Search results for: structured sandwich sheet metals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4650

Search results for: structured sandwich sheet metals

3960 Piezoelectric and Dielectric Properties of Poly(Vinylideneflouride-Hexafluoropropylene)/ZnO Nanocomposites

Authors: P. Hemalatha, Deepalekshmi Ponnamma, Mariam Al Ali Al-Maadeed

Abstract:

The Poly(vinylideneflouride-hexafluoropropylene) (PVDF-HFP)/ zinc oxide (ZnO) nanocomposites films were successfully prepared by mixing the fine ZnO particles into PVDF-HFP solution followed by film casting and sandwich techniques. Zinc oxide nanoparticles were synthesized by hydrothermal method. Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and properties of the obtained nanocomposites. The dielectric properties of the PVDF-HFP/ZnO nanocomposites were analyzed in detail. In comparison with pure PVDF-HFP, the dielectric constant of the nanocomposite (1wt% ZnO) was significantly improved. The piezoelectric co-efficients of the nanocomposites films were measured. Experimental results revealed the influence of filler on the properties of PVDF-HFP and enhancement in the output performance and dielectric properties reflects the ability for energy storage capabilities.

Keywords: dielectric constant, hydrothermal, nanoflowers, organic compounds

Procedia PDF Downloads 286
3959 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal

Abstract:

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

Keywords: heavy metal, municipal sewage sludge, sustainable agriculture, soil fertility and quality

Procedia PDF Downloads 287
3958 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.

Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet

Procedia PDF Downloads 162
3957 The Hydro-Geology and Drinking Water Quality of Ikogosi Warm Spring in South West Nigeria

Authors: Ikudayisi Akinola, Adeyemo Folasade, Adeyemo Josiah

Abstract:

This study focuses on the hydro-geology and chemistry of Ikogosi Warm Spring in South West Nigeria. Ikogosi warm spring is a global tourist attraction because it has both warm and cold spring sources. Water samples from the cold spring, warm spring and the meeting point were collected, analyzed and the result shows close similarity in temperature, hydrogen iron concentration (pH), alkalinity, hardness, Calcium, Magnesium, Sodium, Iron, total dissolved solid and heavy metals. The measured parameters in the water samples are within World Health Organisation standards for fresh water. The study of the geology of the warm spring reveals that the study area is underlain by a group of slightly migmatised to non-migmatised paraschists and meta-igneous rocks. The concentration levels of selected heavy metals, (Copper, Cadmium, Zinc, Arsenic and Cromium) were determined in the water (ppm) samples. Chromium had the highest concentration value of 1.52ppm (an average of 49.67%) and Cadmium had the lowest concentration with value of 0.15ppm (an average of 4.89%). Comparison of these results showed that, their mean levels are within the standard values obtained in Nigeria. It can be concluded that both warm and spring water are safe for drinking.

Keywords: cold spring, Ikogosi, melting point, warm spring, water samples

Procedia PDF Downloads 547
3956 Arundo Donax (Giant Reed) Phytoremediation Function of Chromium (Cr) Removal

Authors: Sadeg Abdurahman, Claudio Stockle, James Harsh, Marc Beutel, Usama Zaher

Abstract:

Pollution of the environment is a phenomenon which has taken a big part of importance of the world governments since the second half of the last century, this takes dangerous environmental, economic and social ranges dimensions especially after industrial advancement in industrialized country and good industrial expansion supported with modern technology and as chromium is known to be used in tannery factories. Chromium is considered a harm element to the environment due to its danger and transference through food, air, and water to the plants, animals and people. In this study the capacity of Arundo donax against chromium pollution was conducted. A. donax plants were grown-up under greenhouse conditions in pots contain nursery soil and feeding by Cr synthetic wastewater (0, 0.1, 1.0 and 2.0 mg L-1 ) for four weeks. Leaves, roots and stems dry matter production, color degree values, chlorophyll, growth parameters, and morphological characters were measured. The high Cr concentration was in roots was 1.15 mg kg-1 . Similarly, Cr concentration in stem was 0.469 mg kg-1 at 2.0 mg L-1 supplied Cr. In case of leaves, the maximum Cr concentration was 0.345 mg kg-1 at 2.0 g L-1 supplied Cr. The bioaccumulation and translocation factors was calculated. The macrophyte A. donax L. may be considered to be the most promising plant species in remediation of Cr-contaminated soil and wastewater due to its deeper root system as well as has higher efficiency to absorb chromium and other heavy metals as well.

Keywords: Arundo donax, Chromium pollution, heavy metals, phytoremediation, wastewater

Procedia PDF Downloads 683
3955 Removal of Heavy Metal, Dye and Salinity from Industrial Wastewaters by Banana Rachis Cellulose Micro Crystal-Clay Composite

Authors: Mohd Maniruzzaman, Md. Monjurul Alam, Md. Hafezur Rahaman, Anika Amir Mohona

Abstract:

The consumption of water by various industries is increasing day by day, and the wastewaters from them are increasing as well. These wastewaters consist of various kinds of color, dissolved solids, toxic heavy metals, residual chlorine, and other non-degradable organic materials. If these wastewaters are exposed directly to the environment, it will be hazardous for the environment and personal health. So, it is very necessary to treat these wastewaters before exposing into the environment. In this research, we have demonstrated the successful processing and utilization of fully bio-based cellulose micro crystal (CMC) composite for the removal of heavy metals, dyes, and salinity from industrial wastewaters. Banana rachis micro-cellulose were prepared by acid hydrolysis (H₂SO₄) of banana (Musa acuminata L.) rachis fiber, and Bijoypur raw clay were treated by organic solvent tri-ethyl amine. Composites were prepared with varying different composition of banana rachis nano-cellulose and modified Bijoypur (north-east part in Bangladesh) clay. After the successful characterization of cellulose micro crystal (CMC) and modified clay, our targeted filter was fabricated with different composition of cellulose micro crystal and clay in the locally fabricated packing column with 7.5 cm as thickness of composites fraction. Waste-water was collected from local small textile industries containing basic yellow 2 as dye, lead (II) nitrate [Pb(NO₃)₂] and chromium (III) nitrate [Cr(NO₃)₃] as heavy metals and saline water was collected from Khulna to test the efficiency of banana rachis cellulose micro crystal-clay composite for removing the above impurities. The filtering efficiency of wastewater purification was characterized by Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (X-RD), thermo gravimetric analysis (TGA), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM) analyses. Finally, our all characterizations data are shown with very high expected results for in industrial application of our fabricated filter.

Keywords: banana rachis, bio-based filter, cellulose micro crystal-clay composite, wastewaters, synthetic dyes, heavy metal, water salinity

Procedia PDF Downloads 129
3954 Environmental Geochemistry of Natural Geysers in an Urban Zone of Mexico

Authors: Zayre I. Gonzalez-Acevedo, Marco A. Garcia-Zarate

Abstract:

Environmental pollution by heavy metals is due to several processes, whether natural as weathering, or anthropogenic, related to human activities. Geysers may content dissolved heavy metals, related with their geothermal origin, and they are widely used by local people and tourists for treatment of dermal diseases and other therapeutic applications. In this study, 20 geysers with temperatures between 32 to 94 °C, located in the vicinity of Queretaro and Guanajuato in Central Mexico, were studied. These geysers were sampled in dry and rainy seasons in order to investigate seasonal changes of trace elements. The samples were analyzed in SWAMP Lab, University of Alberta, Canada for 34 elements. Most of the analyzed trace elements sowed concentrations below guidelines for natural waters. The elements showed seasonal variability with higher concentrations during rainy season. Arsenic varied from 49.29 to 2.16 µg L⁻¹. Arsenic was highly correlated with Fe, Sr, Th and Tl. Barium varied from 93.52 to 1.79 µg L⁻¹. Barium was highly correlated with Co, Cr, Mo, Ni, U, V, and Y. Copper and Zinc were correlated as well. According to the comparison of sites and the correlations between trace elements, their source was identified as natural regional, geothermal or anthropogenic origin. Because of application of geyser's water to balneology and health treatments, and also, because they are located in an urban zone in development, advise on their direct uses, according to their environmental quality is appointed in this research.

Keywords: balneology, direct uses, environmental quality and trace elements

Procedia PDF Downloads 161
3953 An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming

Authors: Daniel Tscharnuter, Eliza Truszkiewicz, Gerald Pinter

Abstract:

High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model.

Keywords: hyperelastic, anisotropic, polymer film, thermoforming

Procedia PDF Downloads 618
3952 Physiochemical Parameters Assessment and Evaluation of the Quality of Drinking Water in Some Parts of Lagos State

Authors: G. T. Mudashiru, Mayowa P. Ibitola

Abstract:

Investigation was carried out at Ikorodu North local council development area of Lagos state using physiochemical parameters to study the quality drinking water. It was ascertained that the human functions and activities were dependent on the continuous and availability of good drinking water. Six water samples were collected at six different boreholes from various outlets and homes in Ikorodu North local council development area. Lagos state Nigeria. Analysis was carried out to determine the purity of water for domestic use. Physicochemical properties evaluation was adapted using standard chemical methods. A number of parameters such as PH, turbidity, conductivity, total dissolved solids, color, chloride, sulphate, nitrate, hardness were determined. Heavy metals such as Zn, Mg, Fe, Pb, Hg, and Mn as well as total coliform counts were observed. The resulted values of each parameter were justified with World Health Organization (WHO) and Lagos state water regulatory commission LSWRC standard values for quantitative comparison. The result reveals that all the water had pH value well below the WHO maximum permissible level for potable water. Other physicochemical parameters were within the safe limit of WHO standard showing the portability nature of the water. It can be concluded that though the water is potable, there should be a kind of treatment of the water before consumption to prevent outbreak of diseases.

Keywords: drinking water, physiology, boreholes, heavy metals, domestic

Procedia PDF Downloads 221
3951 Evaluation of Sugarcane Straw Derived Biochar for the Remediation of Chromium and Nickel Contaminated Soil

Authors: Selam M. Tefera

Abstract:

Soil constitutes a crucial component of rural and urban environments. This fact is making role of heavy and trace elements in the soil system an issue of global concern. Heavy metals constitute an ill-defined group of inorganic chemical hazards, whose main source is anthropogenic activities mainly related to fabrications. This accumulation of heavy metals soils can prove toxic to the environment. The application of biochar to soil is one way of immobilizing these contaminants through sorption by exploiting the high surface area of this material among its other essential properties. This research examined the ability of sugar cane straw, an organic waste material from sugar farm, derived biochar and ash to remediate soil contaminated with heavy metals mainly Chromium and Zinc from the effluent of electroplating industry. Biochar was produced by varying the temperature from 300 °C to 500 °C and ash at 700 °C. The highest yield (50%) was obtained at the lowest temperature (300 °C). The proximate analysis showed ash content of 42.8%, ultimate analysis with carbon content of 67.18%, the Hydrogen to Carbon ratio of 0.54 and the results from FTIR analysis disclosed the organic nature of biochar. Methylene blue absorption indicated its fine surface area and pore structure, which increases with severity of temperature. Biochar was mixed with soil with at a ration varying from 4% w/w to 10% w/w of soil, and the response variables were determined at a time interval of 150 days, 180 days, and 210 days. As for ash (10% w/w), the characterization was performed at incubation time of 210 days. The results of pH indicated that biochar (9.24) had a notable liming capacity of acidic soil (4.8) by increasing it to 6.89 whereas ash increased it to 7.5. The immobilization capacity of biochar was found to effected mostly by the highest production temperature (500 °C), which was 75.5% for chromium and 80.5% for nickel. In addition, ash was shown to possess an outstanding immobilization capacity of 95.5% and 90.5% for Chromium and Nickel, respectively. All in all, the results from these methods showed that biochar produced from this specific biomass possesses the typical functional groups that enable it to store carbon, the appropriate pH that could remediate acidic soil, a fine amount of macro and micro nutrients that would aid plant growth.

Keywords: biochar, biomass, heavy metal immobalization, soil remediation

Procedia PDF Downloads 144
3950 An Atomic Finite Element Model for Mechanical Properties of Graphene Sheets

Authors: Win-Jin Chang, Haw-Long Lee, Yu-Ching Yang

Abstract:

In this study, we use the atomic-scale finite element method to investigate the mechanical behavior of the armchair- and zigzag-structured nanoporous graphene sheets with the clamped-free-free-free boundary condition under tension and shear loadings. The effect of porosity on Young’s modulus and shear modulus of nanoporous graphene sheets is obvious. For the armchair- and zigzag-structured nanoporous graphene sheets, Young’s modulus and shear modulus decreases with increasing porosity. Young’s modulus and shear modulus of zigzag graphene are larger than that of armchair one for the same porosity. The results are useful for application in the design of nanoporous graphene sheets.

Keywords: graphene, nanoporous, Young's modulus, shear modulus

Procedia PDF Downloads 400
3949 Developing a Thermo-Sensitive Conductive Stretchable Film to Allow Cell Sheet Harvest after Mechanical and Electrical Treatments

Authors: Wei-Wen Hu, Yong-Zhi Zhong

Abstract:

Depositing conductive polypyrrole (PPy) onto elastic polydimethylsiloxane (PDMS) substrate can obtain a highly stretchable conductive film, which can be used to construct a bioreactor to cyclically stretch and electrically stimulate surface cells. However, how to completely harvest these stimulated muscle tissue to repair damaged muscle is a challenge. To address this concern, N-isopropylacrylamide (NIPAAm), a monomer of temperature-sensitive polymer, was added during the polymerization of pyrrole on PDMS so that the resulting P(Py-co-NIPAAm)/PDMS should own both conductivity and thermo-sensitivity. Therefore, cells after stimulation can be completely harvested as cell sheets by reducing temperature. Mouse skeletal myoblast, C2C12 cells, were applied to examine our hypothesis. In electrical stimulation, C2C12 cells on P(Py-co-NIPAAm)/PDMS demonstrated the best myo-differentiation under the electric field of 1 V/cm. Regarding cyclic stretching, the strain equal to or higher than 9% can highly align C2C12 perpendicular to the stretching direction. The Western blotting experiments demonstrated that the cell sheets harvested by cooling reserved more extracellular matrix (ECM) than cells collected by the traditional trypsin digestion method. Immunostaining of myosin heavy chain protein (MHC) indicated that both mechanical and electrical stimuli effectively increased the number of myotubes and the differentiation ratio, and the myotubes can be aligned by cyclic stretching. Stimulated cell sheets can be harvested by cooling, and the alignment of myotubes was still maintained. These results suggested that the deposition of P(Py-co-NIPAAm) on PDMS can be applied to harvest intact cell sheets after cyclic stretching and electrical stimulation, which increased the feasibility of bioreactor for the application of tissue engineering and regenerative medicine.

Keywords: bioreactor, cell sheet, conductive polymer, cyclic stretching, electrical stimulation, muscle tissue engineering, myogenesis, thermosensitive hydrophobicity

Procedia PDF Downloads 96
3948 Hydrometallurgical Treatment of Smelted Low-Grade WEEE

Authors: Ewa Rudnik

Abstract:

Poster shows a comparison of hydrometallurgical routes of copper recovery from low-grade e-waste. Electronic scrap was smelted to produce Cu–Zn–Ag alloy. The alloy was then treated in the following ways: (a) anodic dissolution with simultaneous metal electrodeposition using ammoniacal and sulfuric acid solutions. This resulted in the separation of metals, where lead, silver and tin accumulated mainly in the slimes, while copper was transferred to the electrolyte and then recovered on the cathode. The best conditions of the alloy treatment were obtained in the sulfuric acid, where the final product was metal of high purity (99% Cu) at the current efficiency of 90%. (b) leaching in ammoniacal solutions of various compositions and then copper electrowinning. Alloy was leached in chloride, carbonate, sulfate and thiosulfate baths. This resulted in the separation of the metals, wherein copper and zinc were transferred to the electrolyte, while metallic tin and silver as well as lead salts remained in the slimes. Copper was selectively recovered from the ammoniacal solutions by the electrolysis, leaving zinc ions in the electrolyte. The best conditions of the alloy treatment were obtained in the ammonia-carbonate system, where the final product was copper of high purity (99.9%) at the current efficiency of 60%. Thiosulfate solution was not applicable for the leaching of the copper alloy due to secondary reactions of the formation of copper (I) thiosulfate complexes and precipitation of copper (I) sulfide.

Keywords: alloy, electrolysis, e-waste, leaching

Procedia PDF Downloads 372
3947 The Use of Ontology Framework for Automation Digital Forensics Investigation

Authors: Ahmad Luthfi

Abstract:

One of the main goals of a computer forensic analyst is to determine the cause and effect of the acquisition of a digital evidence in order to obtain relevant information on the case is being handled. In order to get fast and accurate results, this paper will discuss the approach known as ontology framework. This model uses a structured hierarchy of layers that create connectivity between the variant and searching investigation of activity that a computer forensic analysis activities can be carried out automatically. There are two main layers are used, namely analysis tools and operating system. By using the concept of ontology, the second layer is automatically designed to help investigator to perform the acquisition of digital evidence. The methodology of automation approach of this research is by utilizing forward chaining where the system will perform a search against investigative steps and atomically structured in accordance with the rules of the ontology.

Keywords: ontology, framework, automation, forensics

Procedia PDF Downloads 342
3946 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling

Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar

Abstract:

The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.

Keywords: heavy metal, activated clay, kinetic study, competitive adsorption, modeling

Procedia PDF Downloads 223
3945 Improving Paper Mechanical Properties and Printing Quality by Using Carboxymethyl Cellulose as a Strength Agent

Authors: G. N. Simonian, R. F. Basalah, F. T. Abd El Halim, F. F. Abd El Latif, A. M. Adel, A. M. El Shafey.

Abstract:

Carboxymethyl cellulose (CMC) is an anionic water soluble polymer that has been introduced in paper coating as a strength agent. One of the main objectives of this research is to investigate the influence of CMC concentration in improving the strength properties of paper fiber. In this work, we coated the paper sheets; Xerox paper sheets by different concentration of carboxymethyl cellulose solution (0.1, 0.5, 1, 1.5, 2, 3%) w/v. The mechanical properties; breaking length and tearing resistance (tear factor) were measured for the treated and untreated paper specimens. The retained polymer in the coated paper samples were also calculated. The more the concentration of the coating material; CMC increases, the more the mechanical properties; breaking length and tear factor increases. It can be concluded that CMC enhance the improvement of the mechanical properties of paper sheets result in increasing paper stability. The aim of the present research was also to study the effects on the vessel element structure and vessel picking tendency of the coated paper sheets. In addition to the improved strength properties of the treated sheet, a significant decrease in the vessel picking tendency was expected whereas refining of the original paper sheets (untreated paper sheets) improved mainly the bonding ability of fibers, CMC effectively enhanced the bonding of vessels as well. Moreover, film structures were formed in the fibrillated areas of the coated paper specimens, and they were concluded to reinforce the bonding within the sheet. Also, fragmentation of vessel elements through CMC modification was found to be important and results in a decreasing picking tendency which reflects in a good printability. Moreover, Scanning – Electron Microscope (SEM) images are represented to specifically explain the improved bonding ability of vessels and fibers after CMC modification. Finally, CMC modification enhance paper mechanical properties and print quality.

Keywords: carboxymethyl cellulose (CMC), breaking length, tear factor, vessel picking, printing, concentration

Procedia PDF Downloads 424
3944 Fabrication of Porous Materials for the Removal of Lead from Waste Water

Authors: Marcia Silva, Jayme Kolarik, Brennon Garthwait, William Lee, Hai-Feng Zhang

Abstract:

Adsorption of lead by a natural porous material was studied to establish a baseline for the removal of heavy metals from drinking and waste water. Samples were examined under different conditions such as solution pH, solution concentration, solution temperature, and exposure time. New materials with potentially enhanced adsorption properties were developed by functionalizing the surface of the natural porous material to fabricate graphene based coated and sulfide based treated porous material. The functionalized materials were characterized with Fourier Transform Infrared Spectroscopy (FTIR), Raman, Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) techniques. Solution pH effect on removal efficiency has been investigated in acidic (pH = 4), neutral (pH = 6) and basic (pH = 10) pH levels. All adsorbent materials showed highest adsorption capacities at neutral pH levels. Batch experiment was employed to assess the efficacy for the removal of lead with the sorption kinetics and the adsorption isotherms being determined for the natural and treated porous materials. The addition of graphene-based and sulfide-based materials increased the lead removal capacity of the natural clean porous material. Theoretical calculations confirmed pseudo-second order model as kinetic mechanism for lead adsorption for all adsorbents.

Keywords: heavy metals, ion exchange, adsorption, water remediation

Procedia PDF Downloads 249
3943 Single-Walled Carbon Nanotube Synthesis by Chemical Vapor Deposition Using Platinum-Group Metal Catalysts

Authors: T. Maruyama, T. Saida, S. Naritsuka, S. Iijima

Abstract:

Single-walled carbon nanotubes (SWCNTs) are generally synthesized by chemical vapor deposition (CVD) using Fe, Co, and Ni as catalysts. However, due to the Ostwald ripening of metal catalysts, the diameter distribution of the grown SWCNTs is considerably wide (>2 nm), which is not suitable for electronics applications. In addition, reduction in the growth temperature is desirable for fabricating SWCNT devices compatible with the LSI process. Herein, we performed SWCNT growth by alcohol catalytic CVD using platinum-group metal catalysts (Pt, Rh, and Pd) because these metals have high melting points, and the reduction in the Ostwald ripening of catalyst particles is expected. Our results revealed that web-like SWCNTs were obtained from Pt and Rh catalysts at growth temperature between 500 °C and 600 °C by optimizing the ethanol pressure. The SWCNT yield from Pd catalysts was considerably low. By decreasing the growth temperature, the diameter and chirality distribution of SWCNTs from Pt and Rh catalysts became small and narrow. In particular, the diameters of most SWCNTs grown using Pt catalysts were below 1 nm and their diameter distribution was considerably narrow. On the contrary, SWCNTs can grow from Rh catalysts even at 300 °C by optimizing the growth condition, which is the lowest temperature recorded for SWCNT growth. Our results demonstrated that platinum-group metals are useful for the growth of small-diameter SWCNTs and facilitate low-temperature growth.

Keywords: carbon nanotube, chemical vapor deposition, catalyst, platinum, rhodium, palladium

Procedia PDF Downloads 348
3942 Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200

Authors: Carla M. Machado, André A. Silva, Armando Bastos, Telmo G. Santos, J. Pamies Teixeira

Abstract:

Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts.

Keywords: advanced high strength steel, Bauschinger effect, sheet metal forming, springback

Procedia PDF Downloads 227
3941 Associated Problems with the Open Dump Site and Its Possible Solutions

Authors: Pangkaj Kumar Mahanta, Md. Rafizul Islam

Abstract:

The rapid growth of the population causes a substantial amount of increase in household waste all over the world. Waste management is becoming one of the most challenging phenomena in the present day. The most environmentally friendly final disposal process of waste is sanitary landfilling, which is practiced in most developing countries. However, in Southeast Asia, most of the final disposal point is an open dump site. Due to the ignominy of proper management of waste and monitoring, the surrounding environment gets polluted more by the open dump site in comparison with a sanitary landfill. Khulna is 3rd largest metropolitan city in Bangladesh, having a population of around 1.5 million and producing approximately 450 tons per day of Municipal Solid Waste. The Municipal solid waste of Khulna city is disposed of in Rajbandh open dump site. The surrounding air is being polluted by the gas produced in the open dump site. Also, the open dump site produces leachate, which contains various heavy metals like Cadmium (Cd), Chromium (Cr), Lead (Pb), Manganese (Mn), Mercury (Hg), Strontium (Sr), etc. Leachate pollutes the soil as well as the groundwater of the open dump site and also the surrounding area through seepage. Moreover, during the rainy season, the surface water is polluted by leachate runoff. Also, the plastic waste flowing out from the open dump site through various drivers pollutes the nearby environment. The health risk assessment associated with heavy metals was carried out by computing the chronic daily intake (CDI), hazard quotient (HQ), and hazard index (HI) via different exposure pathways following the USEPA guidelines. For ecological risk, potential contamination index (Cp), Contamination factor (CF), contamination load index (PLI), numerical integrated contamination factor (NICF), enrichment factor (EF), ecological risk index (ER), and potential ecological risk index (PERI) were computed. The health risk and ecological risk assessment results reveal that some heavy metals possess strong health and ecological risk. In addition, the child faces higher harmful health risks from several heavy metals than the adult for all the exposure pathways and media. The conversion of an open dump site into a sanitary landfill and a proper management system can reduce the problems associated with an open dump site. In the sanitary landfill, the produced gas will be managed properly to save the surrounding atmosphere from being polluted. The seepage of leachate can be minimized by installing a compacted clay layer (CCL) as a baseline and leachate collection in a sanitary landfill to save the underlying soil layer and surrounding water bodies from leachate. Another important component of a sanitary landfill is the conversion of plastic waste to energy will minimize the plastic pollution in the landfill area and also the surrounding soil and water bodies. Also, in the sanitary landfill, the bio-waste can be used to make compost to reduce the volume of bio-waste and proper utilization of the landfill area.

Keywords: ecological risk, health risk, open dump site, sanitary landfill

Procedia PDF Downloads 195
3940 Assessment of Groundwater Quality around a Cement Factory in Ewekoro, Ogun State, Southwest Nigeria

Authors: A. O. David, A. A. Akaho, M. A. Abah, J. O. Ogunjimi

Abstract:

This study focuses on the growing concerns about the quality of groundwater found around cement factories, which have caused several health issues for residents located within two (2) kilometer radius. The qualities of groundwater were determined by an investigative study that involved the determination of some heavy metals and physicochemical properties in drinking water samples. Eight (8) samples of groundwater were collected from the eight sampling sites. The samples were analysed for the following parameters; iron, copper, manganese, zinc, lead, color, dissolved solids, electrical conductivity, pH, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), temperature, turbidity and total hardness using standard methods. The test results showed the variation of the investigated parameters in the samples as follows: temperature 26-31oC, pH 5.9-7.2, electrical conductivity (EC) 0.37 – 0.78 µS/cm, total hardness 181.8 – 333.0 mg/l, turbidity 0.00-0.05 FTU, colour 5-10 TCU, dissolved oxygen 4.31-5.01 mg/l, BOD 0.2-1.0 mg/l, COD 2.0 -4.0 mg/l, Cu 0.04 – 0.09 mg/l, Fe 0.006-0.122 mg/l, Zn 0.016-0.306 mg/l, Mn 0.01-0.05 mg/l and Pb < 0.001 mg/l. The World Health Organization's standard for drinking water quality guidelines was exceeded in several of the analyzed parameters' amounts in the drinking water samples from the study area. The dissolved oxygen was found to exceed 5.0 mg/l, which is the WHO permissible limit; also, Limestone was found to exceed the WHO maximum limit of 170 mg/l. All the above results confirmed the high pollution of the groundwater sources, and hence, they are not suitable for consumption without any prior treatment.

Keywords: groundwater, quality, heavy metals, parameters

Procedia PDF Downloads 66
3939 Structural Identification for Layered Composite Structures through a Wave and Finite Element Methodology

Authors: Rilwan Kayode Apalowo, Dimitrios Chronopoulos

Abstract:

An approach for identifying the geometric and material characteristics of layered composite structures through an inverse wave and finite element methodology is proposed. These characteristics are obtained through multi-frequency single shot measurements. However, it is established that the frequency regime of the measurements does not matter, meaning that both ultrasonic and structural dynamics frequency spectra can be employed. Taking advantage of a full FE (finite elements) description of the periodic composite, the scheme is able to account for arbitrarily complex structures. In order to demonstrate the robustness of the presented scheme, it is applied to a sandwich composite panel and results are compared with that of experimental characterization techniques. Excellent agreement is obtained with the experimental measurements.

Keywords: structural identification, non-destructive evaluation, finite elements, wave propagation, layered structures, ultrasound

Procedia PDF Downloads 143
3938 Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model

Authors: Davies Obaromi, Qin Yongsong, James Ndege, Azeez Adeboye, Akinwumi Odeyemi

Abstract:

The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter.

Keywords: Besag2, CAR models, disease mapping, INLA, spatial models

Procedia PDF Downloads 282
3937 Development, Characterization and Performance Evaluation of a Weak Cation Exchange Hydrogel Using Ultrasonic Technique

Authors: Mohamed H. Sorour, Hayam F. Shaalan, Heba A. Hani, Eman S. Sayed, Amany A. El-Mansoup

Abstract:

Heavy metals (HMs) present an increasing threat to aquatic and soil environment. Thus, techniques should be developed for the removal and/or recovery of those HMs from point sources in the generating industries. This paper reports our endeavors concerning the development of in-house developed weak cation exchange polyacrylate hydrogel kaolin composites for heavy metals removal. This type of composite enables desirable characteristics and functions including mechanical strength, bed porosity and cost advantages. This paper emphasizes the effect of varying crosslinker (methylenebis(acrylamide)) concentration. The prepared cation exchanger has been subjected to intensive characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF) and Brunauer Emmett and Teller (BET) method. Moreover, the performance was investigated using synthetic and real wastewater for an industrial complex east of Cairo. Simulated and real wastewater compositions addressed; Cr, Co, Ni, and Pb are in the range of (92-115), (91-103), (86-88) and (99-125), respectively. Adsorption experiments have been conducted in both batch and column modes. In general, batch tests revealed enhanced cation exchange capacities of 70, 72, 78.2 and 99.9 mg/g from single synthetic wastes while, removal efficiencies of 82.2, 86.4, 44.4 and 96% were obtained for Cr, Co, Ni and Pb, respectively from mixed synthetic wastes. It is concluded that the mixed synthetic and real wastewaters have lower adsorption capacities than single solutions. It is worth mentioned that Pb attained higher adsorption capacities with comparable results in all tested concentrations of synthetic and real wastewaters. Pilot scale experiments were also conducted for mixed synthetic waste in a fluidized bed column for 48 hour cycle time which revealed 86.4%, 58.5%, 66.8% and 96.9% removal efficiency for Cr, Co, Ni, and Pb, respectively with maximum regeneration was also conducted using saline and acid regenerants. Maximum regeneration efficiencies for the column studies higher than the batch ones about by about 30% to 60%. Studies are currently under way to enhance the regeneration efficiency to enable successful scaling up of the adsorption column.

Keywords: polyacrylate hydrogel kaolin, ultrasonic irradiation, heavy metals, adsorption and regeneration

Procedia PDF Downloads 123
3936 Effect of Catalyst Preparation Method on Dry Reforming of Methane with Supported and Promoted Catalysts

Authors: Sanjay P. Gandhi, Sanjay S. Patel

Abstract:

Dry (CO2) reforming of methane (DRM) is both scientific and industrial importance. In recent decades, CO2 utilization has become increasingly important in view of the escalating global warming phenomenon. This reaction produces syngas that can be used to produce a wide range of products, such as higher alkanes and oxygenates by means of Fischer–Tropsch synthesis. DRM is inevitably accompanied by deactivation due to carbon deposition. DRM is also a highly endothermic reaction and requires operating temperatures of 800–1000 °C to attain high equilibrium conversion of CH4 and CO2 to H2 and CO and to minimize the thermodynamic driving force for carbon deposition. The catalysts used are often composed of transition Methods like Nickel, supported on metallic and non-metallic oxides such as alumina and silica. However, many of these catalysts undergo severe deactivation due to carbon deposition. Noble metals have also been studied and are typically found to be much more resistant to carbon deposition than Ni catalysts, but are generally uneconomical. Noble metals can also be used to promote the Ni catalysts in order to increase their resistance to deactivation. In order to design catalysts that minimize deactivation, it is necessary to understand the elementary steps involved in the activation and conversion of CH4 and CO2. CO2 reforming methane over promoted catalyst was studied. The influence of ZrO2, CeO2 and the behavior of Ni-Al2O3 Catalyst, prepare by wet-impregnation and Co-precipitated method was studied. XRD, BET Analysis for different promoted and unprompted Catalyst was studied.

Keywords: CO2 reforming of methane, Ni catalyst, promoted and unprompted catalyst, effect of catalyst preparation

Procedia PDF Downloads 476
3935 Buckling Resistance of Basalt Fiber Reinforced Polymer Infill Panel Subjected to Elevated Temperatures

Authors: Viriyavudh Sim, Woo Young Jung

Abstract:

Performance of Basalt Fiber Reinforced Polymer (BFRP) sandwich infill panel system under diagonal compression was studied by means of numerical analysis. Furthermore, the variation of temperature was considered to affect the mechanical properties of BFRP, since their composition was based on polymeric material. Moreover, commercial finite element analysis platform ABAQUS was used to model and analyze this infill panel system. Consequently, results of the analyses show that the overall performance of BFRP panel had a 15% increase compared to that of GFRP infill panel system. However, the variation of buckling load in terms of temperature for the BFRP system showed a more sensitive nature compared to those of GFRP system.

Keywords: basalt fiber reinforced polymer (BFRP), buckling performance, numerical simulation, temperature dependent materials

Procedia PDF Downloads 200
3934 Phytoremediation of Heavy Metals by the Perennial Tussock Chrysopogon Zizanioides Grown on Zn and Cd Contaminated Soil Amended with Biochar

Authors: Dhritilekha Deka, Deepak Patwa, Ravi K., Archana M. Nair

Abstract:

Bioaccumulation of heavy metal contaminants due to intense anthropogenic interference degrades the environment and ecosystem functions. Conventional physicochemical methods involve energy-intensive and costly methodologies. Phytoremediation, on the other hand, provides an efficient nature-based strategy for the reclamation of heavy metal-contaminated sites. However, the slow process and adaptation to high-concentration contaminant sequestration often limit the efficiency of the method. This necessitates natural amendments such as biochar to improve phytoextraction and stabilize the green cover. Biochar is a highly porous structure with high carbon sequestration potential and containing negatively charged functional groups that provide binding sites for the positively charged metals. This study aims to develop and determine the synergy between sugarcane bagasse biochar content and phytoremediation. A 60-day pot experiment using perennial tussock vetiver grass (Chrysopogon zizanioides) was conducted for different biochar contents of 1%, 2%, and 4% for the removal of cadmium and zinc. A concentration of 500 ppm is maintained for the amended and unamended control (CK) samples. The survival rates of the plants, biomass production, and leaf area index were measured for the plant growth characteristics. Results indicate a visible change in the plant growth and the heavy metal concentration with the biochar content. The bioconcentration factor (BCF) in the plant improved significantly for the 4% biochar content by 57% in comparison to the control CK treatment in Cd-treated soils. The Zn soils indicated the highest reduction in the metal concentration by 50% in the 2% amended samples and an increase in the BCF in all the amended samples. The translocation from the rhizosphere to the shoots was low but not dependent on the amendment content and varied for each contaminant type. The root-to-shoot ratio indicates higher values compared to the control samples. The enhanced tolerance capacities can be attributed to the nutrients released by the biochar in the soil. The study reveals the high potential of biochar as a phytoremediation amendment, but its effect is dependent on the soil and heavy metal and accumulator species.

Keywords: phytoextraction, biochar, heavy metals, chrysopogon zizanioides, bioaccumulation factor

Procedia PDF Downloads 65
3933 Adsorption Mechanism of Heavy Metals and Organic Pesticide on Industrial Construction and Demolition Waste and Its Runoff Behaviors

Authors: Sheng Huang, Xin Zhao, Xiaofeng Gao, Tao Zhou, Shijin Dai, Youcai Zhao

Abstract:

Adsorption of heavy metal pollutants (Zn, Cd, Pb, Cr, Cu) and organic pesticide (phorate, dithiophosphate diethyl, triethyl phosphorothioate), along with their multi-contamination on the surface of industrial construction & demolition waste (C&D waste) was investigated. Brick powder was selected as the appropriate waste while its maximum equilibrium adsorption amount of heavy metal under single controlled contamination matrix reached 5.41, 0.81, 0.45, 1.13 and 0.97 mg/g, respectively. Effects of pH and spiking dose of ICDW was also investigated. Equilibrium adsorption amount of organic pesticide varied from 0.02 to 0.97 mg/g, which was negatively correlated to the size distribution and hydrophilism. Existence of organic pesticide on surface of ICDW caused various effects on the heavy metal adsorption, mainly due to combination of metal ions and the floccule formation along with wrapping behaviors by pesticide pollutants. Adsorption of Zn was sharply decreased from 7.1 to 0.15 mg/g compared with clean ICDW and phorate contaminated ICDW, while that of Pb, Cr and Cd experienced an increase- then decrease procedure. On the other hand, runoff of pesticide contaminants was investigated under 25 mm/h simulated rainfall. Results showed that the cumulative runoff amount fitted well with curve obtained from a power function, of which r2=0.95 and 0.91 for 1DAA (1 day between contamination and runoff) and 7DAA, respectively. This study helps provide evaluation of industrial construction and demolition waste contamination into aquatic systems.

Keywords: adsorption mechanism, industrial construction waste, metals, pesticide, runoff

Procedia PDF Downloads 468
3932 Hydrogeochemical Investigation of Lead-Zinc Deposits in Oshiri and Ishiagu Areas, South Eastern Nigeria

Authors: Christian Ogubuchi Ede, Moses Oghenenyoreme Eyankware

Abstract:

This study assessed the concentration of heavy metals (HMs) in soil, rock, mine dump pile, and water from Oshiri and Ishiagu areas of Ebonyi State. Investigations on mobile fraction equally evaluated the geochemical condition of different HM using UV spectrophotometer for Mineralized and unmineralized rocks, dumps, and soil, while AAS was used in determining the geochemical nature of the water system. Analysis revealed very high pollution of Cd mostly in Ishiagu (Ihetutu and Amaonye) active mine zones and with subordinates enrichments of Pb, Cu, As, and Zn in Amagu and Umungbala. Oshiri recorded sparingly moderate to high contamination of Cd and Mn but out rightly high anthropogenic input. Observation showed that most of the contamination conditions were unbearable while at the control but decrease with increasing distance from the mine vicinity. The potential heavy metal risk of the environments was evaluated using the risk factors such as enrichment factor, index of Geoacumulation, Contamination Factor, and Effect Range Median. Cadmium and Zn showed moderate to extreme contamination using Geoaccumulation Index (Igeo) while Pb, Cd, and As indicated moderate to strong pollution using the Effect Range Median. Results, when compared with the allowable limits and standards, showed the concentration of the metals in the following order Cd>Zn>Pb>As>Cu>Ni (rocks), Cd>As>Pb>Zn>Cu>Ni (soil) while Cd>Zn>As>Pb> Cu (for mine dump pile. High concentrations of Zn and As were recorded more in mine pond and salt line/drain channels along active mine zones, it heightened its threat during the rainy period as it settles into river course, living behind full-scale contaminations to inhabitants depending on it for domestic uses. Pb and Cu with moderate pollution were recorded in surface/stream water source as its mobility were relatively low. Results from Ishiagu Crush rock sites and Fedeco metallurgical and auto workshop where groundwater contamination was seen infiltrating some of the wells points gave rise to values that were 4 times high than the allowable limits. Some of these metal concentrations according to WHO (2015) if left unmitigated pose adverse effects to the soil and human community.

Keywords: water, geo-accumulation, heavy metals, mine and Nigeria.

Procedia PDF Downloads 172
3931 Decision Support for Modularisation: Engineering Construction Case Studies

Authors: Rolla Monib, Chris Ian Goodier, Alistair Gibb

Abstract:

This paper aims to investigate decision support strategies in the EC sector to determine the most appropriate degree of modularization. This is achieved through three oil and gas (O&G) and two power plant case studies via semi-structured interviews (n=59 and n=27, respectively), analysis of project documents, and case study-specific semi-structured validation interviews (n=12 and n=8). New terminology to distinguish degrees of modularization is proposed, along with a decision-making support checklist and a diagrammatic decision-making support figure. Results indicate that the EC sub-sectors were substantially more satisfied with the application of component, structural, or traditional modularization compared with system modularization for some types of modules. Key drivers for decisions on the degree of modularization vary across module types. This paper can help the EC sector determine the most suitable degree of modularization via a decision-making support strategy.

Keywords: modularization, engineering construction, case study, decision support

Procedia PDF Downloads 94