Search results for: surface acoustic waves
6868 Evaluation of Mechanical Properties and Surface Roughness of Nanofilled and Microhybrid Composites
Authors: Solmaz Eskandarion, Haniyeh Eftekhar, Amin Fallahi
Abstract:
Introduction: Nowadays cosmetic dentistry has gained greater attention because of the changing demands of dentistry patients. Composite resin restorations play an important role in the field of esthetic restorations. Due to the variation between the resin composites, it is important to be aware of their mechanical properties and surface roughness. So, the aim of this study was to compare the mechanical properties (surface hardness, compressive strength, diametral tensile strength) and surface roughness of four kinds of resin composites after thermal aging process. Materials and Method: 10 samples of each composite resins (Gradia-direct (GC), Filtek Z250 (3M), G-ænial (GC), Filtek Z350 (3M- filtek supreme) prepared for evaluation of each properties (totally 120 samples). Thermocycling (with temperature 5 and 55 degree of centigrade and 10000 cycles) were applied. Then, the samples were tested about their compressive strength and diametral tensile strength using UTM. And surface hardness was evaluated with Microhardness testing machine. Either surface roughness was evaluated with Scanning electron microscope after surface polishing. Result: About compressive strength (CS), Filtek Z250 showed the highest value. But there were not any significant differences between 4 groups about CS. Either Filtek Z250 detected as a composite with highest value of diametral tensile strength (DTS) and after that highest to lowest DTS was related to: Filtek Z350, G-ænial and Gradia-direct. And about DTS all of the groups showed significant differences (P<0.05). Vickers Hardness Number (VHN) of Filtek Z250 was the greatest. After that Filtek Z350, G-ænial and Gradia-direct followed it. The surface roughness of nano-filled composites was less than Microhybrid composites. Either the surface roughness of GC Ganial was a little greater than Filtek Z250. Conclusion: This study indicates that there is not any evident significant difference between the groups amoung their mechanical properties. But it seems that Filtek Z250 showed slightly better mechanical properties. About surface roughness, nanofilled composites were better that Microhybrid.Keywords: mechanical properties, surface roughness, resin composite, compressive strength, thermal aging
Procedia PDF Downloads 3546867 Investigation and Analysis on Pore Pressure Variation by Sonic Impedance under Influence of Compressional, Shear, and Stonely Waves in High Pressure Zones
Authors: Nouri, K., Ghassem Alaskari, M., K., Amiri Hazaveh, A., Nabi Bidhendi, M.
Abstract:
Pore pressure is one on the key Petrophysical parameter in exploration discussion and survey on hydrocarbon reservoir. Determination of pore pressure in various levels of drilling and integrity of drilling mud and high pressure zones in order to restrict blow-out and following damages are significant. The pore pressure is obtained by seismic and well logging data. In this study the pore pressure and over burden pressure through the matrix stress and Tarzaqi equation and other related formulas are calculated. By making a comparison on variation of density log in over normal pressure zones with change of sonic impedance under influence of compressional, shear, and Stonely waves, the correlation level of sonic impedance with density log is studied. The level of correlation and variation trend is recorded in sonic impedance under influence Stonely wave with density log that key factor in recording of over burden pressure and pore pressure in Tarzaqi equation is high. The transition time is in divert relation with porosity and fluid type in the formation and as a consequence to the pore pressure. The density log is a key factor in determination of pore pressure therefore sonic impedance under Stonley wave is denotes well the identification of high pressure besides other used factors.Keywords: pore pressure, stonely wave, density log, sonic impedance, high pressure zone
Procedia PDF Downloads 3956866 Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes
Authors: Siddharth Ahuja, T. M. Muruganandam
Abstract:
An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.Keywords: analytical investigation, compression and expansion waves, fluid element interactions, shock trajectory, supersonic flow, unsteady gas dynamics, varying area duct, wave interactions
Procedia PDF Downloads 2176865 Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration
Authors: Chejarla Raghunathababu, E. Logashanmugam
Abstract:
An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively.Keywords: graphene, microstrip patch antenna, substrate material, wireless communication, nanocomposite material
Procedia PDF Downloads 1106864 Surface Nanostructure Developed by Ultrasonic Shot Peening and Its Effect on Low Cycle Fatigue Life of the IN718 Superalloy
Authors: Sanjeev Kumar, Vikas Kumar
Abstract:
Inconel 718 (IN718) is a high strength nickel-based superalloy designed for high-temperature applications up to 650 °C. It is widely used in gas turbines of jet engines and related aerospace applications because of its good mechanical properties and structural stability at elevated temperatures. Because of good performance ratio and excellent process capability, this alloy has been used predominantly for aeronautic engine components like compressor disc and compressor blade. The main precipitates that contribute to high-temperature strength of IN718 are γʹ Ni₃(Al, Ti) and mainly γʹʹ (Ni₃ Nb). Various processes have been used for modification of the surface of components, such as Laser Shock Peening (LSP), Conventional Shot Peening (SP) and Ultrasonic Shot Peening (USP) to induce compressive residual stress (CRS) and development of fine-grained structure in the surface region. Surface nanostructure by ultrasonic shot peening is a novel methodology of surface modification to improve the overall performance of structural components. Surface nanostructure was developed on the peak aged IN718 superalloy using USP and its effect was studied on low cycle fatigue (LCF) life. Nanostructure of ~ 49 to 73 nm was developed in the surface region of the alloy by USP. The gage section of LCF samples was USPed for 5 minutes at a constant frequency of 20 kHz using StressVoyager to modify the surface. Strain controlled cyclic tests were performed for non-USPed and USPed samples at ±Δεt/2 from ±0.50% to ±1.0% at strain rate (ė) 1×10⁻³ s⁻¹ under reversal loading (R=‒1) at room temperature. The fatigue life of the USPed specimens was found to be more than that of the non-USPed ones. LCF life of the USPed specimen at Δεt/2=±0.50% was enhanced by more than twice of the non-USPed specimen.Keywords: IN718 superalloy, nanostructure, USP, LCF life
Procedia PDF Downloads 1126863 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts
Authors: Punit Kumar, Niraj Kumar
Abstract:
The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol
Procedia PDF Downloads 3826862 Evaluation of Barium Sulfate and Its Surface Modification as Reinforcing Filler for Natural and Some Synthetic Rubbers
Authors: Mohamad Abdelfattah Ibrahim Elghrbawy
Abstract:
This work deals to evaluate barium sulfate (BS) before and after its surface modification as reinforcing filler for rubber. Barium sulfate was surface-modified using polymethacrylic acid (PMAA), the monolayer surface coverage of barium sulfate by polymethacrylic acid molecules occurred at 5.4x10-6 mol/g adsorbed amount. This amount was sufficient to reduce the sediment volume from 2.65 to 2.55 cm3/gm. Natural rubber (NR) was compounded with different concentrations of barium sulfate. The rheological characteristics of NR mixes were measured using a Monsanto Oscillating Disk Rheometer. The compounded NR was vulcanized at 142°C, and the physico-mechanical properties were tested according to the standard methods. The rheological data show that the minimum torque decreases while the maximum torque increases as the barium sulfate content increase. The physico-mechanical properties of NR vulcanizates were improved up to 50 phr/ barium sulfate loading. On the other hand, styrene–butadiene rubber (SBR) and nitrile–butadiene rubber (NBR) rubbers compounded with 50 phr/barium sulfate had good rheological and mechanical properties. Scanning electron microscope studies show surface homogeneity of rubber samples as a result of good dispersion of surface modified barium sulfate in the rubber matrix. The NR, SBR and NBR vulcanizates keep their values of mechanical properties after subjected to thermal oxidative aging at 90°C for 7 days.Keywords: barium sulfate, natural rubber (nr), nitrile–butadiene rubber (nbr), polymethacrylic acid (pmaa), styrene–butadiene rubber (sbr), surface modification
Procedia PDF Downloads 776861 Evalutaion of the Surface Water Quality Using the Water Quality Index and Discriminant Analysis Method
Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni
Abstract:
Water resources present to the public order of the world a very important problem for the protection and management of water quality given the complexity of water quality data sets. In this study, the water quality index (WQI) and irrigation water quality index (IWQI) were calculated in order to evaluate the surface water quality for drinking and irrigation purposes based on nine hydrochemical parameters. In order to separate the variables that are the most responsible for the spatial differentiation, the discriminant analysis (DA) was applied. The results show that the surface water quality for drinking is poor quality and very poor quality based on WQI values, however, the values of IWQI reflect that this water is acceptable for irrigation with a restriction for sensitive plants. Consequently, the discriminant analysis DA method has shown that the following parameters pH, potassium, chloride, sulfate, and bicarbonate are significant discrimination between the different stations with the spatial variation of the surface water quality, therefore, the results obtained in this study provide very useful information to decision-makersKeywords: surface water quality, drinking and irrigation purposes, water quality index, discriminant analysis
Procedia PDF Downloads 866860 Influence of Surface Area on Dissolution of Additively Manufactured Polyvinyl Alcohol Tablets
Authors: Seyedebrahim Afkhami, Meisam Abdi, Reza Baserinia
Abstract:
Additive manufacturing is revolutionising production in different industries, including pharmaceuticals. This case study explores the influence of surface area on the dissolution of additively manufactured polyvinyl alcohol parts as a polymer candidate. Specimens of different geometries and constant mass were fabricated using a Fused Deposition Modelling 3D printer. The dissolution behaviour of these samples was compared with respect to their surface area. Improved and accelerated dissolution was observed for samples with a larger surface area. This study highlights the capabilities of additive manufacturing to produce samples of complex geometries that cannot be manufactured otherwise to control the dissolution behaviour for pharmaceutical and biopharmaceutical applications.Keywords: additive manufacturing, polymer dissolution, fused deposition modelling, geometry optimization
Procedia PDF Downloads 1026859 Effect of Surface-Modification of Indium Tin Oxide Particles on Their Electrical Conductivity
Authors: Y. Kobayashi, T. Kurosaka, K. Yamamura, T. Yonezawa, K. Yamasaki
Abstract:
The present work reports an effect of surface- modification of indium tin oxide (ITO) particles with chemicals on their electronic conductivity properties. Examined chemicals were polyvinyl alcohol (nonionic polymer), poly(diallyl dimethyl ammonium chloride) (cationic polymer), poly(sodium 4-styrene-sulfonate) (anionic polymer), (2-aminopropyl) trimethoxy silane (APMS) (silane coupling agent with amino group), and (3-mercaptopropyl) trimethoxy silane (MPS) (silane coupling agent with thiol group). For all the examined chemicals, volume resistivities of surface-modified ITO particles did not increase much when they were aged in air at 80 oC, compared to a volume resistivity of un-surface-modified ITO particles. Increases in volume resistivities of ITO particles surface-modified with the silane coupling agents were smaller than those with the polymers, since hydrolysis of the silane coupling agents and condensation of generated silanol and OH groups on ITO particles took place to provide efficient immobilization of them on particles. The APMS gave an increase in volume resistivity smaller than the MPS, since a larger solubility in water of APMS providing a larger amount of APMS immobilized on particles.Keywords: indium tin oxide, particles, surface-modification, volume resistivity
Procedia PDF Downloads 2536858 Evaluation of a Surrogate Based Method for Global Optimization
Authors: David Lindström
Abstract:
We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cycling parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.Keywords: expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon
Procedia PDF Downloads 5786857 Optimization of Energy Harvesting Systems for RFID Applications
Authors: P. Chambe, B. Canova, A. Balabanian, M. Pele, N. Coeur
Abstract:
To avoid battery assisted tags with limited lifetime batteries, it is proposed here to replace them by energy harvesting systems, able to feed from local environment. This would allow total independence to RFID systems, very interesting for applications where tag removal from its location is not possible. Example is here described for luggage safety in airports, and is easily extendable to similar situation in terms of operation constraints. The idea is to fix RFID tag with energy harvesting system not only to identify luggage but also to supply an embedded microcontroller with a sensor delivering luggage weight making it impossible to add or to remove anything from the luggage during transit phases. The aim is to optimize the harvested energy for such RFID applications, and to study in which limits these applications are theoretically possible. Proposed energy harvester is based on two energy sources: piezoelectricity and electromagnetic waves, so that when the luggage is moving on ground transportation to airline counters, the piezo module supplies the tag and its microcontroller, while the RF module operates during luggage transit thanks to readers located along the way. Tag location on the luggage is analyzed to get best vibrations, as well as harvester better choice for optimizing the energy supply depending on applications and the amount of energy harvested during a period of time. Effects of system parameters (RFID UHF frequencies, limit distance between the tag and the antenna necessary to harvest energy, produced voltage and voltage threshold) are discussed and working conditions for such system are delimited.Keywords: RFID tag, energy harvesting, piezoelectric, EM waves
Procedia PDF Downloads 4526856 Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite
Authors: Mohsen Farahat, Tsuyoshi Hirajima
Abstract:
Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69° to 38° and the mineral’s floatability decreased from 95% to 25% after the treatment.Keywords: Bacillus megaterium, surface modification, flotation, dolomite, adhesion energy
Procedia PDF Downloads 2446855 Pd Supported on Activated Carbon: Effect of Support Texture on the Dispersion of Pd
Authors: Ji Sun Kim, Jae Ho Baek, Kyeong Ho Kim, Ji Hae Ha, Seong Soo Hong, Jung-Wook Park, Man Sig Lee
Abstract:
Carbon supported palladium catalysts have been used in many industrial reactions, especially for hydrogenation in the fine chemical industry. Porous carbons had been widely used as catalyst supports due to its higher surface area and larger pore volume. The specific surface area, pore structure and surface chemical functional groups of porous carbon affects metal dispersion and particle size. In this paper, we confirm the effect of support texture on the dispersion of Pd. Pd catalyst supported on activated carbon having various specific surface area were characterized by BET, XRD and FE-TEM. Catalyst activity and dispersion of prepared catalyst were evaluated on the basis of the CO adsorption capacity by CO-chemisorption. As concluding remark to this part of our study, let us note that specific area of carbon play important role on the synthesis of Pd/C catalyst/.Keywords: carbon, dispersion, Pd/C, specific are, support
Procedia PDF Downloads 3526854 Finite Element Modeling of Influence of Roll Form of Vertical Scale Breaker on Decreased Formation of Surface Defects during Roughing Hot Rolling
Authors: A. Pesin, D. Pustovoytov, M. Sverdlik
Abstract:
During production of rolled steel strips the quality of the surface of finished strips influences steel consumption considerably. The most critical areas for crack formation during rolling are lateral sides of slabs. Deformation behaviors of the slab edge in roughing rolling process were analyzed by the finite element method with Deform-3D. In this study our focus is the analysis of the influence of edger’s form on the possibility to decrease surface cracking during roughing hot rolling.Keywords: roughing hot rolling, FEM, crack, bulging
Procedia PDF Downloads 3796853 Therapy Finding and Perspectives on Limbic Resonance in Gifted Adults
Authors: Andreas Aceranti, Riccardo Dossena, Marco Colorato, Simonetta Vernocchi
Abstract:
By the term “limbic resonance,” we usually refer to a state of deep connection, both emotional and physiological, between people who, when in resonance, find their limbic systems in tune with one another. Limbic resonance is not only about sharing emotions but also physiological states. In fact, people in such resonance can influence each other’s heart rate, blood pressure, and breathing. Limbic resonance is fundamental for human beings to connect and create deep bonds among a certain group. It is fundamental for our social skills. A relationship between gifted and resonant subjects is perceived as feeling safe, living the relation like an isle of serenity where it is possible to recharge, to communicate without words, to understand each others without giving explanations, to strengthen the balance of each member of the group. Within the circle, self-esteem is consolidated and makes it stronger to face what is outside, others, and reality. The idea that gifted people who are together may be unfit for the world does not correspond to the truth. The circle made up of people with high cognitive potential characterized by a limbic resonance is, in general, experienced as a solid platform from which you can safely move away and where you can return to recover strength. We studied 8 adults (between 21 and 47 years old). All of them with IQ higher than 130. We monitored their brain waves frequency (alpha, beta, theta, gamma, delta) by means of biosensing tracker along with their physiological states (heart beat frequency, blood pressure, breathing frequency, pO2, pCO2) and some blood works only (5-HT, dopamine, catecholamines, cortisol). The subjects of the study were asked to adhere to a protocol involving bonding activities (such as team building activities), role plays, meditation sessions, and group therapy. All these activities were carried out together. We observed that after about 4 months of activities, their brain waves frequencies tended to tune quicker and quicker. After 9 months, the bond among them was so important that they could “sense” each other inner states and sometimes also guess each others’ thoughts. According to our findings, it may be hypothesized that large synchronized outbursts of cortex neurons produces not only brain waves but also electromagnetic fields that may be able to influence the cortical neurons’ activity of other people’s brain by inducing action potentials in large groups of neurons and this is reasonably conceivable to be able to transmit information such as different emotions and cognition cues to the other’s brain. We also believe that upcoming research should focus on clarifying the role of brain magnetic particles in brain-to-brain communication. We also believe that further investigations should be carried out on the presence and role of cryptochromes to evaluate their potential roles in direct brain-to-brain communication.Keywords: limbic resonance, psychotherapy, brain waves, emotion regulation, giftedness
Procedia PDF Downloads 926852 Surface Segregation-Inspired Design for Bimetallic Nanoparticle Catalysts
Authors: Yaxin Tang, Mingao Hou, Qian He, Guangfu Luo
Abstract:
Bimetallic nanoparticles serve as a promising class of catalysts with tunable properties suitable for diverse catalytic reactions, yet a comprehensive understanding of their actual structures under operating conditions and the optimal design principles remains largely elusive. In this study, we unveil a prevalent surface segregation phenomenon in nearly 100 platinum-group-element-based bimetallic nanoparticles through first principles-based molecular dynamics simulations. Our findings highlight that two components in a nanoparticle with relatively lower surface energy tend to segregate to the surface. Motivated by this discovery, we propose a deliberate exploitation of surface segregation in designing bimetallic nanoparticle catalysts, aiming for heightened stability and reduced consumption of precious metals. To validate this strategy, we further investigate 36 platinum-based bimetallic nanoparticles for propane dehydrogenation catalysis. Through a systematic examination of catalytic sites on nanoparticles, we identify several systems as top candidates with Pt-enriched surfaces, remarkable thermal stability, and superior catalytic activity for propane dehydrogenation. The insights gained garnered from this study are anticipated to provide a valuable framework for the optimal design of other bimetallic nanoparticles.Keywords: bimetallic nanoparticles, platinum-group element, catalysis, surface segregation, first-principles calculations
Procedia PDF Downloads 506851 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach
Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf
Abstract:
Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.Keywords: classification, defect, surface, detection, hole
Procedia PDF Downloads 156850 Effects of Surface Insulation of Silicone Rubber Composites in HVDC
Authors: Min-Hae Park, Ju-Na Hwang, Cheong-won Seo, Ji-Ho Kim, Kee-Joe Lim
Abstract:
Polymeric insulators are high hardness, corrosion resistant, lightweight and also good dielectric strength in electric equipment. For such reasons, the amount of polymeric insulators is increased consistently abroad. The current outdoor insulators are replaced by polymeric insulators. Silicone rubber of polymeric insulators is widely used in insulation materials for outdoor application since it has excellent electrical characteristics and high surface hydrophobic. However, it can be evade exposure to pollutant on surface using at outdoor. It also improve the pollution for dust and smoke due to the large are increasing, because most of the industrial area in which the electric power loads are concentrated are located at the coastal area with salt attack. Thus it is important to detect the main cause of the deterioration for outdoor insulation materials. But there has no standards for valuation to apply reliably and determine accurately deterioration under DC, still lacks DC characteristic researches in proportion to AC. In addition, a lot of ATH was added to improve tracking resistivity of silicone rubber, although the problem has been brought up about falling sharply mechanical properties. Therefore, we might compare surface resistivities of silicone rubber compounding of three kinds of filler. In this paper, specimens of silicone rubber composite usable as outdoor insulators were prepared. Micro-silica (SiO2), nano- alumina (Al2O3) and nano-ATH (Al(OH)3) were used in additives. The study aims to investigate properties of DC surface insulation on silicone rubber composite which were filled with various fillers from surface resistivity measurement and salt-fog test.Keywords: composite, silicone rubber, surface insulation, HVDC
Procedia PDF Downloads 4086849 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature
Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon
Abstract:
Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.Keywords: deep-learning, altimetry, sea surface temperature, forecast
Procedia PDF Downloads 906848 Spatially Downscaling Land Surface Temperature with a Non-Linear Model
Authors: Kai Liu
Abstract:
Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP.Keywords: Bowen ration, downscaling, evapotranspiration, land surface temperature
Procedia PDF Downloads 3296847 Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂
Authors: Ambrish Singh
Abstract:
The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface.Keywords: corrosion, inhibitor, EFM, AFM, DFT, MD
Procedia PDF Downloads 1056846 Solar Wind Turbulence and the Role of Circularly Polarized Dispersive Alfvén Wave
Authors: Swati Sharma, R. P. Sharma
Abstract:
We intend to study the nonlinear evolution of the parallel propagating finite frequency Alfvén wave (also called Dispersive Alfvén wave/Hall MHD wave) propagating in the solar wind regime of the solar region when a perpendicularly propagating magnetosonic wave is present in the background. The finite frequency Alfvén wave behaves differently from the usual non-dispersive behavior of the Alfvén wave. To study the nonlinear processes (such as filamentation) taking place in the solar regions such as solar wind, the dynamical equation of both the waves are derived. Numerical simulation involving finite difference method for the time domain and pseudo spectral method for the spatial domain is then performed to analyze the transient evolution of these waves. The power spectra of the Dispersive Alfvén wave is also investigated. The power spectra shows the distribution of the magnetic field intensity of the Dispersive Alfvén wave over different wave numbers. For DAW the spectra shows a steepening for scales larger than the proton inertial length. This means that the wave energy gets transferred to the solar wind particles as the wave reaches higher wave numbers. This steepening of the power spectra can be explained on account of the finite frequency of the Alfvén wave. The obtained results are consistent with the observations made by CLUSTER spacecraft.Keywords: solar wind, turbulence, dispersive alfven wave
Procedia PDF Downloads 6006845 Undrained Shear Strength and Anisotropic Yield Surface of Diatomaceous Mudstone
Authors: Najibullah Arsalan, Masaru Akaishi, Motohiro Sugiyama
Abstract:
When constructing a structure on soft rock, adequate research and study are required concerning the shear behavior in the over-consolidation region because soft rock is considered to be in a heavily over-consolidated state. In many of the existing studies concerning the strength of soft rock, triaxial compression tests were conducted using isotropically consolidated samples. In this study, the strength of diatomaceous soft rock anisotropically consolidated under a designated consolidation pressure is examined in undrained triaxial compression tests, and studies are made of the peak and residual strengths of the sample in the over-consolidated state in the initial yield surface and the anisotropic yield surface.Keywords: diatomaceouse mudstone, shear strength, yield surface, triaxial compression test
Procedia PDF Downloads 4286844 3D Printing of Cold Atmospheric Plasma Treated Poly(ɛ-Caprolactone) for Bone Tissue Engineering
Authors: Dong Nyoung Heo, Il Keun Kwon
Abstract:
Three-dimensional (3D) technology is a promising method for bone tissue engineering. In order to enhance bone tissue regeneration, it is important to have ideal 3D constructs with biomimetic mechanical strength, structure interconnectivity, roughened surface, and the presence of chemical functionality. In this respect, a 3D printing system combined with cold atmospheric plasma (CAP) was developed to fabricate a 3D construct that has a rough surface with polar functional chemical groups. The CAP-etching process leads to oxidation of chemical groups existing on the polycaprolactone (PCL) surface without conformational change. The surface morphology, chemical composition, mean roughness of the CAP-treated PCL surfaces were evaluated. 3D printed constructs composed of CAP-treated PCL showed an effective increment in the hydrophilicity and roughness of the PCL surface. Also, an in vitro study revealed that CAP-treated 3D PCL constructs had higher cellular behaviors such as cell adhesion, cell proliferation, and osteogenic differentiation. Therefore, a 3D printing system with CAP can be a highly useful fabrication method for bone tissue regeneration.Keywords: bone tissue engineering, cold atmospheric plasma, PCL, 3D printing
Procedia PDF Downloads 1146843 Optimization Based Design of Decelerating Duct for Pumpjets
Authors: Mustafa Sengul, Enes Sahin, Sertac Arslan
Abstract:
Pumpjets are one of the marine propulsion systems frequently used in underwater vehicles nowadays. The reasons for frequent use of pumpjet as a propulsion system are that it has higher relative efficiency at high speeds, better cavitation, and acoustic performance than its rivals. Pumpjets are composed of rotor, stator, and duct, and there are two different types of pumpjet configurations depending on the desired hydrodynamic characteristic, which are with accelerating and decelerating duct. Pumpjet with an accelerating channel is used at cargo ships where it works at low speeds and high loading conditions. The working principle of this type of pumpjet is to maximize the thrust by reducing the pressure of the fluid through the channel and throwing the fluid out from the channel with high momentum. On the other hand, for decelerating ducted pumpjets, the main consideration is to prevent the occurrence of the cavitation phenomenon by increasing the pressure of the fluid about the rotor region. By postponing the cavitation, acoustic noise naturally falls down, so decelerating ducted systems are used at noise-sensitive vehicle systems where acoustic performance is vital. Therefore, duct design becomes a crucial step during pumpjet design. This study, it is aimed to optimize the duct geometry of a decelerating ducted pumpjet for a highly speed underwater vehicle by using proper optimization tools. The target output of this optimization process is to obtain a duct design that maximizes fluid pressure around the rotor region to prevent from cavitation and minimizes drag force. There are two main optimization techniques that could be utilized for this process which are parameter-based optimization and gradient-based optimization. While parameter-based algorithm offers more major changes in interested geometry, which makes user to get close desired geometry, gradient-based algorithm deals with minor local changes in geometry. In parameter-based optimization, the geometry should be parameterized first. Then, by defining upper and lower limits for these parameters, design space is created. Finally, by proper optimization code and analysis, optimum geometry is obtained from this design space. For this duct optimization study, a commercial codedparameter-based optimization algorithm is used. To parameterize the geometry, duct is represented with b-spline curves and control points. These control points have x and y coordinates limits. By regarding these limits, design space is generated.Keywords: pumpjet, decelerating duct design, optimization, underwater vehicles, cavitation, drag minimization
Procedia PDF Downloads 2096842 ED Machining of Particulate Reinforced Metal Matrix Composites
Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar
Abstract:
This paper reports the optimal process conditions for machining of three different types of metal matrix composites (MMCs): 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. Metal removal rate (MRR), tool wear rate (TWR), surface roughness (SR) and surface integrity (SI) were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using the technique for order preference by similarity to ideal solution (TOPSIS) and optimal process conditions were identified for each type of MMCS. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece.Keywords: metal matrix composites (MMCS), metal removal rate (MRR), surface roughness (SR), surface integrity (SI), tool wear rate (TWR), technique for order preference by similarity to ideal solution (TOPSIS)
Procedia PDF Downloads 2916841 Advances in Natural Fiber Surface Treatment Methodologies for Upgradation in Properties of Their Reinforced Composites
Authors: G. L. Devnani, Shishir Sinha
Abstract:
Natural fiber reinforced polymer composite is a very attractive area among the scientific community because of their low cost, eco-friendly and sustainable in nature. Among all advantages there are few issues which need to be addressed, those issues are the poor adhesion and compatibility between two opposite nature materials that is fiber and matrix and their relatively high water absorption. Therefore, natural fiber modifications are necessary to improve their adhesion with different matrices. Excellent properties could be achieved with the surface treatment of these natural fibers ultimately leads to property up-gradation of their reinforced composites with different polymer matrices. Lot of work is going on to improve the adhesion between reinforced fiber phase and polymer matrix phase to improve the properties of composites. Researchers have suggested various methods for natural fiber treatment like silane treatment, treatment with alkali, acetylation, acrylation, maleate coupling, etc. In this study a review is done on the different methods used for the surface treatment of natural fibers and what are the advance treatment methodologies for natural fiber surface treatment for property improvement of natural fiber reinforced polymer composites.Keywords: composites, acetylation, natural fiber, surface treatment
Procedia PDF Downloads 4136840 Study of the Influence of Nozzle Length and Jet Angles on the Air Entrainment by Plunging Water Jets
Authors: José Luis Muñoz-Cobo González, Sergio Chiva Vicent, Khaled Harby Mohamed
Abstract:
When a vertical liquid jet plunges into a liquid surface, after passing through a surrounding gas phase, it entrains a large amount of gas bubbles into the receiving pool, and it forms a large submerged two-phase region with a considerable interfacial area. At the intersection of the plunging jet and the liquid surface, free-surface instabilities are developed, and gas entrainment may be observed. If the jet impact velocity exceeds an inception velocity that is a function of the plunging flow conditions, the gas entrainment takes place. The general goal of this work is to study the effect of nozzle parameters (length-to-diameter ratio (lN/dN), jet angle (α) with the free water surface) and the jet operating conditions (initial jet diameters dN, initial jet velocity VN, and jet length x1) on the flow characteristics such as: inception velocity of the gas entrainment Ve, bubble penetration depth Hp, gas entrainment rate, Qa, centerline jet velocity Vc, and the axial jet velocity distribution Vx below the free water surface in a plunging liquid jet system.Keywords: inclined plunging water jets, entrainment, two phase flow, nozzle length
Procedia PDF Downloads 4656839 Combined Surface Tension and Natural Convection of Nanofluids in a Square Open Cavity
Authors: Habibis Saleh, Ishak Hashim
Abstract:
Combined surface tension and natural convection heat transfer in an open cavity is studied numerically in this article. The cavity is filled with water-{Cu} nanofluids. The left wall is kept at low temperature, the right wall at high temperature and the bottom and top walls are adiabatic. The top free surface is assumed to be flat and non--deformable. Finite difference method is applied to solve the dimensionless governing equations. It is found that the insignificant effect of adding the nanoparticles were obtained about $Ma_{bf}=250$.Keywords: natural convection, marangoni convection, nanofluids, square open cavity
Procedia PDF Downloads 550