improvement or degradation of the system over a period of time and will be the vital input to arrive at the optimized design for future development. It also provides a plug and play framework to understand the effect on performance of the system in case of any up gradations or new designs of the unit. It helps in effective planning and formulating contingency plans to address potential system failures, ensuring the continuity of operations. Furthermore, to instill confidence in system users, the duration for which the system can operate continuously with the desired level of 3 sigma reliability was estimated that turned out to be a vital input to maintenance plan. System availability and station availability was also assessed by considering scenarios of clash and non-clash to determine the overall system performance and potential bottlenecks. Overall, this paper establishes a comprehensive methodology for reliability and availability analysis of complex satellite data reception systems. The results derived from this approach facilitate effective planning contingency measures, and provide users with confidence in system performance and enables decision-makers to make informed choices about system maintenance, upgrades and replacements. It also aids in identifying critical units and assessing system availability in various scenarios and helps in minimizing downtime and optimizing resource allocation.

Keywords: exponential distribution, reliability modeling, reliability block diagram, satellite data reception system, system availability, weibull analysis

Procedia PDF Downloads 87
10895 Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin in Western Ethiopia

Authors: Elias Jemal Abdella

Abstract:

The Blue Nile River is an important shared resource of Ethiopia, Sudan and also, because it is the major contributor of water to the main Nile River, Egypt. Despite the potential benefits of regional cooperation and integrated joint basin management, all three countries continue to pursue unilateral plans for development. Besides, there is great uncertainty about the likely impacts of climate change in water availability for existing as well as proposed irrigation and hydropower projects in the Blue Nile Basin. The main objective of this study is to quantitatively assess the impact of climate change on the hydrological regime of the upper Blue Nile basin, western Ethiopia. Three models were combined, a dynamic Coordinated Regional Climate Downscaling Experiment (CORDEX) regional climate model (RCM) that is used to determine climate projections for the Upper Blue Nile basin for Representative Concentration Pathways (RCPs) 4.5 and 8.5 greenhouse gas emissions scenarios for the period 2021-2050. The outputs generated from multimodel ensemble of four (4) CORDEX-RCMs (i.e., rainfall and temperature) were used as input to a Soil and Water Assessment Tool (SWAT) hydrological model which was setup, calibrated and validated with observed climate and hydrological data. The outputs from the SWAT model (i.e., projections in river flow) were used as input to a Water Evaluation and Planning (WEAP) water resources model which was used to determine the water resources implications of the changes in climate. The WEAP model was set-up to simulate three development scenarios. Current Development scenario was the existing water resource development situation, Medium-term Development scenario was planned water resource development that is expected to be commissioned (i.e. before 2025) and Long-term full Development scenario were all planned water resource development likely to be commissioned (i.e. before 2050). The projected change of mean annual temperature for period (2021 – 2050) in most of the basin are warmer than the baseline (1982 -2005) average in the range of 1 to 1.4oC, implying that an increase in evapotranspiration loss. Subbasins which already distressed from drought may endure to face even greater challenges in the future. Projected mean annual precipitation varies from subbasin to subbasin; in the Eastern, North Eastern and South western highland of the basin a likely increase of mean annual precipitation up to 7% whereas in the western lowland part of the basin mean annual precipitation projected to decrease by 3%. The water use simulation indicates that currently irrigation demand in the basin is 1.29 Bm3y-1 for 122,765 ha of irrigation area. By 2025, with new schemes being developed, irrigation demand is estimated to increase to 2.5 Bm3y-1 for 277,779 ha. By 2050, irrigation demand in the basin is estimated to increase to 3.4 Bm3y-1 for 372,779 ha. The hydropower generation simulation indicates that 98 % of hydroelectricity potential could be produced if all planned dams are constructed.

Keywords: Blue Nile River, climate change, hydropower, SWAT, WEAP

Procedia PDF Downloads 357
10894 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection

Authors: Maryam Heidari, James H. Jones Jr.

Abstract:

Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.

Keywords: bot detection, natural language processing, neural network, social media

Procedia PDF Downloads 118
10893 Numerical Study for the Estimation of Hydrodynamic Current Drag Coefficients for the Colombian Navy Frigates Using Computational Fluid Dynamics

Authors: Mauricio Gracia, Luis Leal, Bharat Verma

Abstract:

Computational fluid dynamics (CFD) has become nowadays an important tool in the process of hydrodynamic design of modern ships. CFD is used to model any phenomena related to fluid flow in a control volume like a ship or any offshore structure in the sea. In the present study, the current force drag coefficients for a Colombian Navy Frigate in deep and shallow water are estimated through the application of CFD. The study shows the process of simulating the ship current drag coefficients using the CFD simulations method, which is conducted using STAR-CCM+ software package. The Almirante Padilla class Frigate ship scale model is investigated. The results show the ship current drag coefficient calculated considering a current speed of 1 knot with a 90° drift angle for the full-scale ship. Predicted results were compared against the current drag coefficients published in the Lloyds register OCIMF report. It is shown that the simulation results agree fairly well with the published results and that STAR-CCM+ code can predict current drag coefficients.

Keywords: CFD, current draft coefficient, STAR-CCM+, OCIMF, Bollard pull

Procedia PDF Downloads 183
10892 Using Blockchain Technology to Extend the Vendor Managed Inventory for Sustainability

Authors: Elham Ahmadi, Roshaali Khaturia, Pardis Sahraei, Mohammad Niyayesh, Omid Fatahi Valilai

Abstract:

Nowadays, Information Technology (IT) is changing the way traditional enterprise management concepts work. One of the most dominant IT achievements is the Blockchain Technology. This technology enables the distributed collaboration of stakeholders for their interactions while fulfilling the security and consensus rules among them. This paper has focused on the application of Blockchain technology to enhance one of traditional inventory management models. The Vendor Managed Inventory (VMI) has been considered one of the most efficient mechanisms for vendor inventory planning by the suppliers. While VMI has brought competitive advantages for many industries, however its centralized mechanism limits the collaboration of a pool of suppliers and vendors simultaneously. This paper has studied the recent research for VMI application in industries and also has investigated the applications of Blockchain technology for decentralized collaboration of stakeholders. Focusing on sustainability issue for total supply chain consisting suppliers and vendors, it has proposed a Blockchain based VMI conceptual model. The different capabilities of this model for enabling the collaboration of stakeholders while maintaining the competitive advantages and sustainability issues have been discussed.

Keywords: vendor managed inventory, VMI, blockchain technology, supply chain planning, sustainability

Procedia PDF Downloads 230
10891 Study of Climate Change Scenarios (IPCC) in the Littoral Zone of the Caspian Sea

Authors: L. Rashidian, M. Rajabali

Abstract:

Climate changes have unpredictable and costly effects on water resources of various basins. The impact of atmospheric phenomena on human life and the environment is so significant that only knowledge of management can reduce its consequences. In this study, using LARS.WG model and down scaling of general circulation climate model HADCM-3 and according to the IPCC scenarios, including series A1b, A2 and B1, we simulated data from 2010 to 2040 in order to using them for long term forecasting of climate parameters of the Caspian Sea and its impact on sea level. Our research involves collecting data on monthly precipitation amounts, minimum and maximum temperature and daily sunshine hours, from meteorological organization for Caspian Sea coastal station such as Gorgan, Ramsar, Rasht, Anzali, Astara and Ghaemshahr since their establishment until 2010. Considering the fact that the fluctuation range of water level in the Caspian Sea has various ups and downs in different times, there is an increase in minimum and maximum temperature for all the mentioned scenarios, which will last until 2040. Overall, the amount of rainfall in cities bordering the Caspian Sea was studied based on the three scenarios, which shows an increase in the amount. However, there will be a decrease in water level of the Caspian Sea till 2040.

Keywords: IPCC, climate change, atmospheric circulation, Caspian Sea, HADCM3, sea level

Procedia PDF Downloads 246
10890 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: temporal graph network, anomaly detection, cyber security, IDS

Procedia PDF Downloads 106
10889 Bioincision of Gmelina Arborea Roxb. Heartwood with Inonotus Dryophilus (Berk.) Murr. for Improved Chemical Uptake and Penetration

Authors: A. O. Adenaiya, S. F. Curling, O. Y. Ogunsanwo, G . A. Ormondroyd

Abstract:

Treatment of wood with chemicals in order to prolong its service life may prove difficult in some refractory wood species. This impermeability in wood is usually due to biochemical changes which occur during heartwood formation. Bioincision, which is a short-term, controlled microbial decomposition of wood, is one of the promising approaches capable of improving the amenability of refractory wood to chemical treatments. Gmelina Arborea, a mainstay timber species in Nigeria, has impermeable heartwood due to the excessive tyloses which occlude its vessels. Therefore, the chemical uptake and penetration in Gmelina arborea heartwood bioincised with Inonotus dryophilus fungus was investigated. Five mature Gmelina Arborea trees were harvested at the Departmental plantation in Ajibode, Ibadan, Nigeria and a bolt of 300 cm was obtained from the basal portion of each tree. The heartwood portion of the bolts was extracted and converted into dimensions 20 mm x 20 mm x 60 mm and subsequently conditioned (200C at 65% Relative Humidity). Twenty wood samples each were bioincised with the white-rot fungus Inonotus dryophilus (ID, 999) for 3, 5, 7 and 9 weeks using standard procedure, while a set of sterile control samples were prepared. Ten of each bioincised and control sample were pressure-treated with 5% tanalith preservative, while the other ten of each bioincised and control samples were pressure-treated with a liquid dye for easy traceability of the chemical in the wood, both using a full cell treatment process. The bioincised and control samples were evaluated for their Weight Loss before chemical treatment (WL, %), Preservative Absorption (PA, Kg/m3), Preservative Retention (PR, Kg/m3), Axial Absorption (AA, Kg/m3), Lateral Absorption (LA, Kg/m3), Axial Penetration Depth (APD, mm), Radial Penetration Depth (RPD, mm), and Tangential Penetration Depth (TPD, mm). The data obtained were analyzed using ANOVA at α0.05. Results show that the weight loss was least in the samples bioincised for three weeks (0.09%) and highest after 7 weeks of bioincision (0.48%). The samples bioincised for 3 weeks had the least PA (106.72 Kg/m3) and PR (5.87 Kg/m3), while the highest PA (134.9 Kg/m3) and PR were observed after 7 weeks of bioincision (7.42 Kg/m3). The AA ranged from 27.28 Kg/m3 (3 weeks) to 67.05 Kg/m3 (5 weeks), while the LA was least after 5 weeks of incubation (28.1 Kg/m3) and highest after 9 weeks (71.74 Kg/m3). Significantly lower APD was observed in control samples (6.97 mm) than in the samples bioincised after 9weeks (19.22 mm). The RPD increased from 0.08 mm (control samples) to 3.48 mm (5 weeks), while TPD ranged from 0.38 mm (control samples) to 0.63 mm (9 weeks), implying that liquid flow in the wood was predominantly through the axial pathway. Bioincising G. arborea heartwood with I. dryophilus fungus for 9 weeks is capable of enhancing chemical uptake and deeper penetration of chemicals in the wood through the degradation of the occluding vessel tyloses, which is accompanied by a minimal degradation of the polymeric wood constituents.

Keywords: Bioincision, chemical uptake, penetration depth, refractory wood, tyloses

Procedia PDF Downloads 108
10888 Toward Concerned Leadership: A Novel Conceptual Model to Raise the Well-Being of Employees and the Leaderful Practice of Organizations

Authors: Robert McGrath, Zara Qureshi

Abstract:

A innovative leadership philosophy that is proposed herein is distinctly more humane than most leadership approaches Concerned Leadership. The central idea to this approach is to consider the whole person that comes to work; their professional skills and talents, as well as any personal, emotional challenges that could be affecting productivity and effectiveness at work. This paper explores Concerned Leadership as an integration of the two conceptual models areas examined in this paper –(1) leaderful organizations and practices, as well as (2) organizational culture, and defines leadership in the context of Mental Health and Wellness in the workplace. Leaderful organizations calls for organizations to implement leaderful practice. Leaderful practice is when leadership responsibility and decision-making is shared across all team members and levels, versus only delegated to top management as commonly seen. A healthy culture thrives off key aspects such as acceptance, employee pride, equal opportunity, and strong company leadership. Concerned Leadership is characterized by five main components: Self-Concern, Leaderful Practice, Human Touch, Belonging, and Compassion. As scholars and practitioners conceptualize leadership in practice, the present model seeks to uphold the dignity of each organizational member, thereby having the potential to transform workplaces and support all members.

Keywords: leadership, mental health, reflective practice, organizational culture

Procedia PDF Downloads 84
10887 Application of Metarhizium anisopliae against Meloidogyne javanica in Soil Amended with Oak Debris

Authors: Mohammad Abdollahi

Abstract:

Tomato (Lycopersicon esculentum Mill.) is one of the most popular, widely grown and the second most important vegetable crop, after potatoes. Nematodes have been identified as one of the major pests affecting tomato production throughout the world. The most destructive nematodes are the genus Meloidogyne. Most widespread and devastating species of this genus are M. incognita, M. javanica, and M. arenaria. These species can cause complete crop loss under adverse growing conditions. There are several potential methods for management of the root knot nematodes. Although the chemicals are widely used against the phytonematodes, because of hazardous effects of these compounds on non-target organisms and on the environment, there is a need to develop other control strategies. Nowadays, non-chemical measures are widely used to control the plant parasitic nematodes. Biocontrol of phytonematodes is an important method among environment-friendly measures of nematode management. There are some soil-inhabiting fungi that have biocontrol potential on phytonematodes, which can be used in nematode management program. The fungus Metarhizium anisopliae, originally is an entomopathogenic bioagent. Biocontrol potential of this fungus on some phytonematodes has been reported earlier. Recently, use of organic soil amendments as well as the use of bioagents is under special attention in sustainable agriculture. This research aimed to reduce the pesticide use in control of root-knot nematode, Meloidogyne javanica in tomato. The effects of M. anisopliae IMI 330189 and different levels of oak tree debris on M. javanica were determined. The combination effect of the fungus as well as the different rates of soil amendments was determined. Pots were filled with steam pasteurized soil mixture and the six leaf tomato seedlings were inoculated with 3000 second stage larvae of M. javanica/kg of soil. After eight weeks, plant growth parameters and nematode reproduction factors were compared. Based on the results of our experiment, combination of M. anisopliae IMI 330189 and oak debris caused more than 90% reduction in reproduction factor of nematode, at the rates of 100 and 150 g/kg soil (P ≤ 0.05). As compared to control, the reduction in number of galls was 76%. It was 86% for nematode reproduction factor, showing the significance of combined effect of both tested agents. Our results showed that plant debris can increase the biological activity of the tested bioagent. It was also proved that there was no adverse effect of oak debris, which potentially has antimicrobial activity, on antagonistic power of applied bioagent.

Keywords: biological control, nematode management, organic soil, Quercus branti, root knot nematode, soil amendment

Procedia PDF Downloads 174
10886 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation

Authors: Zheng Zhihao

Abstract:

Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.

Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation

Procedia PDF Downloads 41
10885 Variations in Breast Aesthetic Reconstruction Rates between Asian and Caucasian Patients Post Mastectomy in a UK Tertiary Breast Referral Centre: A Five-Year Institutional Review

Authors: Wisam Ismail, Chole Wright, Elizabeth Baker, Cathy Tait, Mohamed Salhab, Richard Linforth

Abstract:

Background: Post-mastectomy breast reconstruction is an important treatment option for women with breast cancer with psychosocial, emotional and quality of life benefits. Despite this, Asian patients are one-fifth as likely as Caucasian patients to undergo reconstruction after mastectomy. Aim: This study aimed to assess the difference in breast reconstruction rates between Asian and Caucasian patients treated at Bradford Teaching Hospitals between May 2011 – December 2015.The long-term goal is to equip healthcare professionals to improve breast cancer treatment outcome by increasing breast reconstruction rates in this sub-population. Methods: All patients undergoing mastectomy were identified using a prospectively collected departmental database. Further data was obtained via retrospective electronic case note review. Bradford city population is about 530.000 by the end of 2015, with 67.44% of the city's population was White ethnic groups and 26.83% Asian Ethnic Groups (UK population consensus). The majority of Asian population speaks Urdu, hence an Urdu speaking breast care nurse was appointed to facilitate communications and deliver a better understanding of the reconstruction options and pathways. Statistical analysis was undertaken using the SAS program. Patients were stratified by age, self-reported ethnicity, axillary surgery and reconstruction. Relative odds were calculated using univariate and multivariate logistic regression analyses with adjustment for known confounders. An Urdu speaking breast care nurse was employed throughout this period to facilitate communication and patient decision making. Results: 506 patients underwent Mastectomy over 5 years. 72 (14%) Asian v. 434 (85%) Caucasian. Overall median age is 64 years (SD1.1). Asian median age is 62 (SD0.9), versus Caucasian 65 (SD1.2). Total axillary clearance rate was 30% (42% Asian v.30% Caucasian). Overall reconstruction rate was 126 patients (28.9%).Only 6 of 72 Asian patients (<1%) underwent breast reconstruction versus 121of 434 Caucasian (28%) (p < 0.04), Odds ratio 0.68, (95% confidence interval 0.57-0.79). Conclusions: There is a significant difference in post-mastectomy reconstruction rates between Asian and Caucasian patients. This difference is likely to be multi-factorial. Higher rates of axillary clearance in Asian patients might suggest later disease presentation and/or higher rates of subsequent adjuvant therapy, both of which, can impact on the suitability of breast reconstruction. Strategies aimed at reducing racial disparities in breast reconstruction should include symptom awareness to enable earlier presentation and facilitated communication to ensure informed decision-making.

Keywords: aesthetic, Asian, breast, reconstruction

Procedia PDF Downloads 279
10884 A Comparison between Five Indices of Overweight and Their Association with Myocardial Infarction and Death, 28-Year Follow-Up of 1000 Middle-Aged Swedish Employed Men

Authors: Lennart Dimberg, Lala Joulha Ian

Abstract:

Introduction: Overweight (BMI 25-30) and obesity (BMI 30+) have consistently been associated with cardiovascular (CV) risk and death since the Framingham heart study in 1948, and BMI was included in the original Framingham risk score (FRS). Background: Myocardial infarction (MI) poses a serious threat to the patient's life. In addition to BMI, several other indices of overweight have been presented and argued to replace FRS as more relevant measures of CV risk. These indices include waist circumference (WC), waist/hip ratio (WHR), sagittal abdominal diameter (SAD), and sagittal abdominal diameter to height (SADHtR). Specific research question: The research question of this study is to evaluate the interrelationship between the various body measurements, BMI, WC, WHR, SAD, and SADHtR, and which measurement is strongly associated with MI and death. Methods: In 1993, 1,000 middle-aged Caucasian, randomly selected working men of the Swedish Volvo-Renault cohort were surveyed at a nurse-led health examination with a questionnaire, EKG, laboratory tests, blood pressure, height, weight, waist, and sagittal abdominal diameter measurements. Outcome data of myocardial infarction over 28 years come from Swedeheart (the Swedish national myocardial infarction registry) and the Swedish death registry. The Aalen-Johansen and Kaplan–Meier methods were used to estimate the cumulative incidences of MI and death. Multiple logistic regression analyses were conducted to compare BMI with the other four body measurements. The risk for the various measures of obesity was calculated with outcomes of accumulated first-time myocardial infarction and death as odds ratios (OR) in quartiles. The ORs between the 4th and the 1st quartile of each measure were calculated to estimate the association between the body measurement variables and the probability of cumulative incidences of myocardial infarction (MI) over time. Double-sided P values below 0.05 will be considered statistically significant. Unadjusted odds ratios were calculated for obesity indicators, MI, and death. Adjustments for age, diabetes, SBP, and the ratio of total cholesterol/HDL-C and blue/white collar status were performed. Results: Out of 1000 people, 959 subjects had full information about the five different body measurements. Of those, 90 participants had a first MI, and 194 persons died. The study showed that there was a high and significant correlation between the five different body measurements, and they were all associated with CVD risk factors. All body measurements were significantly associated with MI, with the highest (OR=3.6) seen for SADHtR and WC. After adjustment, all but SADHtR remained significant with weaker ORs. As for all-cause mortality, WHR (OR=1.7), SAD (OR=1.9), and SADHtR (OR=1.6) were significantly associated, but not WC and BMI. However, after adjustment, only WHR and SAD were significantly associated with death, but with attenuated ORs.

Keywords: BMI, death, epidemiology, myocardial infarction, risk factor, sagittal abdominal diameter, sagittal abdominal diameter to height, waist circumference, waist-hip ratio

Procedia PDF Downloads 101
10883 Thermomechanical Simulation of Equipment Subjected to an Oxygen Pressure and Heated Locally by the Ignition of Small Particles

Authors: Khaled Ayfi

Abstract:

In industrial oxygen systems at high temperature and high pressure, contamination by solid particles is one of the principal causes of ignition hazards. Indeed, gas can sweep away particles, generated by corrosion inside the pipes or during maintenance operations (welding residues, careless disassembly, etc.) and produce accumulations at places where the gas velocity decrease. Moreover, in such an environment rich in oxygen (oxidant), particles are highly reactive and can ignite system walls more actively and at higher temperatures. Oxidation based thermal effects are responsible for mechanical properties lost, leading to the destruction of the pressure equipment wall. To deal with this problem, a numerical analysis is done regarding a sample representative of a wall subjected to pressure and temperature. The validation and analysis are done comparing the numerical simulations results to experimental measurements. More precisely, in this work, we propose a numerical model that describes the thermomechanical behavior of thin metal disks under pressure and subjected to laser heating. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements.

Keywords: ignition, oxygen, numerical simulation, thermomechanical behavior

Procedia PDF Downloads 109
10882 Fast Adjustable Threshold for Uniform Neural Network Quantization

Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev

Abstract:

The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.

Keywords: distillation, machine learning, neural networks, quantization

Procedia PDF Downloads 332
10881 A Bayesian Approach for Analyzing Academic Article Structure

Authors: Jia-Lien Hsu, Chiung-Wen Chang

Abstract:

Research articles may follow a simple and succinct structure of organizational patterns, called move. For example, considering extended abstracts, we observe that an extended abstract usually consists of five moves, including Background, Aim, Method, Results, and Conclusion. As another example, when publishing articles in PubMed, authors are encouraged to provide a structured abstract, which is an abstract with distinct and labeled sections (e.g., Introduction, Methods, Results, Discussions) for rapid comprehension. This paper introduces a method for computational analysis of move structures (i.e., Background-Purpose-Method-Result-Conclusion) in abstracts and introductions of research documents, instead of manually time-consuming and labor-intensive analysis process. In our approach, sentences in a given abstract and introduction are automatically analyzed and labeled with a specific move (i.e., B-P-M-R-C in this paper) to reveal various rhetorical status. As a result, it is expected that the automatic analytical tool for move structures will facilitate non-native speakers or novice writers to be aware of appropriate move structures and internalize relevant knowledge to improve their writing. In this paper, we propose a Bayesian approach to determine move tags for research articles. The approach consists of two phases, training phase and testing phase. In the training phase, we build a Bayesian model based on a couple of given initial patterns and the corpus, a subset of CiteSeerX. In the beginning, the priori probability of Bayesian model solely relies on initial patterns. Subsequently, with respect to the corpus, we process each document one by one: extract features, determine tags, and update the Bayesian model iteratively. In the testing phase, we compare our results with tags which are manually assigned by the experts. In our experiments, the promising accuracy of the proposed approach reaches 56%.

Keywords: academic English writing, assisted writing, move tag analysis, Bayesian approach

Procedia PDF Downloads 334
10880 Consumers’ Perceptions of Non-Communicable Diseases and Perceived Product Value Impacts on Healthy Food Purchasing Decisions

Authors: Khatesiree Sripoothon, Usanee Sengpanich, Rattana Sittioum

Abstract:

The objective of this study is to examine the factors influencing consumer purchasing decisions about healthy food. This model consists of two latent variables: Consumer Perception relating to NCDs and Consumer Perceived Product Value. The study was conducted in the northern provinces of Thailand, which are popular with tourists and have received support from the government for health tourism. A survey was used as the data collection method, and the questionnaire was applied to 385 tourists. An accidental sampling method was used to identify the sample. The statistics of frequency, percentage, mean, and structural equation model were used to analyze the data obtained. Additionally, all factors had a significant positive influence on healthy food purchasing decisions (p<0.01) and were predictive of healthy food purchasing decisions at 46.20 (R2=0.462). Also, these findings seem to underline a supposition that consumer perceptions of NCDs and perceived product value are key variables that strengthens the competitive effects of a healthy-friendly business entrepreneur. Moreover, reduce the country's public health costs for treating patients with the disease of NCDs in Thailand.

Keywords: healthy food, perceived product value, perception of non-communicable diseases, purchasing decisions

Procedia PDF Downloads 165
10879 A Training Perspective for Sustainability and Partnership to Achieve Sustainable Development Goals in Sub-Saharan Africa

Authors: Nwachukwu M. A., Nwachukwu J. I., Anyanwu J., Emeka U., Okorondu J., Acholonu C.

Abstract:

Actualization of the 17 sustainable development goals (SDGs) conceived by the United Nations in 2015 is a global challenge that may not be feasible in sub-Saharan Africa by the year 2030, except universities play a committed role. This is because; there is a need to educate the people about the concepts of sustainability and sustainable development in the region to make the desired change. Here is a sensitization paper with a model of intervention and curricular planning to allow advancement in understanding and knowledge of SDGs. This Model Center for Sustainability Studies (MCSS) will enable partnerships with institutions in Africa and in advanced nations, thereby creating a global network for sustainability studies not found in sub-Saharan Africa. MCSS will train and certify public servants, government agencies, policymakers, entrepreneurs and personnel from organizations, and students on aspects of the SDGs and sustainability science. There is a need to add sustainability knowledge into environmental education and make environmental education a compulsory course in higher institutions and a secondary school certificate exam subject in sub-Saharan Africa. MCSS has 11 training modules that can be replicated anywhere in the world.

Keywords: sustainability, higher institutions, training, SDGs, collaboration, sub-Saharan Africa

Procedia PDF Downloads 111
10878 Model Based Fault Diagnostic Approach for Limit Switches

Authors: Zafar Mahmood, Surayya Naz, Nazir Shah Khattak

Abstract:

The degree of freedom relates to our capability to observe or model the energy paths within the system. Higher the number of energy paths being modeled leaves to us a higher degree of freedom, but increasing the time and modeling complexity rendering it useless for today’s world’s need for minimum time to market. Since the number of residuals that can be uniquely isolated are dependent on the number of independent outputs of the system, increasing the number of sensors required. The examples of discrete position sensors that may be used to form an array include limit switches, Hall effect sensors, optical sensors, magnetic sensors, etc. Their mechanical design can usually be tailored to fit in the transitional path of an STME in a variety of mechanical configurations. The case studies into multi-sensor system were carried out and actual data from sensors is used to test this generic framework. It is being investigated, how the proper modeling of limit switches as timing sensors, could lead to unified and neutral residual space while keeping the implementation cost reasonably low.

Keywords: low-cost limit sensors, fault diagnostics, Single Throw Mechanical Equipment (STME), parameter estimation, parity-space

Procedia PDF Downloads 621
10877 The Impact of Voluntary Disclosure Level on the Cost of Equity Capital in Tunisian's Listed Firms

Authors: Nouha Ben Salah, Mohamed Ali Omri

Abstract:

This paper treats the association between disclosure level and the cost of equity capital in Tunisian’slisted firms. This relation is tested by using two models. The first is used for testing this relation directly by regressing firm specific estimates of cost of equity capital on market beta, firm size and a measure of disclosure level. The second model is used for testing this relation by introducing information asymmetry as mediator variable. This model is suggested by Baron and Kenny (1986) to demonstrate the role of mediator variable in general. Based on a sample of 21 non-financial Tunisian’s listed firms over a period from 2000 to 2004, the results prove that greater disclosure is associated with a lower cost of equity capital. However, the results of indirect relationship indicate a significant positive association between the level of voluntary disclosure and information asymmetry and a significant negative association between information asymmetry and cost of equity capital in contradiction with our previsions. Perhaps this result is due to the biases of measure of information asymmetry.

Keywords: cost of equity capital, voluntary disclosure, information asymmetry, and Tunisian’s listed non-financial firms

Procedia PDF Downloads 521
10876 Glorification Trap in Combating Human Trafficking in Indonesia: An Application of Three-Dimensional Model of Anti-Trafficking Policy

Authors: M. Kosandi, V. Susanti, N. I. Subono, E. Kartini

Abstract:

This paper discusses the risk of glorification trap in combating human trafficking, as it is shown in the case of Indonesia. Based on a research on Indonesian combat against trafficking in 2017-2018, this paper shows the tendency of misinterpretation and misapplication of the Indonesian anti-trafficking law into misusing the law for glorification, to create an image of certain extent of achievement in combating human trafficking. The objective of this paper is to explain the persistent occurrence of human trafficking crimes despite the significant progress of anti-trafficking efforts of Indonesian government. The research was conducted in 2017-2018 by qualitative approach through observation, depth interviews, discourse analysis, and document study, applying the three-dimensional model for analyzing human trafficking in the source country. This paper argues that the drive for glorification of achievement in the combat against trafficking has trapped Indonesian government in the loop of misinterpretation, misapplication, and misuse of the anti-trafficking law. In return, the so-called crime against humanity remains high and tends to increase in Indonesia.

Keywords: human trafficking, anti-trafficking policy, transnational crime, source country, glorification trap

Procedia PDF Downloads 172
10875 Monitoring Prospective Sites for Water Harvesting Structures Using Remote Sensing and Geographic Information Systems-Based Modeling in Egypt

Authors: Shereif. H. Mahmoud

Abstract:

Egypt has limited water resources, and it will be under water stress by the year 2030. Therefore, Egypt should consider natural and non-conventional water resources to overcome such a problem. Rain harvesting is one solution. This Paper presents a geographic information system (GIS) methodology - based on decision support system (DSS) that uses remote sensing data, filed survey, and GIS to identify potential RWH areas. The input into the DSS includes a map of rainfall surplus, slope, potential runoff coefficient (PRC), land cover/use, soil texture. In addition, the outputs are map showing potential sites for RWH. Identifying suitable RWH sites implemented in the ArcGIS model environment using the model builder of ArcGIS 10.1. Based on Analytical hierarchy process (AHP) analysis taking into account five layers, the spatial extents of RWH suitability areas identified using Multi-Criteria Evaluation (MCE). The suitability model generated a suitability map for RWH with four suitability classes, i.e. Excellent, Moderate, Poor, and unsuitable. The spatial distribution of the suitability map showed that the excellent suitable areas for RWH concentrated in the northern part of Egypt. According to their averages, 3.24% of the total area have excellent and good suitability for RWH, while 45.04 % and 51.48 % of the total area are moderate and unsuitable suitability, respectively. The majority of the areas with excellent suitability have slopes between 2 and 8% and with an intensively cultivated area. The major soil type in the excellent suitable area is loam and the rainfall range from 100 up to 200 mm. Validation of the used technique depends on comparing existing RWH structures locations with the generated suitability map using proximity analysis tool of ArcGIS 10.1. The result shows that most of exiting RWH structures categorized as successful.

Keywords: rainwater harvesting (RWH), geographic information system (GIS), analytical hierarchy process (AHP), multi-criteria evaluation (MCE), decision support system (DSS)

Procedia PDF Downloads 366
10874 The Cost of Non-Communicable Diseases in the European Union: A Projection towards the Future

Authors: Desiree Vandenberghe, Johan Albrecht

Abstract:

Non-communicable diseases (NCDs) are responsible for the vast majority of deaths in the European Union (EU) and represent a large share of total health care spending. A future increase in this health and financial burden is likely to be driven by population ageing, lifestyle changes and technological advances in medicine. Without adequate prevention measures, this burden can severely threaten population health and economic development. To tackle this challenge, a correct assessment of the current burden of NCDs is required, as well as a projection of potential increases of this burden. The contribution of this paper is to offer perspective on the evolution of the NCD burden towards the future and to give an indication of the potential of prevention policy. A Non-Homogenous, Semi-Markov model for the EU was constructed, which allowed for a projection of the cost burden for the four main NCDs (cancer, cardiovascular disease, chronic respiratory disease and diabetes mellitus) towards 2030 and 2050. This simulation is done based on multiple baseline scenarios that vary in demand and supply factors such as health status, population structure, and technological advances. Finally, in order to assess the potential of preventive measures to curb the cost explosion of NCDs, a simulation is executed which includes increased efforts for preventive health care measures. According to the Markov model, by 2030 and 2050, total costs (direct and indirect costs) in the EU could increase by 30.1% and 44.1% respectively, compared to 2015 levels. An ambitious prevention policy framework for NCDs will be required if the EU wants to meet this challenge of rising costs. To conclude, significant cost increases due to Non-Communicable Diseases are likely to occur due to demographic and lifestyle changes. Nevertheless, an ambitious prevention program throughout the EU can aid in making this cost burden manageable for future generations.

Keywords: non-communicable diseases, preventive health care, health policy, Markov model, scenario analysis

Procedia PDF Downloads 143
10873 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer

Authors: Feng-Sheng Wang, Chao-Ting Cheng

Abstract:

Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.

Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution

Procedia PDF Downloads 85
10872 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 161
10871 Competitive Advantage Challenges in the Apparel Manufacturing Industries of South Africa: Application of Porter’s Factor Conditions

Authors: Sipho Mbatha, Anne Mastament-Mason

Abstract:

South African manufacturing global competitiveness was ranked 22nd (out of 38 countries), dropped to 24th in 2013 and is expected to drop further to 25th by 2018. These impacts negatively on the industrialisation project of South Africa. For industrialization to be achieved through labour intensive industries like the Apparel Manufacturing Industries of South Africa (AMISA), South Africa needs to identify and respond to factors negatively impacting on the development of competitive advantage This paper applied factor conditions from Porter’s Diamond Model (1990) to understand the various challenges facing the AMISA. Factor conditions highlighted in Porter’s model are grouped into two groups namely, basic and advance factors. Two AMISA associations representing over 10 000 employees were interviewed. The largest Clothing, Textiles and Leather (CTL) apparel retail group was also interviewed with a government department implementing the industrialisation policy were interviewed The paper points out that while AMISA have basic factor conditions necessary for competitive advantage in the clothing and textiles industries, Advance factor coordination has proven to be a challenging task for the AMISA, Higher Education Institutions (HEIs) and government. Poor infrastructural maintenance has contributed to high manufacturing costs and poor quick response as a result of lack of advanced technologies. The use of Porter’s Factor Conditions as a tool to analyse the sector’s competitive advantage challenges and opportunities has increased knowledge regarding factors that limit the AMISA’s competitiveness. It is therefore argued that other studies on Porter’s Diamond model factors like Demand conditions, Firm strategy, structure and rivalry and Related and supporting industries can be used to analyse the situation of the AMISA for the purposes of improving competitive advantage.

Keywords: compliance rule, apparel manufacturing industry, factor conditions, advance skills and South African industrial policy

Procedia PDF Downloads 364
10870 Multi-Spectral Deep Learning Models for Forest Fire Detection

Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani

Abstract:

Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.

Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection

Procedia PDF Downloads 244