Search results for: survival data
25458 Steps towards the Development of National Health Data Standards in Developing Countries
Authors: Abdullah I. Alkraiji, Thomas W. Jackson, Ian Murray
Abstract:
The proliferation of health data standards today is somewhat overlapping and conflicting, resulting in market confusion and leading to increasing proprietary interests. The government role and support in standardization for health data are thought to be crucial in order to establish credible standards for the next decade, to maximize interoperability across the health sector, and to decrease the risks associated with the implementation of non-standard systems. The normative literature missed out the exploration of the different steps required to be undertaken by the government towards the development of national health data standards. Based on the lessons learned from a qualitative study investigating the different issues to the adoption of health data standards in the major tertiary hospitals in Saudi Arabia and the opinions and feedback from different experts in the areas of data exchange and standards and medical informatics in Saudi Arabia and UK, a list of steps required towards the development of national health data standards was constructed. Main steps are the existence of: a national formal reference for health data standards, an agreed national strategic direction for medical data exchange, a national medical information management plan and a national accreditation body, and more important is the change management at the national and organizational level. The outcome of this study can be used by academics and practitioners to develop the planning of health data standards, and in particular those in developing countries.Keywords: interoperabilty, medical data exchange, health data standards, case study, Saudi Arabia
Procedia PDF Downloads 34525457 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map
Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo
Abstract:
Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.Keywords: RDM, multi-source data, big data, U-City
Procedia PDF Downloads 43925456 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-
Authors: Nieto Bernal Wilson, Carmona Suarez Edgar
Abstract:
The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects. Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse
Procedia PDF Downloads 41625455 Traditional Uses of Medicinal Plants in Albania: Historical and Theoretical Considerations
Authors: Ani Bajrami
Abstract:
The birth of traditional medicine is related to plant diversity in a region, and the knowledge regarding them has been used and culturally transmitted over generations by members of a certain society. In this context, Traditional Ecological Knowledge (TEK) concerning the use of plants for medicinal purposes had survival value and was adaptive for people living in different habitats around the world. Albanian flora has a high considerably number of medicinal plants, and they have been extensively used albeit expressed in folk medicinal knowledge and practices. Over the past decades, a number of ethnobotanical studies and extensive fieldwork has been conducted in Albania both by local and foreign scientists. In addition, ethnobotany is experiencing a theoretical and conceptual diversification. This article is a historical review of ethnobotanical studies conducted in Albania after the Second World War and provides theoretical considerations on how these studies should be conducted in the future.Keywords: medicinal plants, traditional ecological knowledge, historical ethnobotany, theory, albania
Procedia PDF Downloads 17825454 Automated Testing to Detect Instance Data Loss in Android Applications
Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai
Abstract:
Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.Keywords: Android, automated testing, activity, data loss
Procedia PDF Downloads 23825453 Big Data: Appearance and Disappearance
Authors: James Moir
Abstract:
The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.Keywords: big data, appearance, disappearance, surface, epistemology
Procedia PDF Downloads 42625452 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images
Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann
Abstract:
FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design
Procedia PDF Downloads 28325451 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management
Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang
Abstract:
Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.Keywords: construction supply chain management, BIM, data exchange, artificial intelligence
Procedia PDF Downloads 3625450 Representation Data without Lost Compression Properties in Time Series: A Review
Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction
Procedia PDF Downloads 43525449 The Challenge of Teaching French as a Foreign Language in a Multilingual Community
Authors: Carol C. Opara, Olukemi E. Adetuyi-Olu-Francis
Abstract:
The teaching of French language, like every other language, has its numerous challenges. A multilingual community, however, is a linguistic environment housing diverse languages, each with its peculiarity, both pros, and cones. A foreign language will have to strive hard for survival in an environment where various indigenous languages, as well as an established official language, exist. This study examined the challenges and prospects of the teaching of French as a foreign language in a multilingual community. A 22-item questionnaire was used to elicit information from 40 Nigerian Secondary school teachers of French. One of the findings of this study showed that the teachers of the French language are not motivated. Also, the linguistic environment is not favourable for the teaching and learning of French language in Nigeria. One of the recommendations was that training and re-training of teachers of French should be of utmost importance to the Nigerian Federal Ministry of Education.Keywords: challenges, french as foreign language, multilingual community, teaching
Procedia PDF Downloads 22925448 Data Mining As A Tool For Knowledge Management: A Review
Authors: Maram Saleh
Abstract:
Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.
Procedia PDF Downloads 21325447 From an Expectations Crisis to a Mental Disorder: The Consequences of Irregular Journeys on Sub-Saharan Migrants
Authors: Siham Soulaimi
Abstract:
Europe has become a difficult destination due to strict migration policies and border controls, making Morocco an immigration country. Morocco is currently at the center of the international migration debate because it not only hosts regular migrants but also must deal with the problem of irregular migrants entering its territory. Sub-Saharan irregular migration is full of challenges that might cause a delay for the migrants, announcing a death sentence for many others. The journey's hurdles are likely to cause a crisis in expectations, resulting in serious consequences on the migrants' mental health. Our research study emphasizes that sub-Saharan migrants begin irregular journeys with high hopes, only to be disappointed by how unexpectedly cruel it turns out to be. We also pointed to specific physical and, more crucially, mental health problems that they end up with after survival, resulting in somatic disorders.Keywords: irregular migration, Sub-Saharan migrants, challenges, experiences crisis, mental health, somatoform disorder
Procedia PDF Downloads 14325446 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 6225445 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme
Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme
Procedia PDF Downloads 48925444 Songs from the Cradle: An Analysis of Some Selected Nupe Songs
Authors: Zainab Zendana Shafii
Abstract:
Lullabies have been broadly defined as songs that are sung to calm and soothe children. While this is true, this paper intends to show that lullabies exceed these functions. The paper, in exploring Nupe lullabies, examines the various functions that lullabies perform in terms of language development, cultural enrichment and also the retelling of history as it relates to the culture of the Nupe people of northern Nigeria. The theoretical framework used is the functionalist theory. This theory postulates that all cultural or social phenomena have a positive function and that all are indispensable. The functionalist theory is based on the premise that all aspects of a society—institutions, roles, norms, etc.—serve a purpose and that all are indispensable for the long-term survival of the society. To this end, this paper dissects the various lullabies in Nupeland with a view to exploring the meaning that these songs generate and why they are even sung at all. The qualitative research methodology has been used to gather materials.Keywords: Nupe, lullabies, Nigeria, northern
Procedia PDF Downloads 20425443 The Effect of TiO₂ Nanoparticles on Zebrafish Embryos
Authors: Elena Maria Scalisi
Abstract:
Currently, photodegradation by nanoparticles (NPs) is a common solution for wastewater treatment. Nanoparticles are efficient for removing organic and inorganic pollutants, heavy metals from wastewater and killing microorganisms through environmentally friendly. In this context, the major representative of photocatalytic technology for industrial wastewater treatment are TiO₂ nanoparticles (TiO₂-NPs). TiO₂-NPs have a strong catalytic activity that depends to their physicochemical properties. Thanks to their small size (between 1-100 nm), nanoparticles occupy less volume, then their surface area increases. The increase in the surface-to-volume ratio results in the increase of the particle surface energy, which improve their reactivity potential. However, these unique properties represent risks to the ecosystems and organisms when unintentionally TiO₂-NPs are release into the environment and absorbed by living organisms. Several studies confirm that there is a high level of interest concerning the safety of TiO₂-NPs in the aquatic environment, furthermore, ecotoxicological tools are useful to correctly evaluate their toxicity. In the current study, we aimed to characterize potential toxic effects of TiO₂-NP suspension to zebrafish during embryo-larval stages to evaluate parameters such as survival rates, malformation, hatching, the overall length of the larvae heartbeat, and biochemical biomarkers that reflect the acute toxicity and sublethal effects of TiO₂-NPs. Zebrafish embryos were exposed to titanium dioxide nanoparticles (TiO₂-NPs at 1mg/L, 2mg/L, and 4mg/L) from fertilization to the free swimming stage (144hpf). Every day, we recorded the toxicological endpoints, moreover, immunohistochemical analysis has been performed at the end of the exposure. In particular, we have evaluate the expression of the following biomarkers: Heat Shock Protein 70 (HSP70), Poly ADP-Ribose Polymerase-1 (PARP-1), Metallothioneins (MTs). Our results have shown that hatch ability, survival, and malformation rate were not affected by TiO₂ NPs at these exposure levels. However, TiO₂-NPs caused an increase of heartbeat and reduction of body length; at the same time, TiO₂-NPs have inducted the production of ROS and the expression of oxidative stress biomarkers HSP70 and PARP-1. Hight positivity for PARP-1 at all concentration tested was observed. As regards MT, positivity was found in the expression of this biomarker in the whole body of the embryo, with the exception of the end of the tail. Metallothioneins (MT) are biomarkers widely used in environmental monitoring programs for aquatic creatures. At the light of our results i.e. no death until the end of the experiment (144hpf), no malformation and expression of the biomarkers mentioned, it is evident that zebrafish larvae with their natural detoxification pathways are able to resist the presence of toxic substances and then they can tolerate the presence of metal concentrations. However, an excessive oxidative state can compromise cell function, therefore the uncontrolled release of nanoparticles into the environment is severe and must be constantly monitored.Keywords: nanoparticles, embryo zebrafish, HSP70, PARP-1
Procedia PDF Downloads 14325442 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach
Authors: Sarisa Pinkham, Kanyarat Bussaban
Abstract:
The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.Keywords: daily rainfall, image processing, approximation, pixel value data
Procedia PDF Downloads 39125441 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management
Authors: Kenneth Harper
Abstract:
The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups
Procedia PDF Downloads 3325440 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data
Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri
Abstract:
In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.Keywords: Gaussian process, nonlinearity distribution, particle filter, system identification
Procedia PDF Downloads 52025439 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R
Procedia PDF Downloads 38125438 Trusting the Big Data Analytics Process from the Perspective of Different Stakeholders
Authors: Sven Gehrke, Johannes Ruhland
Abstract:
Data is the oil of our time, without them progress would come to a hold [1]. On the other hand, the mistrust of data mining is increasing [2]. The paper at hand shows different aspects of the concept of trust and describes the information asymmetry of the typical stakeholders of a data mining project using the CRISP-DM phase model. Based on the identified influencing factors in relation to trust, problematic aspects of the current approach are verified using various interviews with the stakeholders. The results of the interviews confirm the theoretically identified weak points of the phase model with regard to trust and show potential research areas.Keywords: trust, data mining, CRISP DM, stakeholder management
Procedia PDF Downloads 9725437 Wireless Transmission of Big Data Using Novel Secure Algorithm
Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha
Abstract:
This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.Keywords: big data, two-hop transmission, physical layer wireless security, cooperative jamming, energy balance
Procedia PDF Downloads 49425436 Effect of Distance to Health Facilities on Maternal Service Use and Neonatal Mortality in Ethiopia
Authors: Getiye Dejenu Kibret, Daniel Demant, Andrew Hayen
Abstract:
Introduction: In Ethiopia, more than half of newborn babies do not have access to Emergency Obstetric and Neonatal Care (EmONC) services. Understanding the effect of distance to health facilities on service use and neonatal survival is crucial to recommend policymakers and improve resource distribution. We aimed to investigate the effect of distance to health services on maternal service use and neonatal mortality. Methods: We implemented a data linkage method based on geographic coordinates and calculated straight-line (Euclidean) distances from the Ethiopian 2016 demographic and health survey clusters to the closest health facility. We computed the distance in ESRI ArcGIS Version 10.3 using the geographic coordinates of DHS clusters and health facilities. Generalised Structural Equation Modelling (GSEM) was used to estimate the effect of distance on neonatal mortality. Results: Poor geographic accessibility to health facilities affects maternal service usage and increases the risk of newborn mortality. For every ten kilometres (km) increase in distance to a health facility, the odds of neonatal mortality increased by 1.33% (95% CI: 1.06% to 1.67%). Distance also negatively affected antenatal care, facility delivery and postnatal counselling service use. Conclusions: A lack of geographical access to health facilities decreases the likelihood of newborns surviving their first month of life and affects health services use during pregnancy and immediately after birth. The study also showed that antenatal care use was positively associated with facility delivery service use and that both positively influenced postnatal care use, demonstrating the interconnectedness of the continuum of care for maternal and neonatal care services. Policymakers can leverage the findings from this study to improve accessibility barriers to health services.Keywords: acessibility, distance, maternal health service, neonatal mortality
Procedia PDF Downloads 12025435 Effects of Environmental and Genetic Factors on Growth Performance, Fertility Traits and Milk Yield/Composition in Saanen Goats
Authors: Deniz Dincel, Sena Ardicli, Hale Samli, Mustafa Ogan, Faruk Balci
Abstract:
The aim of the study was to determine the effects of some environmental and genetic factors on growth, fertility traits, milk yield and composition in Saanen goats. For this purpose, the total of 173 Saanen goats and kids were investigated for growth, fertility and milk traits in Marmara Region of Turkey. Fertility parameters (n=70) were evaluated during two years. Milk samples were collected during the lactation and the milk yield/components (n=59) of each goat were calculated. In terms of CSN3 and AGPAT6 gene; the genotypes were defined by PCR-RFLP. Saanen kids (n=86-112) were measured from birth to 6 months of life. The birth, weaning, 60ᵗʰ, 90ᵗʰ, 120ᵗʰ and 180tᵗʰ days of average live weights were calculated. The effects of maternal age on pregnancy rate (p < 0.05), birth rate (p < 0.05), infertility rate (p < 0.05), single born kidding (p < 0.001), twinning rate (p < 0.05), triplet rate (p < 0.05), survival rate of kids until weaning (p < 0.05), number of kids per parturition (p < 0.01) and number of kids per mating (p < 0.01) were found significant. The impacts of year on birth rate (p < 0.05), abortion rate (p < 0.001), single born kidding (p < 0.01), survival rate of kids until weaning (p < 0.01), number of kids per mating (p < 0.01) were found significant for fertility traits. The impacts of lactation length on all milk yield parameters (lactation milk, protein, fat, totally solid, solid not fat, casein and lactose yield) (p < 0.001) were found significant. The effects of age on all milk yield parameters (lactation milk, protein, fat, total solid, solid not fat, casein and lactose yield) (p < 0.001), protein rate (p < 0.05), fat rate (p < 0.05), total solid rate (p < 0.01), solid not fat rate (p < 0.05), casein rate (p < 0.05) and lactation length (p < 0.01), were found significant too. However, the effect of AGPAT6 gene on milk yield and composition was not found significant in Saanen goats. The herd was found monomorphic (FF) for CSN3 gene. The effects of sex on live weights until 90ᵗʰ days of life (birth, weaning and 60ᵗʰ day of average weight) were found significant statistically (p < 0.001). The maternal age affected only birth weight (p < 0,001). The effects month at birth on all of the investigated day [the birth, 120ᵗʰ, 180ᵗʰ days (p < 0.05); the weaning, 60ᵗʰ, 90ᵗʰ days (p < 0,001)] were found significant. The birth type was found significant on the birth (p < 0,001), weaning (p < 0,01), 60ᵗʰ (p < 0,01) and 90ᵗʰ (p < 0,01) days of average live weights. As a result, screening the other regions of CSN3, AGPAT6 gene and also investigation the phenotypic association of them should be useful to clarify the efficiency of target genes. Environmental factors such as maternal age, year, sex and birth type were found significant on some growth, fertility and milk traits in Saanen goats. So consideration of these factors could be used as selection criteria in dairy goat breeding.Keywords: fertility, growth, milk yield, Saanen goats
Procedia PDF Downloads 17225434 One Step Further: Pull-Process-Push Data Processing
Authors: Romeo Botes, Imelda Smit
Abstract:
In today’s modern age of technology vast amounts of data needs to be processed in real-time to keep users satisfied. This data comes from various sources and in many formats, including electronic and mobile devices such as GPRS modems and GPS devices. They make use of different protocols including TCP, UDP, and HTTP/s for data communication to web servers and eventually to users. The data obtained from these devices may provide valuable information to users, but are mostly in an unreadable format which needs to be processed to provide information and business intelligence. This data is not always current, it is mostly historical data. The data is not subject to implementation of consistency and redundancy measures as most other data usually is. Most important to the users is that the data are to be pre-processed in a readable format when it is entered into the database. To accomplish this, programmers build processing programs and scripts to decode and process the information stored in databases. Programmers make use of various techniques in such programs to accomplish this, but sometimes neglect the effect some of these techniques may have on database performance. One of the techniques generally used,is to pull data from the database server, process it and push it back to the database server in one single step. Since the processing of the data usually takes some time, it keeps the database busy and locked for the period of time that the processing takes place. Because of this, it decreases the overall performance of the database server and therefore the system’s performance. This paper follows on a paper discussing the performance increase that may be achieved by utilizing array lists along with a pull-process-push data processing technique split in three steps. The purpose of this paper is to expand the number of clients when comparing the two techniques to establish the impact it may have on performance of the CPU storage and processing time.Keywords: performance measures, algorithm techniques, data processing, push data, process data, array list
Procedia PDF Downloads 24825433 Complex Dynamics of a Four Species Food-Web Model: An Analysis through Beddington-Deangelis Functional Response in the Presence of Additional Food
Authors: Surbhi Rani, Sunita Gakkhar
Abstract:
The four-dimensional food web system consisting of two prey species for a generalist middle predator and a top predator is proposed and investigated. The middle predator is predating both the prey species with a modified Holling type-II functional response. The food web model is found to be well-posed, bounded, and dissipative. The proposed model's essential dynamical features are studied in terms of local stability. The four species' survival is explored, and persistence conditions are established. The numerical simulations reveal the persistence in the form of a chaotic attractor or stable focus. The conclusion is that providing additional food to the middle predator may help to control the food chain's chaos.Keywords: predator-prey model, existence of equilibrium points, local stability, chaos, numerical simulations
Procedia PDF Downloads 11425432 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.Keywords: forecasting, generalized extreme value (GEV), meteorology, return level
Procedia PDF Downloads 48425431 Impact of Stack Caches: Locality Awareness and Cost Effectiveness
Authors: Abdulrahman K. Alshegaifi, Chun-Hsi Huang
Abstract:
Treating data based on its location in memory has received much attention in recent years due to its different properties, which offer important aspects for cache utilization. Stack data and non-stack data may interfere with each other’s locality in the data cache. One of the important aspects of stack data is that it has high spatial and temporal locality. In this work, we simulate non-unified cache design that split data cache into stack and non-stack caches in order to maintain stack data and non-stack data separate in different caches. We observe that the overall hit rate of non-unified cache design is sensitive to the size of non-stack cache. Then, we investigate the appropriate size and associativity for stack cache to achieve high hit ratio especially when over 99% of accesses are directed to stack cache. The result shows that on average more than 99% of stack cache accuracy is achieved by using 2KB of capacity and 1-way associativity. Further, we analyze the improvement in hit rate when adding small, fixed, size of stack cache at level1 to unified cache architecture. The result shows that the overall hit rate of unified cache design with adding 1KB of stack cache is improved by approximately, on average, 3.9% for Rijndael benchmark. The stack cache is simulated by using SimpleScalar toolset.Keywords: hit rate, locality of program, stack cache, stack data
Procedia PDF Downloads 30625430 Present-Day Transformations and Trends in Rooftop Agriculture and Food Security
Authors: Kiara Lawrence, Nadine Ponnusamy, Clive Greenstone
Abstract:
One of the major challenges facing society today is food security. The risks to food security have increased significantly due to the evolving urban landscape, globalization, and a rising population. The cultivation of food is essential, particularly during times of crisis, such as a recession, and has long been a necessity for urban populations. In contemporary society, many urban residents are confronted with new challenges, including high levels of unemployment, which compel individuals to adopt alternative survival strategies, such as growing their own food. Recently, rooftop agriculture has made significant contributions to urban and national food security and has been utilized as a tool to mitigate the frequent and damaging disasters that many cities encounter. They have the potential to transform unused spaces into green, productive vegetable plots, while also providing urban residents with the opportunity to enjoy the benefits of gardening. Therefore, this study looks to investigate the evolving themes around rooftop agriculture and food security globally. A bibliometric review analysis was carried out on Scopus and Web of Science using the keywords “rooftop agriculture” OR “rooftop farming” OR “rooftop garden” AND “food security” between 2004 and 2024 to ensure a broader scope was covered around the chosen study. Vosviewer software was then utilized to analyze the extracted data to create network visualization maps based on keyword occurrences, co-author analysis, country analysis. There were only 37 relevant documents within the study parameters. Preliminary results indicate that much research focused on urban agriculture, food supply, green roof, sustainability and climate change. By analysing these aspects of rooftop agriculture and food security, the trends can identify gaps in literature and dictate future applications to assist in food security.Keywords: food security, rooftop agriculture, rooftop farming, rooftop garden
Procedia PDF Downloads 2425429 Autonomic Threat Avoidance and Self-Healing in Database Management System
Authors: Wajahat Munir, Muhammad Haseeb, Adeel Anjum, Basit Raza, Ahmad Kamran Malik
Abstract:
Databases are the key components of the software systems. Due to the exponential growth of data, it is the concern that the data should be accurate and available. The data in databases is vulnerable to internal and external threats, especially when it contains sensitive data like medical or military applications. Whenever the data is changed by malicious intent, data analysis result may lead to disastrous decisions. Autonomic self-healing is molded toward computer system after inspiring from the autonomic system of human body. In order to guarantee the accuracy and availability of data, we propose a technique which on a priority basis, tries to avoid any malicious transaction from execution and in case a malicious transaction affects the system, it heals the system in an isolated mode in such a way that the availability of system would not be compromised. Using this autonomic system, the management cost and time of DBAs can be minimized. In the end, we test our model and present the findings.Keywords: autonomic computing, self-healing, threat avoidance, security
Procedia PDF Downloads 508