Search results for: traditional knowledge resources classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17523

Search results for: traditional knowledge resources classification

16833 The Effectiveness of Traditional Music as Therapy and Alternative to Traditional Forms of Therapy in Treatment of Anxiety and Depression

Authors: Helen Johnson-Egemba

Abstract:

This paper will discuss the current effectiveness of music therapy for a range of conditions, such as depression and anxiety. Indeed, traditional forms of therapy have often been effective in treating various mental and physical health conditions. However, they are not with their limitations. Music therapy, on the other hand, is a non-invasive and cost-effective alternative that can produce similar or even better results. Music therapy can produce longer-lasting results. The research also highlights the underlying mechanisms of traditional music therapy, such as its complementary treatment. A systematic review of existing literature was conducted to gather relevant studies and establish a comprehensive understanding of the topic. Various research methods, including experimental studies, qualitative research, surveys, were utilized to explore the therapeutic potential of traditional music interventions. The findings reveal that traditional music therapy shows promise in managing anxiety and depression symptoms, with positive outcomes impacting brain activity, emotions, and stress regulation. The outcomes of this study contribute to evidence-based practice, providing insights for clinicians and therapists to incorporate traditional music therapy into their treatment approaches. Furthermore, the research promotes awareness and acceptance of traditional music as a legitimate and effective therapeutic intervention for anxiety and depression, potentially enhancing access to alternative and complementary treatment options. Overall, this study demonstrates the potential benefits of traditional music therapy in addressing anxiety and depression, offering valuable implications for mental health care and improving the well-being of individuals struggling with these conditions.

Keywords: anxiety, effectiveness, depression, traditional music, therapy, treatment

Procedia PDF Downloads 45
16832 An Introduction to the Current Epistemology of Ethical Philosophy of Islamic Banking

Authors: Mohd Iqbal Malik

Abstract:

Ethical philosophy of Quran pinnacled virtue and economics as the part and parcel of human life. Human beings are to be imagined by the sign of morals. Soul and morality are both among the essences of human personality. Islam lays the foundation of ethics by installation of making a momentous variance between virtue and vice. It suggests for the distribution of wealth in-order to terminate accumulation of economic resources. Quran claims for the ambiguous pavement to attain virtue by saying, ‘Never will you attain the good (reward) until you spend (in the way of Allah) from that which you love. And whatever you spend indeed, Allah knows of it.’ The essence of Quran is to eliminate all the deep-seated approaches through which the wealth of nations is being accumulated within few hands. The paper will study the Quranic Philosophy Of Islamic Economic System. In recent times, to get out of the human resource development mystery of Muslims, Ismail Al-Raji Faruqi led the way in the so-called ‘Islamization’ of knowledge. Rahman and Faruqi formed opposite opinions on this project. Al-Faruqi thought of the Islamization of knowledge in terms of introducing Western learning into received Islamic values and vice versa. This proved to be a mere peripheral treatment of Islamic values in relation to Western knowledge. It is true that out of the programme of Islamization of knowledge arose Islamic universities in many Muslim countries. Yet the academic programmes of these universities were not founded upon a substantive understanding and application of the tawhidi epistemology.

Keywords: ethical philosophy, modern Islamic finance, knowledge of finance, Islamic banking

Procedia PDF Downloads 306
16831 The Impact of Interrelationship between Business Intelligence and Knowledge Management on Decision Making Process: An Empirical Investigation of Banking Sector in Jordan

Authors: Issa M. Shehabat, Huda F. Y. Nimri

Abstract:

This paper aims to study the relationship between knowledge management in its processes, including knowledge creation, knowledge sharing, knowledge organization, and knowledge application, and business intelligence tools, including OLAP, data mining, and data warehouse, and their impact on the decision-making process in the banking sector in Jordan. A total of 200 questionnaires were distributed to the sample of the study. The study hypotheses were tested using the statistical package SPSS. Study findings suggest that decision-making processes were positively related to knowledge management processes. Additionally, the components of business intelligence had a positive impact on decision-making. The study recommended conducting studies similar to this study in other sectors such as the industrial, telecommunications, and service sectors to contribute to enhancing understanding of the role of the knowledge management processes and business intelligence tools.

Keywords: business intelligence, knowledge management, decision making, Jordan, banking sector

Procedia PDF Downloads 144
16830 The Employment of Unmanned Aircraft Systems for Identification and Classification of Helicopter Landing Zones and Airdrop Zones in Calamity Situations

Authors: Marielcio Lacerda, Angelo Paulino, Elcio Shiguemori, Alvaro Damiao, Lamartine Guimaraes, Camila Anjos

Abstract:

Accurate information about the terrain is extremely important in disaster management activities or conflict. This paper proposes the use of the Unmanned Aircraft Systems (UAS) at the identification of Airdrop Zones (AZs) and Helicopter Landing Zones (HLZs). In this paper we consider the AZs the zones where troops or supplies are dropped by parachute, and HLZs areas where victims can be rescued. The use of digital image processing enables the automatic generation of an orthorectified mosaic and an actual Digital Surface Model (DSM). This methodology allows obtaining this fundamental information to the terrain’s comprehension post-disaster in a short amount of time and with good accuracy. In order to get the identification and classification of AZs and HLZs images from DJI drone, model Phantom 4 have been used. The images were obtained with the knowledge and authorization of the responsible sectors and were duly registered in the control agencies. The flight was performed on May 24, 2017, and approximately 1,300 images were obtained during approximately 1 hour of flight. Afterward, new attributes were generated by Feature Extraction (FE) from the original images. The use of multispectral images and complementary attributes generated independently from them increases the accuracy of classification. The attributes of this work include the Declivity Map and Principal Component Analysis (PCA). For the classification four distinct classes were considered: HLZ 1 – small size (18m x 18m); HLZ 2 – medium size (23m x 23m); HLZ 3 – large size (28m x 28m); AZ (100m x 100m). The Decision Tree method Random Forest (RF) was used in this work. RF is a classification method that uses a large collection of de-correlated decision trees. Different random sets of samples are used as sampled objects. The results of classification from each tree and for each object is called a class vote. The resulting classification is decided by a majority of class votes. In this case, we used 200 trees for the execution of RF in the software WEKA 3.8. The classification result was visualized on QGIS Desktop 2.12.3. Through the methodology used, it was possible to classify in the study area: 6 areas as HLZ 1, 6 areas as HLZ 2, 4 areas as HLZ 3; and 2 areas as AZ. It should be noted that an area classified as AZ covers the classifications of the other classes, and may be used as AZ, HLZ of large size (HLZ3), medium size (HLZ2) and small size helicopters (HLZ1). Likewise, an area classified as HLZ for large rotary wing aircraft (HLZ3) covers the smaller area classifications, and so on. It was concluded that images obtained through small UAV are of great use in calamity situations since they can provide data with high accuracy, with low cost, low risk and ease and agility in obtaining aerial photographs. This allows the generation, in a short time, of information about the features of the terrain in order to serve as an important decision support tool.

Keywords: disaster management, unmanned aircraft systems, helicopter landing zones, airdrop zones, random forest

Procedia PDF Downloads 177
16829 Innovation Ecosystems in Construction Industry

Authors: Cansu Gülser, Tuğce Ercan

Abstract:

The construction sector is a key driver of the global economy, contributing significantly to growth and employment through a diverse array of sub-sectors. However, it faces challenges due to its project-based nature, which often hampers long-term collaboration and broader incentives beyond individual projects. These limitations are frequently discussed in scientific literature as obstacles to innovation and industry-wide change. Traditional practices and unwritten rules further hinder the adoption of new processes within the construction industry. The disadvantages of the construction industry’s project-based structure in fostering innovation and long-term relationships include limited continuity, fragmented collaborations, and a focus on short-term goals, which collectively hinder the development of sustained partnerships, inhibit the sharing of knowledge and best practices, and reduce incentives for investing in innovative processes and technologies. This structure typically emphasizes specific projects, which restricts broader collaborations and incentives that extend beyond individual projects, thus impeding innovation and change. The temporal complexities inherent in project-based sectors like construction make it difficult to address societal challenges through collaborative efforts. Traditional management approaches are inadequate for scaling up innovations and adapting to significant changes. For systemic transformation in the construction sector, there is a need for more collaborative relationships and activities beyond traditional supply chains. This study delves into the concept of an innovation ecosystem within the construction sector, highlighting various research findings. It aims to explore key questions about the components that enhance innovation capacity, the relationship between a robust innovation ecosystem and this capacity, and the reasons why innovation is less prevalent and implemented in this sector compared to others. Additionally, it examines the main factors hindering innovation within companies and identifies strategies to improve these efforts, particularly in developing countries. The innovation ecosystem in the construction sector generates various outputs through interactions between business resources and external components. These outputs include innovative value creation, sustainable practices, robust collaborations, knowledge sharing, competitiveness, and advanced project management, all of which contribute significantly to company market performance and competitive advantage. This article offers insights and strategic recommendations for industry professionals, policymakers, and researchers interested in developing and sustaining innovation ecosystems in the construction sector. Future research should focus on broader samples for generalization, comparative sector analysis, and application-focused studies addressing real industry challenges. Additionally, studying the long-term impacts of innovation ecosystems, integrating advanced technologies like AI and machine learning into project management, and developing future application strategies and policies are also important.

Keywords: construction industry, innovation ecosystem, innovation ecosystem components, project management

Procedia PDF Downloads 35
16828 Pragmatic Competence in Pakistani English Language Learners

Authors: Ghazala Kausar

Abstract:

This study investigates Pakistani first year university students’ perception of the role of pragmatics in their general approach to learning English. The research is triggered by National Curriculum’s initiative to provide holistic opportunities to the students for language development and to equip them with competencies to use English language in academic and social contexts (New English National Curriculum for I-XII). The traditional grammar translation and examination oriented method is believed to reduce learners to silent listener (Zhang, 2008: Zhao 2009). This lead to the inability of the students to interpret discourse by relating utterances to their meaning, understanding the intentions of the users and how language is used in specific setting (Bachman & Palmer, 1996, 2010). Pragmatic competence is a neglected area as far as teaching and learning English in Pakistan is concerned. This study focuses on the different types of pragmatic knowledge, learners perception of such knowledge and learning strategies employed by different learners to process the learning in general and pragmatic in particular. This study employed three data collecting tools; a questionnaire, discourse completion task and interviews to elicit data from first year university students regarding their perception of pragmatic competence. Results showed that Pakistani first year university learners have limited pragmatic knowledge. Although they acknowledged the importance of linguistic knowledge for linguistic competence in the students but argued that insufficient English proficiency, limited knowledge of pragmatics, insufficient language material and tasks were major reasons of pragmatic failure.

Keywords: pragmatic competence, Pakistani college learners, linguistic competence

Procedia PDF Downloads 739
16827 Low-Level Modeling for Optimal Train Routing and Scheduling in Busy Railway Stations

Authors: Quoc Khanh Dang, Thomas Bourdeaud’huy, Khaled Mesghouni, Armand Toguy´eni

Abstract:

This paper studies a train routing and scheduling problem for busy railway stations. Our objective is to allow trains to be routed in dense areas that are reaching saturation. Unlike traditional methods that allocate all resources to setup a route for a train and until the route is freed, our work focuses on the use of resources as trains progress through the railway node. This technique allows a larger number of trains to be routed simultaneously in a railway node and thus reduces their current saturation. To deal with this problem, this study proposes an abstract model and a mixed-integer linear programming formulation to solve it. The applicability of our method is illustrated on a didactic example.

Keywords: busy railway stations, mixed-integer linear programming, offline railway station management, train platforming, train routing, train scheduling

Procedia PDF Downloads 254
16826 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques

Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart

Abstract:

Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.

Keywords: machine learning, text classification, NLP techniques, semantic representation

Procedia PDF Downloads 100
16825 Research on the Effectiveness of Online Guided Case Teaching in Problem-Based Learning: A Preschool Special Education Course

Authors: Chen-Ya Juan

Abstract:

Problem-Based Learning uses vague questions to guide student thinking and enhance their self-learning and collaboration. Most teachers implement PBL in a physical classroom, where teachers can monitor and evaluate students’ learning progress and guide them to search resources for answers. However, the prevalence of the Covid-19 in the world had changed from physical teaching to distance teaching. This instruction used many cases and applied Problem-Based Learning combined on the distance teaching via the internet for college students. This study involved an experimental group with PBL and a control group without PBL. The teacher divided all students in PBL class into eight groups, and 7~8 students in each group. The teacher assigned different cases for each group of the PBL class. Three stages of instruction were developed, including background knowledge of Learning, case analysis, and solving problems for each case. This study used a quantitative research method, a two-sample t-test, to find a significant difference in groups with PBL and without PBL. Findings indicated that PBL incased the average score of special education knowledge. The average score was improved by 20.46% in the PBL group and 15.4% without PBL. Results didn’t show significant differences (0.589>0.05) in special education professional knowledge. However, the feedback of the PBL students implied learning more about the application, problem-solving skills, and critical thinking. PBL students were more likely to apply professional knowledge on the actual case, find questions, resources, and answers. Most of them understood the importance of collaboration, working as a team, and communicating with other team members. The suggestions of this study included that (a) different web-based teaching instruments influenced student’s Learning; (b) it is difficult to monitor online PBL progress; (c) online PBL should be implemented flexible and multi-oriented; (d) although PBL did not show a significant difference on the group with PBL and without PBL, it did increase student’s problem-solving skills and critical thinking.

Keywords: problem-based learning, college students, distance learning, case analysis, problem-solving

Procedia PDF Downloads 130
16824 Understanding Cyber Kill Chains: Optimal Allocation of Monitoring Resources Using Cooperative Game Theory

Authors: Roy. H. A. Lindelauf

Abstract:

Cyberattacks are complex processes consisting of multiple interwoven tasks conducted by a set of agents. Interdictions and defenses against such attacks often rely on cyber kill chain (CKC) models. A CKC is a framework that tries to capture the actions taken by a cyber attacker. There exists a growing body of literature on CKCs. Most of this work either a) describes the CKC with respect to one or more specific cyberattacks or b) discusses the tools and technologies used by the attacker at each stage of the CKC. Defenders, facing scarce resources, have to decide where to allocate their resources given the CKC and partial knowledge on the tools and techniques attackers use. In this presentation CKCs are analyzed through the lens of covert projects, i.e., interrelated tasks that have to be conducted by agents (human and/or computer) with the aim of going undetected. Various aspects of covert project models have been studied abundantly in the operations research and game theory domain, think of resource-limited interdiction actions that maximally delay completion times of a weapons project for instance. This presentation has investigated both cooperative and non-cooperative game theoretic covert project models and elucidated their relation to CKC modelling. To view a CKC as a covert project each step in the CKC is broken down into tasks and there are players of which each one is capable of executing a subset of the tasks. Additionally, task inter-dependencies are represented by a schedule. Using multi-glove cooperative games it is shown how a defender can optimize the allocation of his scarce resources (what, where and how to monitor) against an attacker scheduling a CKC. This study presents and compares several cooperative game theoretic solution concepts as metrics for assigning resources to the monitoring of agents.

Keywords: cyber defense, cyber kill chain, game theory, information warfare techniques

Procedia PDF Downloads 140
16823 Enhance Engineering Pedagogy in Programming Course via Knowledge Graph-Based Recommender System

Authors: Yan Li

Abstract:

Purpose: There is a lack of suitable recommendation systems to assist engineering teaching. The existing traditional engineering pedagogies lack learning interests for postgraduate students. The knowledge graph-based recommender system aims to enhance postgraduate students’ programming skills, with a focus on programming courses. Design/methodology/approach: The case study will be used as a major research method, and the two case studies will be taken in both two teaching styles of the universities (Zhejiang University and the University of Nottingham Ningbo China), followed by the interviews. Quantitative and qualitative research methods will be combined in this study. Research limitations/implications: The case studies were only focused on two teaching styles universities, which is not comprehensive enough. The subject was limited to postgraduate students. Originality/value: The study collected and analyzed the data from two teaching styles of universities’ perspectives. It explored the challenges of Engineering education and tried to seek potential enhancement.

Keywords: knowledge graph and recommender system, engineering pedagogy, programming skills, postgraduate students

Procedia PDF Downloads 74
16822 Analyzing the Critical Factors Influencing Employees' Tacit and Explicit Knowledge Sharing Intentions for Sustainable Competitive Advantage: A Systematic Review and a Conceptual Framework

Authors: Made Ayu Aristyana Dewi

Abstract:

Due to the importance of knowledge in today’s competitive world, an understanding of how to enhance employee knowledge sharing has become critical. This study discerning employees’ knowledge sharing intentions according to the type of knowledge to be shared, whether tacit or explicit. This study provides a critical and systematic review of the current literature on knowledge sharing, with a particular focus on the most critical factors influencing employees’ tacit and explicit knowledge sharing intentions. The extant literature was identified through four electronic databases, from 2006 to 2016. The findings of this review reveal that most of the previous studies only focus on individual and social factors as the antecedents of knowledge sharing intention. Therefore, those previous studies did not consider some other potential factors, like organizational and technological factors that may hinder the progress of knowledge sharing processes. Based on the findings of the critical review, a conceptual framework is proposed, which presents the antecedents of employees’ tacit and explicit knowledge sharing intentions and its impact on innovation and sustainable competitive advantage.

Keywords: antecedents, explicit knowledge, individual factors, innovation, intentions, knowledge sharing, organizational factors, social factors, sustainable competitive advantage, tacit knowledge, technological factors

Procedia PDF Downloads 319
16821 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification

Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro

Abstract:

Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.

Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification

Procedia PDF Downloads 116
16820 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 25
16819 Classification of Health Information Needs of Hypertensive Patients in the Online Health Community Based on Content Analysis

Authors: Aijing Luo, Zirui Xin, Yifeng Yuan

Abstract:

Background: With the rapid development of the online health community, more and more patients or families are seeking health information on the Internet. Objective: This study aimed to discuss how to fully reveal the health information needs expressed by hypertensive patients in their questions in the online environment. Methods: This study randomly selected 1,000 text records from the question data of hypertensive patients from 2008 to 2018 collected from the website www.haodf.com and constructed a classification system through literature research and content analysis. This paper identified the background characteristics and questioning the intention of each hypertensive patient based on the patient’s question and used co-occurrence network analysis to explore the features of the health information needs of hypertensive patients. Results: The classification system for health information needs of patients with hypertension is composed of 9 parts: 355 kinds of drugs, 395 kinds of symptoms and signs, 545 kinds of tests and examinations , 526 kinds of demographic data, 80 kinds of diseases, 37 kinds of risk factors, 43 kinds of emotions, 6 kinds of lifestyles, 49 kinds of questions. The characteristics of the explored online health information needs of the hypertensive patients include: i)more than 49% of patients describe the features such as drugs, symptoms and signs, tests and examinations, demographic data, diseases, etc. ii) these groups are most concerned about treatment (77.8%), followed by diagnosis (32.3%); iii) 65.8% of hypertensive patients will ask doctors online several questions at the same time. 28.3% of the patients are very concerned about how to adjust the medication, and they will ask other treatment-related questions at the same time, including drug side effects, whether to take drugs, how to treat a disease, etc.; secondly, 17.6% of the patients will consult the doctors online about the causes of the clinical findings, including the relationship between the clinical findings and a disease, the treatment of a disease, medication, and examinations. Conclusion: In the online environment, the health information needs expressed by Chinese hypertensive patients to doctors are personalized; that is, patients with different background features express their questioning intentions to doctors. The classification system constructed in this study can guide health information service providers in the construction of online health resources, to help solve the problem of information asymmetry in communication between doctors and patients.

Keywords: online health community, health information needs, hypertensive patients, doctor-patient communication

Procedia PDF Downloads 119
16818 Access to Natural Resources in the Cameroonian Part of the Logone Basin: A Driver and Mitigation Tool to Ethnical Conflicts

Authors: Bonguen Onouck Rolande Carole, Ndongo Barthelemy

Abstract:

The climate change effects on the Lake Chad, coupled with population growth, have pushed large masses of people of various origins towards the lower part of the lower Logonewatershed in search of the benefits of environmental services, causing pressure on the environment and its resources. Economic services are therefore threatened, and the decrease in resources contributes to the deterioration of the social wellbeing resulting to conflicts among/between local communities, immigrants, displaced people, and foreigners. This paper is an information contribution on ethnical conflicts drivers in the area and the provided local management mechanisms such can help mitigate present or future conflicts in similar areas. It also prints out the necessity to alleviate water access deficit and encourage good practices for the population wellbeing. In order to meet the objective, in 2018, through the interface of the World Bank-Cameroon project-PULCI, data were collected on the field directly by discussing with the population and visiting infrastructures, indirectly by a questionnaire survey. Two administrative divisions were chosen (Logoneet Chari, Mayo-Danay) in which targeted localities were Zina, Mazera, Lahai, Andirni near the Waza Park and Yagoua, Tekele, Pouss, respectively. Due to some sociocultural and religious reasons, some information were acquired through the traditional chiefs. A desk study analysis based on resources access and availability conflicts history, and management mechanism was done. As results, roots drivers of ethnical conflicts are struggles over natural resources access, and the possibility of conflicts increases as the scarcity and vulnerabilities persist, creating more sociocultural gaps and tensions. The mitigation mechanisms though fruitful, are limited. There is poor documentation on the topic, the resources management policies of this basin are unsuitable and ineffective for some. Therefore, the restoration of environmental and ecosystems, the mitigation of climate change effects, and food insecurity are the challenges that must be met to alleviate conflicts in these localities.

Keywords: ethnic, communities, conflicts, mitigation mechanisms, natural resources, logone basin

Procedia PDF Downloads 111
16817 Surveying the Effect of Cybernetics on Knowledge Management from Users' Viewpoint Who Are Members of Electronic Discussion Groups (ALA, ALIA)

Authors: Mitra Ghiasi, Roghayeh Ghorbani Bousari

Abstract:

Nowadays, the aim of the organizations is to gain sustainable competitive. So, developing their intellectual capital, encouraging innovation, increasing suitable performance can be done by knowledge management. Knowledge turns into science if knowledge is used to improve decision making, decision quality and make effective decisions. The current research intends to investigate the relationship between cybernetics and knowledge management from the perspective of users who are members of electronic discussion groups (ALA, ALIA). The research methodology is survey method, and it is a type of correlation research. Cybernetics and knowledge management questionnaires used for collecting data. The questionnaire that was designed in electronic format, distributed among two electronic discussion groups during 30 days and completed by 100 members of each electronic discussion groups. The finding of this research showed that although cybernetics has an impact on knowledge management, there is no significant difference between the ALA and ALIA user's view regard to effect of cybernetics on knowledge management. The results also indicated that this conceptual model is consistent with the data collected from the sample.

Keywords: ALA discussion group, ALIA discussion group, cybernetics, knowledge management

Procedia PDF Downloads 239
16816 The Conceptual and Procedural Knowledge of Rational Numbers in Primary School Teachers

Authors: R. M. Kashim

Abstract:

The study investigates the conceptual and procedural knowledge of rational number in primary school teachers, specifically, the primary school teachers level of conceptual knowledge about rational number and the primary school teachers level of procedural knowledge about rational numbers. The study was carried out in Bauchi metropolis in Bauchi state of Nigeria. A Conceptual and Procedural Knowledge Test was used as the instrument for data collection, 54 mathematics teachers in Bauchi primary schools were involved in the study. The collections were analyzed using mean and standard deviation. The findings revealed that the primary school mathematics teachers in Bauchi metropolis posses a low level of conceptual knowledge of rational number and also possess a high level of Procedural knowledge of rational number. It is therefore recommended that to be effective, teachers teaching mathematics most posses a deep understanding of both conceptual and procedural knowledge. That way the most knowledgeable teachers in mathematics deliver highly effective rational number instructions. Teachers should not ignore the mathematical concept aspect of rational number teaching. This is because only the procedural aspect of Rational number is highlighted during instructions; this often leads to rote - learning of procedures without understanding the meanings. It is necessary for teachers to learn rational numbers teaching method that focus on both conceptual knowledge and procedural knowledge teaching.

Keywords: conceptual knowledge, primary school teachers, procedural knowledge, rational numbers

Procedia PDF Downloads 328
16815 Comparative Analysis of Spectral Estimation Methods for Brain-Computer Interfaces

Authors: Rafik Djemili, Hocine Bourouba, M. C. Amara Korba

Abstract:

In this paper, we present a method in order to classify EEG signals for Brain-Computer Interfaces (BCI). EEG signals are first processed by means of spectral estimation methods to derive reliable features before classification step. Spectral estimation methods used are standard periodogram and the periodogram calculated by the Welch method; both methods are compared with Logarithm of Band Power (logBP) features. In the method proposed, we apply Linear Discriminant Analysis (LDA) followed by Support Vector Machine (SVM). Classification accuracy reached could be as high as 85%, which proves the effectiveness of classification of EEG signals based BCI using spectral methods.

Keywords: brain-computer interface, motor imagery, electroencephalogram, linear discriminant analysis, support vector machine

Procedia PDF Downloads 499
16814 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 66
16813 Obstacle Classification Method Based on 2D LIDAR Database

Authors: Moohyun Lee, Soojung Hur, Yongwan Park

Abstract:

In this paper is proposed a method uses only LIDAR system to classification an obstacle and determine its type by establishing database for classifying obstacles based on LIDAR. The existing LIDAR system, in determining the recognition of obstruction in an autonomous vehicle, has an advantage in terms of accuracy and shorter recognition time. However, it was difficult to determine the type of obstacle and therefore accurate path planning based on the type of obstacle was not possible. In order to overcome this problem, a method of classifying obstacle type based on existing LIDAR and using the width of obstacle materials was proposed. However, width measurement was not sufficient to improve accuracy. In this research, the width data was used to do the first classification; database for LIDAR intensity data by four major obstacle materials on the road were created; comparison is made to the LIDAR intensity data of actual obstacle materials; and determine the obstacle type by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that data declined in quality in comparison to 3D LIDAR and it was possible to classify obstacle materials using 2D LIDAR.

Keywords: obstacle, classification, database, LIDAR, segmentation, intensity

Procedia PDF Downloads 349
16812 Performance Analysis with the Combination of Visualization and Classification Technique for Medical Chatbot

Authors: Shajida M., Sakthiyadharshini N. P., Kamalesh S., Aswitha B.

Abstract:

Natural Language Processing (NLP) continues to play a strategic part in complaint discovery and medicine discovery during the current epidemic. This abstract provides an overview of performance analysis with a combination of visualization and classification techniques of NLP for a medical chatbot. Sentiment analysis is an important aspect of NLP that is used to determine the emotional tone behind a piece of text. This technique has been applied to various domains, including medical chatbots. In this, we have compared the combination of the decision tree with heatmap and Naïve Bayes with Word Cloud. The performance of the chatbot was evaluated using accuracy, and the results indicate that the combination of visualization and classification techniques significantly improves the chatbot's performance.

Keywords: sentimental analysis, NLP, medical chatbot, decision tree, heatmap, naïve bayes, word cloud

Procedia PDF Downloads 74
16811 Emotions Aroused by Children’s Literature

Authors: Catarina Maria Neto da Cruz, Ana Maria Reis d'Azevedo Breda

Abstract:

Emotions are manifestations of everything that happens around us, influencing, consequently, our actions. People experience emotions continuously when socialize with friends, when facing complex situations, and when at school, among many other situations. Although the influence of emotions in the teaching and learning process is nothing new, its study in the academic field has been more popular in recent years, distinguishing between positive (e.g., enjoyment and curiosity) and negative emotions (e.g., boredom and frustration). There is no doubt that emotions play an important role in the students’ learning process since the development of knowledge involves thoughts, actions, and emotions. Nowadays, one of the most significant changes in acquiring knowledge, accessing information, and communicating is the way we do it through technological and digital resources. Faced with an increasingly frequent use of technological or digital means with different purposes, whether in the acquisition of knowledge or in communicating with others, the emotions involved in these processes change naturally. The speed with which the Internet provides information reduces the excitement for searching for the answer, the gratification of discovering something through our own effort, the patience, the capacity for effort, and resilience. Thus, technological and digital devices are bringing changes to the emotional domain. For this reason and others, it is essential to educate children from an early age to understand that it is not possible to have everything with just one click and to deal with negative emotions. Currently, many curriculum guidelines highlight the importance of the development of so-called soft skills, in which the emotional domain is present, in academic contexts. The technical report “OECD Survey on Social and Emotional Skills”, developed by OECD, is one of them. Within the scope of the Portuguese reality, the “Students’ profile by the end of compulsory schooling” and the “Health education reference” also emphasizes the importance of emotions in education. There are several resources to stimulate good emotions in articulation with cognitive development. One of the most predictable and not very used resources in the most diverse areas of knowledge after pre-school education is the literature. Due to its characteristics, in the narrative or in the illustrations, literature provides the reader with a journey full of emotions. On the other hand, literature makes it possible to establish bridges between narrative and different areas of knowledge, reconciling the cognitive and emotional domains. This study results from the presentation session of a children's book, entitled “From the Outside to Inside and from the Inside to Outside”, to children attending the 2nd, 3rd, and 4th years of basic education in the Portuguese education system. In this book, rationale and emotion are in constant dialogue, so in this session, based on excerpts from the book dramatized by the authors, some questions were asked to the children in a large group, with an aim to explore their perception regarding certain emotions or events that trigger them. According to the aim of this study, qualitative, descriptive, and interpretative research was carried out based on participant observation and audio records.

Keywords: emotions, basic education, children, soft skills

Procedia PDF Downloads 84
16810 Metamorphic Computer Virus Classification Using Hidden Markov Model

Authors: Babak Bashari Rad

Abstract:

A metamorphic computer virus uses different code transformation techniques to mutate its body in duplicated instances. Characteristics and function of new instances are mostly similar to their parents, but they cannot be easily detected by the majority of antivirus in market, as they depend on string signature-based detection techniques. The purpose of this research is to propose a Hidden Markov Model for classification of metamorphic viruses in executable files. In the proposed solution, portable executable files are inspected to extract the instructions opcodes needed for the examination of code. A Hidden Markov Model trained on portable executable files is employed to classify the metamorphic viruses of the same family. The proposed model is able to generate and recognize common statistical features of mutated code. The model has been evaluated by examining the model on a test data set. The performance of the model has been practically tested and evaluated based on False Positive Rate, Detection Rate and Overall Accuracy. The result showed an acceptable performance with high average of 99.7% Detection Rate.

Keywords: malware classification, computer virus classification, metamorphic virus, metamorphic malware, Hidden Markov Model

Procedia PDF Downloads 315
16809 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification

Authors: Xiao Chen, Xiaoying Kong, Min Xu

Abstract:

This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.

Keywords: vehicle classification, signal processing, road traffic model, magnetic sensing

Procedia PDF Downloads 320
16808 Exploring Eating Disorders in Sport: Coaching Knowledge and the Effects of the Pandemic

Authors: Rebecca Quinlan

Abstract:

Background: The pandemic has caused a surge in eating disorders (ED). The prevalence of ED is higher in athletes than in the general population. It would therefore be expected that there will be a rise in ED among athletic populations. Coaches regularly work with athletes and should be in a position to identify signs of ED in their athletes. However, there is limited awareness of ED among coaches. Given the effects of the pandemic, it is crucial that coaches have the skills and knowledge to identify ED. This research will explore the effects of the pandemic on athletes, current knowledge of ED among coaches, and possible solutions for building back better from the pandemic. Methods: Freedom of Information requests were conducted, and a systematic review of the literature was undertaken regarding ED in sports and following the pandemic. Results: The systematic review of the literature showed that there had been a rise in ED in athletes due to the pandemic. Freedom of Information results revealed that ED is not covered in level 1 coaching courses. This lack of education has resulted in many coaches stating they feel unable to identify ED. Discussion: The increased prevalence of ED in athletes, coupled with the negative effects of the pandemic, highlight the need for action. Recommendations are provided, which include Level 1 coaching courses to include compulsory ED education, including signs and symptoms, what to do if an athlete has an ED, and resources/contacts. It is anticipated that the findings will be used to improve coaching knowledge of ED and support offered to athletes, with the overarching aim of building back better and faster from the pandemic.

Keywords: eating disorders, sport, athletes, pandemic

Procedia PDF Downloads 119
16807 Liminal Disabled Tweens’ Identification with Disney Animations in Algeria

Authors: Selma Aitsaid

Abstract:

Disney canon texts, mainly animations, are believed to have authority over children’s identities. However, most research on Disney tends to focus either on textual analysis, or Western and non-western adult audiences. In fact, there is a lack of scholarship on Disney child audiences from non-western countries though children are believed to be Disney‘s main target audience, and Disney is a global corporation that appeals to audiences from all over the world as well. Therefore, qualitative research was conducted by interviewing around twenty five Algerian disabled tweens between the age 11 to 14 on their familiarity and identification with Disney animations. The reason behind choosing disabled children is because minority groups have not been interviewed on their possible interpretations of Disney animations despite the fact that these texts have been interpreted by some scholars as being inclusive of minority groups such as queer and disabled people. To that end, this project aims to decolonize disability and Global Southern Academia by three ways. The first way is to uncover inequalities of the metropolitan thought enshrined in the global power of the metropole vis a vis the subaltern. This approach was called postcolonialism. The second way is to value non-western academic and non-academic resources. This is the project of ‘indigenous knowledge. The third way is to analyse the forms of knowledge that were produced by intellectuals in colonized countries as a response to Western Academic hegemony. Consequently, this research endeavored to unravel the inequality, the dynamics of neocolonialism and subordination to colonial discourses within the Algerian discourse on disability and other knowledge such as tweenhood, childhood and non-western viewership, which are mainly defined through Western lenses. Algerian resources were included with the aim of enhancing an academic collaboration between the North and South as well. The findings showed that the postcolonial context had an impact on how children perceive Disney animations. They also demonstrated that children are able to negotiate the meaning of Disney texts within their own context.

Keywords: child audiences, Algeria, childhood, disability, Disney animations, global South, postcolonialism, tweens, Western hegemony

Procedia PDF Downloads 118
16806 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study

Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar

Abstract:

Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.

Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices

Procedia PDF Downloads 508
16805 Understanding Knowledge Sharing and Its Effect on Creative Performance from a Dyadic Relationship Perspective

Authors: Fan Wei, Tang Yipeng

Abstract:

Knowledge sharing is of great value to organizational performance and innovation ability. However, the mainstream research has focused largely on the impact of knowledge sharing at the team level on individuals and teams. There is a lack of empirical studies on how employees interact in the exchange of knowledge and its effect on employees’ own creative performance. Based on communication accommodation theory and social exchange theory, this article explores the construction of an employee knowledge interaction mechanism under the moderating of social status and introduces the leader's creativity expectation as a moderating variable to explore its cross-level moderating effect on employee knowledge sharing and their own creative performance. An empirical test was conducted on 36 teaching and research teams in the two primary schools, and the results showed that: (1) Explicit/tacit knowledge of employees is positively correlated with acquisition of explicit/tacit knowledge; (2) Colleagues’ evaluations of employees’ social status play a moderating role between the employees’ explicit/tacit knowledge and the acquisition of explicit/tacit knowledge. (3) The leadership creativity expectation positively regulates the relationship between the employees' explicit knowledge acquisition and creative performance. This research helps to open the "black box" of the interpersonal interaction mechanism of knowledge sharing and also provides an important theoretical basis and practical guidance for organizational managers to effectively stimulate employee knowledge sharing and creative performance.

Keywords: knowledge sharing, knowledge interaction, social status, leadership creativity expectations, creative performance

Procedia PDF Downloads 121
16804 A Novel Method for Live Debugging of Production Web Applications by Dynamic Resource Replacement

Authors: Khalid Al-Tahat, Khaled Zuhair Mahmoud, Ahmad Al-Mughrabi

Abstract:

This paper proposes a novel methodology for enabling debugging and tracing of production web applications without affecting its normal flow and functionality. This method of debugging enables developers and maintenance engineers to replace a set of existing resources such as images, server side scripts, cascading style sheets with another set of resources per web session. The new resources will only be active in the debug session and other sessions will not be affected. This methodology will help developers in tracing defects, especially those that appear only in production environments and in exploring the behaviour of the system. A realization of the proposed methodology has been implemented in Java.

Keywords: live debugging, web application, web resources, inconsistent bugs, tracing

Procedia PDF Downloads 459