Search results for: tropical deciduous forest
715 Derivation of Runoff Susceptibility Map Using Slope-Adjusted SCS-CN in a Tropical River Basin
Authors: Abolghasem Akbari
Abstract:
The Natural Resources Conservation Service Curve Number (NRCS-CN) method is widely used for predicting direct runoff from rainfall. It employs the hydrologic soil groups and land use information along with period soil moisture conditions to derive NRCS-CN. This method has been well documented and available in popular rainfall-runoff models such as HEC-HMS, SWAT, SWMM and much more. Despite all benefits and advantages of this well documented and easy-to-use method, it does not take into account the effect of terrain slope and drainage area. This study aimed to first investigate the effect of slope on CN and then slope-adjusted runoff potential map is generated for Kuantan River Basin, Malaysia. The Hanng method was used to adjust CN values provided in National Handbook of Engineering and The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 is used to derive slope map with the spatial resolution of 30 m for Kuantan River Basin (KRB). The study significantly enhanced the application of GIS tools and recent advances in earth observation technology to analyze the hydrological process.Keywords: Kuantan, ASTER-GDEM, SCS-CN, runoff
Procedia PDF Downloads 287714 Diffraction-Based Immunosensor for Dengue NS1 Virus
Authors: Harriet Jane R. Caleja, Joel I. Ballesteros, Florian R. Del Mundo
Abstract:
The dengue fever belongs to the world’s major cause of death, especially in the tropical areas. In the Philippines, the number of dengue cases during the first half of 2015 amounted to more than 50,000. In 2012, the total number of cases of dengue infection reached 132,046 of which 701 patients died. Dengue Nonstructural 1 virus (Dengue NS1 virus) is a recently discovered biomarker for the early detection of dengue virus. It is present in the serum of the dengue virus infected patients even during the earliest stages prior to the formation of dengue virus antibodies. A biosensor for the dengue detection using NS1 virus was developed for faster and accurate diagnostic tool. Biotinylated anti-dengue virus NS1 was used as the receptor for dengue virus NS1. Using the Diffractive Optics Technology (dotTM) technique, real time binding of the NS1 virus to the biotinylated anti-NS1 antibody is observed. The dot®-Avidin sensor recognizes the biotinylated anti-NS1 and this served as the capture molecule to the analyte, NS1 virus. The increase in the signal of the diffractive intensity signifies the binding of the capture and the analyte. The LOD was found to be 3.87 ng/mL while the LOQ is 12.9 ng/mL. The developed biosensor was also found to be specific for the NS1 virus.Keywords: avidin-biotin, diffractive optics technology, immunosensor, NS1
Procedia PDF Downloads 331713 Assessment the Implications of Regional Transport and Local Emission Sources for Mitigating Particulate Matter in Thailand
Authors: Ruchirek Ratchaburi, W. Kevin. Hicks, Christopher S. Malley, Lisa D. Emberson
Abstract:
Air pollution problems in Thailand have improved over the last few decades, but in some areas, concentrations of coarse particulate matter (PM₁₀) are above health and regulatory guidelines. It is, therefore, useful to investigate how PM₁₀ varies across Thailand, what conditions cause this variation, and how could PM₁₀ concentrations be reduced. This research uses data collected by the Thailand Pollution Control Department (PCD) from 17 monitoring sites, located across 12 provinces, and obtained between 2011 and 2015 to assess PM₁₀ concentrations and the conditions that lead to different levels of pollution. This is achieved through exploration of air mass pathways using trajectory analysis, used in conjunction with the monitoring data, to understand the contribution of different months, an hour of the day and source regions to annual PM₁₀ concentrations in Thailand. A focus is placed on locations that exceed the national standard for the protection of human health. The analysis shows how this approach can be used to explore the influence of biomass burning on annual average PM₁₀ concentration and the difference in air pollution conditions between Northern and Southern Thailand. The results demonstrate the substantial contribution that open biomass burning from agriculture and forest fires in Thailand and neighboring countries make annual average PM₁₀ concentrations. The analysis of PM₁₀ measurements at monitoring sites in Northern Thailand show that in general, high concentrations tend to occur in March and that these particularly high monthly concentrations make a substantial contribution to the overall annual average concentration. In 2011, a > 75% reduction in the extent of biomass burning in Northern Thailand and in neighboring countries resulted in a substantial reduction not only in the magnitude and frequency of peak PM₁₀ concentrations but also in annual average PM₁₀ concentrations at sites across Northern Thailand. In Southern Thailand, the annual average PM₁₀ concentrations for individual years between 2011 and 2015 did not exceed the human health standard at any site. The highest peak concentrations in Southern Thailand were much lower than for Northern Thailand for all sites. The peak concentrations at sites in Southern Thailand generally occurred between June and October and were associated with air mass back trajectories that spent a substantial proportion of time over the sea, Indonesia, Malaysia, and Thailand prior to arrival at the monitoring sites. The results show that emissions reductions from biomass burning and forest fires require action on national and international scales, in both Thailand and neighboring countries, such action could contribute to ensuring compliance with Thailand air quality standards.Keywords: annual average concentration, long-range transport, open biomass burning, particulate matter
Procedia PDF Downloads 184712 Durability of Wood Shavel Composites with Environmental Friendly Based Binder
Authors: Jul Endawati
Abstract:
The composite element of 20 mm in thickness were manufactured using high volume fly ash, silica fume as alternative hydraulic binders and Portland cement Type II. Pine wood shavel as by product of local small wood working industries were used as the composite filler. The elements were given in situ wet and dry treatment for 9 months. Visually there is no fiber degradation as a result of the interaction of the environment. The assessment were done to the elements bending strength and dimensional properties. Increase in MoR after 180 days of exposure shown that mechanically this degradation is not seen yet. The increment of MoR (213%) compare to that of 28 days might be affected by the formation of calcium hydroxide (CH) or ettringite in the transition zone. The use of pozzolan showed also a delay or minimize degradation of composites while improving the pore structure, and minimize the mineralization of the fiber bond with the cement matrix. The water absorption is 4,22% at 180 days, 7,94% at 120 days and 12,38% at 28 days, in line with the 68% decrease in Thickness Swelling (TS). This unoccured degradation could also be affected by the presence of silica fume in the binder matrix. After 270 days of exposure under tropical condition, the flexural strength started to decrease.Keywords: durability, fly ash, natural fibre, silica fume
Procedia PDF Downloads 262711 Identification and Quantification of Phenolic Compounds In Cassia tora Collected from Three Different Locations Using Ultra High Performance Liquid Chromatography – Electro Spray Ionization – Mass Spectrometry (UHPLC-ESI-MS-MS)
Authors: Shipra Shukla, Gaurav Chaudhary, S. K. Tewari, Mahesh Pal, D. K. Upreti
Abstract:
Cassia tora L. is widely distributed in tropical Asian countries, commonly known as sickle pod. Various parts of the plant are reported for their medicinal value due to presence of anthraquinones, phenolic compounds, emodin, β-sitosterol, and chrysophanol. Therefore a sensitive analytical procedure using UHPLC-ESI-MS/MS was developed and validated for simultaneous quantification of five phenolic compounds in leaf, stem and root extracts of Cassia tora. Rapid chromatographic separation of compounds was achieved on Acquity UHPLC BEH C18 column (50 mm×2.1 mm id, 1.7µm) column in 2.5 min. Quantification was carried out using negative electrospray ionization in multiple-reaction monitoring mode. The method was validated as per ICH guidelines and showed good linearity (r2 ≥ 0.9985) over the concentration range of 0.5-200 ng/mL. The intra- and inter-day precisions and accuracy were within RSDs ≤ 1.93% and ≤ 1.90%, respectively. The developed method was applied to investigate variation of five phenolic compounds in the three geographical collections. Results indicated significant variation among analyzed samples collected from different locations in India.Keywords: Cassia tora, phenolic compounds, quantification, UHPLC-ESI-MS/MS
Procedia PDF Downloads 269710 Co-Limitation of Iron Deficiency in Stem Allantoin and Amino-N Formation of Peanut Plants Intercropped with Cassava
Authors: Hong Li, Tingxian Li, Xudong Wang, Weibo Yang
Abstract:
Co-limitation of iron (Fe) deficiency in legume nitrogen fixation process is not well understood. Our objectives were to examine how peanut plants cope with Fe deficiency with the rhizobial inoculants and N-nutrient treatments. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 4.6±0.7) and deficient in Fe (9.2±2.3 mg/kg). Peanut plants were intercropped with cassava. The inoculants and N treatments were arranged in a split-plot design with three blocks. Peanut root nodulation, stem allantoin, amino acids and plant N derived from fixation (P) reduced with declining soil Fe concentrations. The treatment interactions were significant on relative ureide % and peanut yields (P<0.05). Residual fixed N from peanut plants was beneficial to cassava plants. It was concluded that co-variance of Fe deficiency could influence peanut N fixation efficiency and rhizobia and N inputs could help improving peanut tolerance to Fe deficiency stress.Keywords: amino acids, plant N derived from N fixation, root nodulation, soil Fe co-variance, stem ureide, peanuts, cassava
Procedia PDF Downloads 295709 Preliminary Result on the Impact of Anthropogenic Noise on Understory Bird Population in Primary Forest of Gaya Island
Authors: Emily A. Gilbert, Jephte Sompud, Andy R. Mojiol, Cynthia B. Sompud, Alim Biun
Abstract:
Gaya Island of Sabah is known for its wildlife and marine biodiversity. It has marks itself as one of the hot destinations of tourists from all around the world. Gaya Island tourism activities have contributed to Sabah’s economy revenue with the high number of tourists visiting the island. However, it has led to the increased anthropogenic noise derived from tourism activities. This may greatly interfere with the animals such as understory birds that rely on acoustic signals as a tool for communication. Many studies in other parts of the regions reveal that anthropogenic noise does decrease species richness of avian community. However, in Malaysia, published research regarding the impact of anthropogenic noise on the understory birds is still very lacking. This study was conducted in order to fill up this gap. This study aims to investigate the anthropogenic noise’s impact towards understory bird population. There were three sites within the Primary forest of Gaya Island that were chosen to sample the level of anthropogenic noise in relation to the understory bird population. Noise mapping method was used to measure the anthropogenic noise level and identify the zone with high anthropogenic noise level (> 60dB) and zone with low anthropogenic noise level (< 60dB) based on the standard threshold of noise level. The methods that were used for this study was solely mist netting and ring banding. This method was chosen as it can determine the diversity of the understory bird population in Gaya Island. The preliminary study was conducted from 15th to 26th April and 5th to 10th May 2015 whereby there were 2 mist nets that were set up at each of the zones within the selected site. The data was analyzed by using the descriptive analysis, presence and absence analysis, diversity indices and diversity t-test. Meanwhile, PAST software was used to analyze the obtain data. The results from this study present a total of 60 individuals that consisted of 12 species from 7 families of understory birds were recorded in three of the sites in Gaya Island. The Shannon-Wiener index shows that diversity of species in high anthropogenic noise zone and low anthropogenic noise zone were 1.573 and 2.009, respectively. However, the statistical analysis shows that there was no significant difference between these zones. Nevertheless, based on the presence and absence analysis, it shows that the species at the low anthropogenic noise zone was higher as compared to the high anthropogenic noise zone. Thus, this result indicates that there is an impact of anthropogenic noise on the population diversity of understory birds. There is still an urgent need to conduct an in-depth study by increasing the sample size in the selected sites in order to fully understand the impact of anthropogenic noise towards the understory birds population so that it can then be in cooperated into the wildlife management for a sustainable environment in Gaya Island.Keywords: anthropogenic noise, biodiversity, Gaya Island, understory bird
Procedia PDF Downloads 365708 Molecular Cloning of CSP2s, PBP1 and PBP2 Genes of Rhyzopertha dominica
Authors: Suliman A. I. Ali, Mory Mandiana Diakite, Saqib Ali, Man-Qun Wang
Abstract:
Lesser grain borer, Rhyzopertha dominica, is a causing damages of stored grains all tropical and subtropical area in the global, according to the information of antenna cDNA library of R. dominica, three olfactory protein genes, including R.domica CSPs2, R.domica PBPs1, R.domica PBPs2 genes (GenBank accessions are KJ186798.1, KJ186830.1, KJ186831.1 separately.), were successfully cloned. For sequencing and phylogenetic analysis, R.domica CSPs1 and R.domica CSPs2 belonged to Minus-C CSPs showed that have 4 conserved cysteine residues, while R.domica PBPs1 and R.domica PBPs2 showed conserved amino acids in all PBPs six conserved cysteine residues. The results of transcription expression level of PBPs1 and PBPs2 of R. dominica showed that the expression level of R.domnica PBP2 is much higher than that of R.domnica PBP1. The variation transcription level at the different developmental time suggested the PBP1, and PBP2 had their particular job in searching food sources, mates and oviposition sites.Keywords: Rhyzopertha dominica, CSPs, PBPs, molecular cloning
Procedia PDF Downloads 148707 Fire Risk Information Harmonization for Transboundary Fire Events between Portugal and Spain
Authors: Domingos Viegas, Miguel Almeida, Carmen Rocha, Ilda Novo, Yolanda Luna
Abstract:
Forest fires along the more than 1200km of the Spanish-Portuguese border are more and more frequent, currently achieving around 2000 fire events per year. Some of these events develop to large international wildfire requiring concerted operations based on shared information between the two countries. The fire event of Valencia de Alcantara (2003) causing several fatalities and more than 13000ha burnt, is a reference example of these international events. Currently, Portugal and Spain have a specific cross-border cooperation protocol on wildfires response for a strip of about 30km (15 km for each side). It is recognized by public authorities the successfulness of this collaboration however it is also assumed that this cooperation should include more functionalities such as the development of a common risk information system for transboundary fire events. Since Portuguese and Spanish authorities use different approaches to determine the fire risk indexes inputs and different methodologies to assess the fire risk, sometimes the conjoint firefighting operations are jeopardized since the information is not harmonized and the understanding of the situation by the civil protection agents from both countries is not unique. Thus, a methodology aiming the harmonization of the fire risk calculation and perception by Portuguese and Spanish Civil protection authorities is hereby presented. The final results are presented as well. The fire risk index used in this work is the Canadian Fire Weather Index (FWI), which is based on meteorological data. The FWI is limited on its application as it does not take into account other important factors with great effect on the fire appearance and development. The combination of these factors is very complex since, besides the meteorology, it addresses several parameters of different topics, namely: sociology, topography, vegetation and soil cover. Therefore, the meaning of FWI values is different from region to region, according the specific characteristics of each region. In this work, a methodology for FWI calibration based on the number of fire occurrences and on the burnt area in the transboundary regions of Portugal and Spain, in order to assess the fire risk based on calibrated FWI values, is proposed. As previously mentioned, the cooperative firefighting operations require a common perception of the information shared. Therefore, a common classification of the fire risk for the fire events occurred in the transboundary strip is proposed with the objective of harmonizing this type of information. This work is integrated in the ECHO project SpitFire - Spanish-Portuguese Meteorological Information System for Transboundary Operations in Forest Fires, which aims the development of a web platform for the sharing of information and supporting decision tools to be used in international fire events involving Portugal and Spain.Keywords: data harmonization, FWI, international collaboration, transboundary wildfires
Procedia PDF Downloads 254706 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets
Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson
Abstract:
Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime
Procedia PDF Downloads 96705 A Rare Case of Atypical Guillian-Barre Syndrome Following Antecedent Dengue Infection
Authors: Amlan Datta
Abstract:
Dengue is an arboviral, vector borne infection, quite prevalent in tropical countries such as India. Approximately, 1 to 25% of cases may give rise to neurological complication, such as, seizure, delirium, Guillian-Barre syndrome (GBS), multiple cranial nerve palsies, intracranial thrombosis, stroke-like presentations, to name a few. Dengue fever, as an antecedent to GBS is uncommon, especially in adults.Here, we report a case about a middle aged lady who presented with an acute onset areflexic ascending type of polyradiculoneuropathy along with bilateral lower motor neuron type of facial nerve palsy, as well as abducens and motor component of trigeminal (V3) weakness. Her respiratory and neck muscles were spared. She had an established episode of dengue fever (NS1 and dengue IgM positive) 7 days prior to the weakness. Nerve conduction study revealed a demyelinating polyradiculopathy of both lower limbs and cerebrospinal fluid examination showed albuminocytological dissociation. She was treated with 5 days of intravenous immunoglobulin (IVIg), following which her limb weakness improved considerably. This case highlights GBS as a potential complication following dengue fever.Keywords: areflexic, demyelinating, dengue, polyradiculoneuropathy
Procedia PDF Downloads 258704 A Theoretical Framework on International Voluntary Health Networks
Authors: Benet Reid, Nina Laurie, Matt Baillie-Smith
Abstract:
Trans-national and tropical medicine, historically associated with colonial power and missionary activity, is now central to discourses of global health and development, thrust into mainstream media by events like the 2014 Ebola crisis and enshrined in the Sustainable Development Goals. Research in this area remains primarily the province of health professional disciplines, and tends to be framed within a simple North-to-South model of development. The continued role of voluntary work in this field is bound up with a rhetoric of partnering and partnership. We propose, instead, the idea of International Voluntary Health Networks (IVHNs) as a means to de-centre global-North institutions in these debates. Drawing on our empirical work with IVHNs in countries both North and South, we explore geographical and sociological theories for mapping the multiple spatial and conceptual dynamics of power manifested in these phenomena. We make a radical break from conventional views of health as a de-politicised symptom or corollary of social development. In studying health work as it crosses between cultures and contexts, we demonstrate the inextricably political nature of health and health work everywhere.Keywords: development, global health, power, volunteering
Procedia PDF Downloads 328703 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 95702 Development of Milky Products Leavend by Kefir Grains with Reduced Lactose and Flavored with Tropical Fruit
Authors: A. L. Balieiro, D. S. Silveira, R. A. Santos, L. S. Freitas, O. L. S. De Alsina, A. S. Lima, C. M. F. Soares
Abstract:
The state of Sergipe has been emerging in milk production, mainly in the dairy basin located in the northeast of the state of the Brazil. However, this area concentrates the production of dairy, developing diverse products with higher aggregated value and scent and regional flavours. With this goal the present wok allows the development of dairy drinks with reduced lactose index, using kefir grains flavored with mangaba pulp. Initially, the removal of milk lactose was evaluated in adsorption columns completed with silica particles obtained by molecular impression technique, using sol ? gel method with the presence and absence of lactose biomolecule, molecular imprinted polymer (PIM) or pure matrix (MP), respectively. Then kefir grains were used for the development of dairy drinks flavored with regional fruits (mangaba). The products were analyzed sensorially, evaluated the probiotic potential and the removal of the lactose. Among the products obtained, the one that present best result in the sensorially was to the drink with removal PIM flavored of mangaba, for which around 60% of the testers indicated that would buy the new product.Keywords: molecular imprinted polymer, milk, lactose, kefir
Procedia PDF Downloads 286701 Labile and Humified Carbon Storage in Natural and Anthropogenically Affected Luvisols
Authors: Kristina Amaleviciute, Ieva Jokubauskaite, Alvyra Slepetiene, Jonas Volungevicius, Inga Liaudanskiene
Abstract:
The main task of this research was to investigate the chemical composition of the differently used soil in profiles. To identify the differences in the soil were investigated organic carbon (SOC) and its fractional composition: dissolved organic carbon (DOC), mobile humic acids (MHA) and C to N ratio of natural and anthropogenically affected Luvisols. Research object: natural and anthropogenically affected Luvisol, Akademija, Kedainiai, distr. Lithuania. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LAMMC. Soil samples for chemical analyses were taken from the genetics soil horizons. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. For mobile humic acids (MHA) determination the extraction procedure was carried out using 0.1 M NaOH solution. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR. pH was measured in 1M H2O. N total was determined by Kjeldahl method. Results: Based on the obtained results, it can be stated that transformation of chemical composition is going through the genetic soil horizons. Morphology of the upper layers of soil profile which is formed under natural conditions was changed by anthropomorphic (agrogenic, urbogenic, technogenic and others) structure. Anthropogenic activities, mechanical and biochemical disturbances destroy the natural characteristics of soil formation and complicates the interpretation of soil development. Due to the intensive cultivation, the pH values of the curve equals (disappears acidification characteristic for E horizon) with natural Luvisol. Luvisols affected by agricultural activities was characterized by a decrease in the absolute amount of humic substances in separate horizons. But there was observed more sustainable, higher carbon sequestration and thicker storage of humic horizon compared with forest Luvisol. However, the average content of humic substances in the soil profile was lower. Soil organic carbon content in anthropogenic Luvisols was lower compared with the natural forest soil, but there was more evenly spread over in the wider thickness of accumulative horizon. These data suggest that the organization of geo-ecological declines and agroecological increases in Luvisols. Acknowledgement: This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.Keywords: agrogenization, dissolved organic carbon, luvisol, mobile humic acids, soil organic carbon
Procedia PDF Downloads 237700 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management
Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide
Abstract:
This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis
Procedia PDF Downloads 14699 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 157698 Proteomic Analysis of Excretory Secretory Antigen (ESA) from Entamoeba histolytica HM1: IMSS
Authors: N. Othman, J. Ujang, M. N. Ismail, R. Noordin, B. H. Lim
Abstract:
Amoebiasis is caused by the Entamoeba histolytica and still endemic in many parts of the tropical region, worldwide. Currently, there is no available vaccine against amoebiasis. Hence, there is an urgent need to develop a vaccine. The excretory secretory antigen (ESA) of E. histolytica is a suitable biomarker for the vaccine candidate since it can modulate the host immune response. Hence, the objective of this study is to identify the proteome of the ESA towards finding suitable biomarker for the vaccine candidate. The non-gel based and gel-based proteomics analyses were performed to identify proteins. Two kinds of mass spectrometry with different ionization systems were utilized i.e. LC-MS/MS (ESI) and MALDI-TOF/TOF. Then, the functional proteins classification analysis was performed using PANTHER software. Combination of the LC -MS/MS for the non-gel based and MALDI-TOF/TOF for the gel-based approaches identified a total of 273 proteins from the ESA. Both systems identified 29 similar proteins whereby 239 and 5 more proteins were identified by LC-MS/MS and MALDI-TOF/TOF, respectively. Functional classification analysis showed the majority of proteins involved in the metabolic process (24%), primary metabolic process (19%) and protein metabolic process (10%). Thus, this study has revealed the proteome the E. histolytica ESA and the identified proteins merit further investigations as a vaccine candidate.Keywords: E. histolytica, ESA, proteomics, biomarker
Procedia PDF Downloads 344697 Analysis of Spatial and Temporal Data Using Remote Sensing Technology
Authors: Kapil Pandey, Vishnu Goyal
Abstract:
Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing
Procedia PDF Downloads 433696 A Review on the Development and Challenges of Green Roof Systems in Malaysia
Authors: M. F. Chow, M. F. Abu Bakar
Abstract:
Green roof system is considered a relatively new concept in Malaysia even though it has been implemented widely in the developed countries. Generally, green roofs provide many benefits such as enhancing aesthetical quality of the built environment, reduce urban heat island effect, reduce energy consumption, improve stormwater attenuation, and reduce noise pollution. A better understanding on the implementation of green roof system in Malaysia is crucial, as Malaysia’s climate is different if compared with the climate in temperate countries where most of the green roof studies have been conducted. This study has concentrated on the technical aspect of green roof system which focuses on i) types of plants and method of planting; ii) engineering design for green roof system; iii) its hydrological performance on reducing stormwater runoff; and iv) benefits of green roofs with respect to energy. Literature review has been conducted to identify the development and obstacles associated with green roofs systems in Malaysia. The study had identified the challenges and potentials of green roofs development in Malaysia. This study also provided the recommendations on standard design and strategies on the implementation of green roofs in Malaysia in the near future.Keywords: engineering design, green roof, sustainable development, tropical countries
Procedia PDF Downloads 434695 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris
Authors: Piyush Samant, Ravinder Agarwal
Abstract:
Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction
Procedia PDF Downloads 408694 Application of Fuzzy Multiple Criteria Decision Making for Flooded Risk Region Selection in Thailand
Authors: Waraporn Wimuktalop
Abstract:
This research will select regions which are vulnerable to flooding in different level. Mathematical principles will be systematically and rationally utilized as a tool to solve problems of selection the regions. Therefore the method called Multiple Criteria Decision Making (MCDM) has been chosen by having two analysis standards, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytic Hierarchy Process). There are three criterions that have been considered in this research. The first criterion is climate which is the rainfall. The second criterion is geography which is the height above mean sea level. The last criterion is the land utilization which both forest and agriculture use. The study found that the South has the highest risk of flooding, then the East, the Centre, the North-East, the West and the North, respectively.Keywords: multiple criteria decision making, TOPSIS, analytic hierarchy process, flooding
Procedia PDF Downloads 236693 Empirical Prediction of the Effect of Rain Drops on Dbs System Operating in Ku-Band (Case Study of Abuja)
Authors: Tonga Agadi Danladi, Ajao Wasiu Bamidele, Terdue Dyeko
Abstract:
Recent advancement in microwave communications technologies especially in telecommunications and broadcasting have resulted in congestion on the frequencies below 10GHz. This has forced microwave designers to look for high frequencies. Unfortunately for frequencies greater than 10GHz rain becomes one of the main factors of attenuation in signal strength. At frequencies from 10GHz upwards, rain drop sizes leads to outages that compromises the availability and quality of service this making it a critical factor in satellite link budget design. Rain rate and rain attenuation predictions are vital steps to be considered when designing microwave satellite communication link operating at Ku-band frequencies (112-18GHz). Unreliable rain rates data in the tropical regions of the world like Nigeria from radio communication group of the international Telecommunication Union (ITU-R) makes it difficult for microwave engineers to determine a realistic rain margin that needs to be accommodated in satellite link budget design in such region. This work presents an empirical tool for predicting the amount of signal due to rain on DBS signal operating at the Ku-band.Keywords: attenuation, Ku-Band, microwave communication, rain rates
Procedia PDF Downloads 487692 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 128691 Age and Population Structure of the Goby Parapocryptes Serperaster in the Mekong Delta, Vietnam, Based on Length-Frequency and Otolith Analyses
Authors: Quang Minh Dinh, Jian Guang Qin, Sabine Dittmann, Dinh Dac Tran
Abstract:
The age and population structure the dermal gopy Parapocryptes serperaster were studied using length distributions, otolith and von Bertalanffy model in the Mekong Delta over a whole year through monthly sampling. The sex ratio of P. serperaster was near 1:1, and von Bertalanffy growth parameters were L∞= 25.2 cm, K = 0.74 yr-1, and t0 = -0.22 yr-1. Fish size at first entry to fishery was 14.6 cm, and fishing mortality (1.57 yr-1) and natural mortality (1.51 yr-1) accounted for 51% and 49% of the total mortality (3.07 yr-1), respectively. Relative yield-per-recruit and biomass-per-recruit analyses revealed the levels of maximum exploitation yield (Emax = 0.83), maximum economic yield (E0.1 = 0.71) and the yield at 50% reduction of exploitation (E0.5 = 0.37). Otoliths from 164 female and 196 male gobies were readable, and the otolith morphometry data were used for age identification. The mean age estimated by reading otolith annual rings and by analysing length frequency distribution was consistent. This study shows that the otolith morphometry is a reliable method for aging this goby and possibly also applicable for other tropical gobies. The fishery analysis indicates that this goby stock has not been overexploited in the Mekong Delta.Keywords: Parapcryptes serperaster, otolith, age, pulation structure, Vietnam
Procedia PDF Downloads 656690 Dissipation of Tebuconazole in Cropland Soils as Affected by Soil Factors
Authors: Bipul Behari Saha, Sunil Kumar Singh, P. Padmaja, Kamlesh Vishwakarma
Abstract:
Dissipation study of tebuconazole in alluvial, black and deep-black clayey soils collected from paddy, mango and peanut cropland of tropical agro-climatic zone of India at three concentration levels were carried out for monitoring the water contamination through persisted residual toxicity. The soil-slurry samples were analyzed by capillary GC-NPD methods followed by ultrasound-assisted extraction (UAE) technique and cleanup process. An excellent linear relationship between peak area and concentration obtained in the range 1 to 50 μgkg-1. The detection (S/N, 3 ± 0.5) and quantification (S/N, 7.5 ± 2.5) limits were 3 and 10 μgkg-1 respectively. Well spiked recoveries were achieved from 96.28 to 99.33 % at levels 5 and 20 μgkg-1 and method precision (% RSD) was ≤ 5%. The soils dissipation of tebuconazole was fitted in first order kinetic-model with half-life between 34.48 to 48.13 days. The soil organic-carbon (SOC) content correlated well with the dissipation rate constants (DRC) of the fungicide Tebuconazole. An increase in the SOC content resulted in faster dissipation. The results indicate that the soil organic carbon and tebuconazole concentrations plays dominant role in dissipation processes. The initial concentration illustrated that the degradation rate of tebuconazole in soils was concentration dependent.Keywords: cropland soil, dissipation, laboratory incubation, tebuconazole
Procedia PDF Downloads 253689 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 9688 Nitrogen and Potassium Fertilizer Response on Growth and Yield of Hybrid Luffa –Naga F1 Variety
Authors: D. R. T. N. K. Dissanayake, H. M. S. K. Herath, H. K. S. G. Gunadasa, P. Weerasinghe
Abstract:
Luffa is a tropical and subtropical vegetable, belongs to family Cucurbiteceae. It is predominantly monoecious in sex expression and provides an ample scope for utilization of hybrid vigor. Hybrid varieties develop through open pollination, produce higher yields due to its hybrid vigor. Naga F1 hybrid variety consists number of desirable traits other than higher yield such as strong and vigorous plants, fruits with long deep ridges, attractive green color fruits ,better fruit weight, length and early maturity compared to the local Luffa cultivars. Unavailability of fertilizer recommendations for hybrid cucurbit vegetables leads to an excess fertilizer application causing a vital environmental issue that creates undesirable impacts on nature and the human health. Main Objective of this research is to determine effect of different nitrogen and potassium fertilizer rates on growth and yield of Naga F1 Variety. Other objectives are, to evaluate specific growth parameters and yield, to identify the optimum nitrogen and potassium fertilizer levels based on growth and yield of hybrid Luffa variety. As well as to formulate the general fertilizer recommendation for hybrid Luffa -Naga F1 variety.Keywords: hybrid, nitrogen, phosphorous, potassium
Procedia PDF Downloads 595687 Transformable Lightweight Structures for Short-term Stay
Authors: Anna Daskalaki, Andreas Ashikalis
Abstract:
This is a conceptual project that suggests an alternative type of summer camp in the forest of Rouvas in the island of Crete. Taking into account some feasts that are organised by the locals or mountaineering clubs near the church of St. John, we created a network of lightweight timber structures that serve the needs of the visitor. These structures are transformable and satisfy the need for rest, food, and sleep – this means a seat, a table and a tent are embodied in each structure. These structures blend in with the environment as they are being installed according to the following parameters: (a) the local relief, (b) the clusters of trees, and (c) the existing paths. Each timber structure could be considered as a module that could be totally independent or part of a bigger construction. The design showcases the advantages of a timber structure as it can be quite adaptive to the needs of the project, but also it is a sustainable and environmentally friendly material that can be recycled. Finally, it is important to note that the basic goal of this project is the minimum alteration of the natural environment.Keywords: lightweight structures, timber, transformable, tent
Procedia PDF Downloads 171686 Clean Technology: Hype or Need to Have
Authors: Dirk V. H. K. Franco
Abstract:
For many of us a lot of phenomena are considered a risk. Examples are: climate change, decrease of biodiversity, amount of available, clean water and the decreasing variety of living organism in the oceans. On the other hand a lot of people perceive the following trends as catastrophic: the sea level, the melting of the pole ice, the numbers of tornado’s, floods and forest fires, the national security and the potential of 192 million climate migrants in 2060. The interest for climate, health and the possible solutions is large and common. The 5th IPCC states that the last decades especially human activities (and in second order natural emissions) have caused large, mainly negative impacts on our ecological environments. Chris Stringer stated that we represent, nowadays after evolution, the only one version of the possible humanity. At this very moment we are faced with an (over) crowded planet together with global climate changes and a strong demand for energy and material resources. Let us hope that we can counter these difficulties either with better application of existing technologies or by inventing new (applications of) clean technologies together with new business models.Keywords: clean technologies, catastrophic, climate, possible solutions
Procedia PDF Downloads 500