Search results for: stereo vision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1093

Search results for: stereo vision

403 Inspiring Woman: The Emotional Intelligence Leadership of Khadijah Bint Khuwaylid

Authors: Eman S. Soliman, Sana Hawamdeh, Najmus S. Mahfooz

Abstract:

Purpose: The purpose of this paper was to examine various components of applied emotional intelligence as demonstrated in the leadership style of Khadijah Bint Khuwaylid in pre and post-Islamic society. Methodology: The research used a qualitative research method, specifically historical and ethnographic techniques. Data collection included both primary and secondary sources. Data from sources were analyzed to document the use of emotional intelligent leadership behaviors throughout Khadijah Bint Khuwaylid leadership experience from 596 A.D. to 621 A.D. Findings: Demonstration of four cornerstones of emotional intelligence which are self-awareness, self-management, social awareness and relationship management. Apply them on khadejah Bint Khuwaylid leadership style reveal that she possess main behavioral competences in the form of emotionally self-aware, self-.confidence, adaptability, empathy and influence. Conclusions: Khadijah Bint Khuwaylid serves as a historical model of effective leadership that included the use of emotional intelligence in her leadership behavior. The inclusion of the effective portion of the brain created a successful leadership style that can be learned by present day and future leadership. The recommendations for future leaders are to include the use of emotionally self-aware and self-confidence, adaptability, empathy and influence as components of leadership. This will then demonstrate in a leadership a basic knowledge and understanding of feelings, the keenness to be emotionally open with others, the ability to prototype beliefs and values, and the use of emotions in future communications, vision and progress.

Keywords: emotional intelligence, leadership, Khadijah Bint Khuwaylid, women

Procedia PDF Downloads 248
402 Tomato-Weed Classification by RetinaNet One-Step Neural Network

Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri

Abstract:

The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.

Keywords: deep learning, object detection, cnn, tomato, weeds

Procedia PDF Downloads 82
401 Progress in Combining Image Captioning and Visual Question Answering Tasks

Authors: Prathiksha Kamath, Pratibha Jamkhandi, Prateek Ghanti, Priyanshu Gupta, M. Lakshmi Neelima

Abstract:

Combining Image Captioning and Visual Question Answering (VQA) tasks have emerged as a new and exciting research area. The image captioning task involves generating a textual description that summarizes the content of the image. VQA aims to answer a natural language question about the image. Both these tasks include computer vision and natural language processing (NLP) and require a deep understanding of the content of the image and semantic relationship within the image and the ability to generate a response in natural language. There has been remarkable growth in both these tasks with rapid advancement in deep learning. In this paper, we present a comprehensive review of recent progress in combining image captioning and visual question-answering (VQA) tasks. We first discuss both image captioning and VQA tasks individually and then the various ways in which both these tasks can be integrated. We also analyze the challenges associated with these tasks and ways to overcome them. We finally discuss the various datasets and evaluation metrics used in these tasks. This paper concludes with the need for generating captions based on the context and captions that are able to answer the most likely asked questions about the image so as to aid the VQA task. Overall, this review highlights the significant progress made in combining image captioning and VQA, as well as the ongoing challenges and opportunities for further research in this exciting and rapidly evolving field, which has the potential to improve the performance of real-world applications such as autonomous vehicles, robotics, and image search.

Keywords: image captioning, visual question answering, deep learning, natural language processing

Procedia PDF Downloads 53
400 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 224
399 From Lack of Humanity to Self-Consciousness and Vision in Lord of the Flies and Blindness

Authors: Maryam Sadeghi

Abstract:

Civilization and industrialization are two important factors that make people believe they are just depriving of savagery and brutality. But practical studies show exactly something different. How groups of people behave, when they are put in extreme situations is the very unpleasant truth about the human being in general. Both novels deal with the fragility of human society, no matter the people who are playing a role are children or grown-ups, who by definition should know better. Both novels have got beautiful plots in which no one enforces rules and laws on the characters, so they begin to show their true nature. The present study is undertaken to investigate the process of a journey from lack of humanity to a sort of self-consciousness which happens at the end of both Blindness by Saramago and Lord of the Flies by Golding. In order to get the best result the two novels have been studied precisely and lots of different articles and critical essays have been analyzed, which shows people drift into cruelty and savagery easily but can also drift out of it. In blindness losing sight, and being apart from society in a deserted tropical island in Lord of the Flies causes limitation. Limitation in any form makes people rebel. Although in the process of both novels, any kind of savagery, brutality, filth, and social collapse can be observable and both writers believe that human being has the potential of being animal images, but they both also want to show that the very nature of human being is divine. Children’s weeping at the end Lord of the Flies and Doctor’s remark at the end of Blindness “I don’t think we did go blind, I think we are blind, blind but seeing, blind people who can see but do not see”, show exactly the matter of insight at the end of the novels. The fact that divinity exists in the very nature of human being is the indubitable aim that makes this research truly valuable.

Keywords: brutality, lack of humanity, savagery, Blindness

Procedia PDF Downloads 349
398 Robotic Lingulectomy for Primary Lung Cancer: A Video Presentation

Authors: Abraham J. Rizkalla, Joanne F. Irons, Christopher Q. Cao

Abstract:

Purpose: Lobectomy was considered the standard of care for early-stage non-small lung cancer (NSCLC) after the Lung Cancer Study Group trial demonstrated increased locoregional recurrence for sublobar resections. However, there has been heightened interest in segmentectomies for selected patients with peripheral lesions ≤2cm, as investigated by the JCOG0802 and CALGB140503 trials. Minimally invasive robotic surgery facilitates segmentectomies with improved maneuverability and visualization of intersegmental planes using indocyanine green. We hereby present a patient who underwent robotic lingulectomy for an undiagnosed ground-glass opacity. Methodology: This video demonstrates a robotic portal lingulectomy using three 8mm ports and a 12mm port. Stereoscopic direct vision facilitated the identification of the lingula artery and vein, and intra-operative bronchoscopy was performed to confirm the lingula bronchus. The intersegmental plane was identified by indocyanine green and a near-infrared camera. Thorough lymph node sampling was performed in accordance with international standards. Results: The 18mm lesion was successfully excised with clear margins to achieve R0 resection with no evidence of malignancy in the 8 lymph nodes sampled. Histopathological examination revealed lepidic predominant adenocarcinoma, pathological stage IA. Conclusion: This video presentation exemplifies the standard approach for robotic portal lingulectomy in appropriately selected patients.

Keywords: lung cancer, robotic segmentectomy, indocyanine green, lingulectomy

Procedia PDF Downloads 37
397 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.

Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks

Procedia PDF Downloads 299
396 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks

Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas

Abstract:

This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).

Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems

Procedia PDF Downloads 106
395 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection

Authors: S. Shankar Bharathi

Abstract:

Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.

Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision

Procedia PDF Downloads 392
394 The Higher Education System in Jordan: Philosophy and Premises Preparation

Authors: Ihsan Orsan Oglah Elrabbaei

Abstract:

This research stems from the philosophy of education notion, as it is a fundamental pillar within or component of the philosophy of education. It is the general framework that society takes towards the future in order to build its integrated educational system amid the variables that surround it, in order to prepare its members in all aspects of cognitive, skill, and behavioral life, so that there is a clear concept of the system of productive values, according to the vision of philosophy that defines its future roles, which can be found in the system of productive values. With the resignation, everything changes. As a result, the philosophy of education is anticipated to evolve in response to perceived changes in society in terms of the nature of its human and material resources. The study will answer the following questions: Has the philosophy of education changed to accommodate this change? Alternatively, is the change that occurs because of natural growth without education having a role in directing this change and being aware of it in order to fit with national, regional, and global changes? Were the national educational goals and curricula and their programs viewed through the lenses of interest? On the other hand, do things happen without realizing that the philosophy of education has changed and that it proceeds according to the natural rolling of the invisible impulse? The study concluded that we must reconsider the philosophy of education and redefine who is an educated person. In addition, to recognize all the values of the roles that the individual can play in his society, according to his abilities, and with respect. Moreover, building a new philosophy of education based on what society can look at and what it wants from a flexible future takes the concept of changing life values, their contents, diversity, and the roles of each individual in them.

Keywords: higher education system, jordan, philosophy, premises preparation.

Procedia PDF Downloads 74
393 An Institutional Leadership Framework on University Academics’ Decision to Become Institutional Leaders: A Malaysian Perspective

Authors: Norazharuddin Shah Abdullah, Harshita Aini Haroon, Norazian Mohmad Azman, Erlane K. Ghani, Ismie Roha Mohamed Jais, Kamaruzzaman Muhammad, Azleen Ilias

Abstract:

This study examines the factors that influence academics' decisions to accept or decline leadership roles in Malaysian universities. A questionnaire survey was distributed to a total of 1771 academics from public and private institutions in Malaysia. This study shows that the majority of academics in universities, regardless of whether they are public or private, have a reluctance to take on administrative roles. In particular, this study shows that female academics in public universities have no ambition for administrative roles, while female academics in private universities show a strong enthusiasm for taking up administrative positions. In terms of age, academics of all age groups made comparable choices, but academics who are under 30 years old have a greater propensity to aspire to an administrative position. Associate professors at private universities also opt for an administrative position. The factors that influence academics' decisions to accept or decline an administrative position are categorised into five categories: career development, skills and experience, preferences, perceptions, and organization. The findings of this study suggest that the increasing number of academics not seeking institutional leadership positions is a concern, as universities need a sufficient pool of potential successors to effectively fulfil the purpose and vision of the university. This study suggests the implementation of awareness and training initiatives to inspire academics, especially young academics, to take up leadership roles within the institutions.

Keywords: academics, institutional leadership, leadership, universities, Malaysia

Procedia PDF Downloads 26
392 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology

Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões

Abstract:

This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.

Keywords: fruit thinning, horticultural field, portable devices, sensor technologies

Procedia PDF Downloads 115
391 War and the Battle of Lebanese Television over Gender

Authors: Natalie M. Khazaal

Abstract:

The effects of the civil war on Lebanese women have been challenging to conceptualize. For some, war is a liberating and empowering force for women, while for others it is one that subjugates women and disempowers them in new ways. Scholars have explored the impact on the Lebanese civil war (1975-1990) on women in the fields of labor history, political activism and literary production. In all these arenas, women’s role and visibility were contested and negotiated in diverse ways. But probably the most visible arena where this contestation took place was television. Dramatized entertainment series were crucial sites where fictional women battled out the gender question, and which reflected and participated in the negotiations of gender politics. Even more stunningly, actual television stations became part of this battle through the plots and portrayals of women that they created. The state-backed Tele-Liban (TL) peddled patriarchal articulations of gender that directly competed with the edgy vision of liberated, independent women on the pirate Lebanese Broadcasting Corporation (LBC). This presentation explores how LBC used gender to distinguish its brand against the retrograde TL programing. Television series are an important medium for creating, testing and reenacting gender politics. They are even more consequential in another way. They are the sites where a dramatic shift in the relationship between Arab television and Arab publics—from benign neglect of public concerns towards engagement with audiences—took place for the first time. As this shift is at the heart of why Arab media was seen as a participant in the Arab uprisings, it is important to explore the roots of the shift in the dramas and comedy series of the mid-1980s Lebanese television. This presentation argues that television battles over gender were consequential and need serious consideration as sites of unexpected meaning.

Keywords: gender, Lebanon, television, war, women

Procedia PDF Downloads 604
390 Native Plants Marketing by Entrepreneurs in the Landscaping Industry in Japan

Authors: Yuki Hara

Abstract:

Entrepreneurs are welcomed to the landscaping industry, conserving practically and theoretically biological diversity in landscaping construction, although there are limited reports on corporative trials making a market with a new logistics system of native plants (NP) between landscaping companies and nurserymen. This paper explores the entrepreneurial process of a landscaping company, “5byMidori” for NP marketing. This paper employs a case study design. Data are collected in interviews with the manager and designer of 5byMidori, 2 scientists, 1 organization, and 18 nurserymen, fieldworks at two nurseries, observations of marketing activities in three years, and texts from published documents about the business concept and marketing strategy with NP. These data are analyzed by qualitative methods. The results show that NP is suitable for the vision of 5byMidori improving urban desertified environment with closer urban-rural linkage. Professional landscaping team changes a forestry organization into NP producers conserving a large nursery of a mountain. Multifaceted PR based on the entrepreneurial context and personal background of a landscaping venture can foster team members' businesses and help customers and users to understand the biodiversity value of the product. Wider partnerships with existing nurserymen at other sites in many regions need socio-economic incentives and environmental reliability. In conclusion, the entrepreneurial marketing of a landscaping company needs to add more meanings and a variety of merits in terms of ecosystem services, as NP tends to be in academic definition and independent from the cultures like nurseryman and forestry.

Keywords: biological diversity, landscaping industry, marketing, native plants

Procedia PDF Downloads 101
389 Artificial Intelligence in Melanoma Prognosis: A Narrative Review

Authors: Shohreh Ghasemi

Abstract:

Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.

Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine

Procedia PDF Downloads 51
388 Obsession of Time and the New Musical Ontologies. The Concert for Saxophone, Daniel Kientzy and Orchestra by Myriam Marbe

Authors: Dutica Luminita

Abstract:

For the music composer Myriam Marbe the musical time and memory represent 2 (complementary) phenomena with conclusive impact on the settlement of new musical ontologies. Summarizing the most important achievements of the contemporary techniques of composition, her vision on the microform presented in The Concert for Daniel Kientzy, saxophone and orchestra transcends the linear and unidirectional time in favour of a flexible, multi-vectorial speech with spiral developments, where the sound substance is auto(re)generated by analogy with the fundamental processes of the memory. The conceptual model is of an archetypal essence, the music composer being concerned with identifying the mechanisms of the creation process, especially of those specific to the collective creation (of oral tradition). Hence the spontaneity of expression, improvisation tint, free rhythm, micro-interval intonation, coloristic-timbral universe dominated by multiphonics and unique sound effects. Hence the atmosphere of ritual, however purged by the primary connotations and reprojected into a wonderful spectacular space. The Concert is a work of artistic maturity and enforces respect, among others, by the timbral diversity of the three species of saxophone required by the music composer (baritone, sopranino and alt), in Part III Daniel Kientzy shows the performance of playing two saxophones concomitantly. The score of the music composer Myriam Marbe contains a deeply spiritualized music, full or archetypal symbols, a music whose drama suggests a real cinematographic movement.

Keywords: archetype, chronogenesis, concert, multiphonics

Procedia PDF Downloads 513
387 Reimagine and Redesign: Augmented Reality Digital Technologies and 21st Century Education

Authors: Jasmin Cowin

Abstract:

Augmented reality digital technologies, big data, and the need for a teacher workforce able to meet the demands of a knowledge-based society are poised to lead to major changes in the field of education. This paper explores applications and educational use cases of augmented reality digital technologies for educational organizations during the Fourth Industrial Revolution. The Fourth Industrial Revolution requires vision, flexibility, and innovative educational conduits by governments and educational institutions to remain competitive in a global economy. Educational organizations will need to focus on teaching in and for a digital age to continue offering academic knowledge relevant to 21st-century markets and changing labor force needs. Implementation of contemporary disciplines will need to be embodied through learners’ active knowledge-making experiences while embracing ubiquitous accessibility. The power of distributed ledger technology promises major streamlining for educational record-keeping, degree conferrals, and authenticity guarantees. Augmented reality digital technologies hold the potential to restructure educational philosophies and their underpinning pedagogies thereby transforming modes of delivery. Structural changes in education and governmental planning are already increasing through intelligent systems and big data. Reimagining and redesigning education on a broad scale is required to plan and implement governmental and institutional changes to harness innovative technologies while moving away from the big schooling machine.

Keywords: fourth industrial revolution, artificial intelligence, big data, education, augmented reality digital technologies, distributed ledger technology

Procedia PDF Downloads 250
386 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition

Procedia PDF Downloads 121
385 Women's Liberation: A Study of the Movement in Saudi Arabia

Authors: Rachel Hasan

Abstract:

Kingdom of Saudi Arabia has witnessed various significant social and political developments in 2018. Crown Prince of Kingdom of Saudi Arabia, Muhammad bin Salman, also serving as Deputy Prime Minister of Saudi Arabia, has made several social, cultural, and political changes in the country under his grand National Transformation Program. Program provides a vision of more economically viable, culturally liberal, and politically pleasant Saudi Arabia. One of the most significant and ground breaking changes that has been made under this program is awarding women the long awaited rights. Legislative changes are made to allow woman to drive. Seemingly basic on surface but driving rights to women represent much deeper meaning to the culture of Saudi Arabia and to the world outside. Ever since this right is awarded to the women, world media is interpreting this change in various colors. This paper aims to investigate the portrayal of gender rights in various online media publications and websites. The methodology applied has been quantitative content analysis method to analyze the various aspects of media's coverage of various social and cultural changes with reference to women's rights. For the purpose of research, convenience sampling was done for eight international online articles from media websites. The articles discussed the lifting of ban for females on driving cars in Saudi Arabia as well as gender development for these women. These articles were analyzed for media frames, and various categories of analysis were developed, which highlighted the stance that was observed. Certain terms were conceptualized and operationalized and were also explained for better understanding of the context.

Keywords: gender rights, media coverage, political change, women's liberation

Procedia PDF Downloads 90
384 Importance of Developing a Decision Support System for Diagnosis of Glaucoma

Authors: Murat Durucu

Abstract:

Glaucoma is a condition of irreversible blindness, early diagnosis and appropriate interventions to make the patients able to see longer time. In this study, it addressed that the importance of developing a decision support system for glaucoma diagnosis. Glaucoma occurs when pressure happens around the eyes it causes some damage to the optic nerves and deterioration of vision. There are different levels ranging blindness of glaucoma disease. The diagnosis at an early stage allows a chance for therapies that slows the progression of the disease. In recent years, imaging technology from Heidelberg Retinal Tomography (HRT), Stereoscopic Disc Photo (SDP) and Optical Coherence Tomography (OCT) have been used for the diagnosis of glaucoma. This better accuracy and faster imaging techniques in response technique of OCT have become the most common method used by experts. Although OCT images or HRT precision and quickness, especially in the early stages, there are still difficulties and mistakes are occurred in diagnosis of glaucoma. It is difficult to obtain objective results on diagnosis and placement process of the doctor's. It seems very important to develop an objective decision support system for diagnosis and level the glaucoma disease for patients. By using OCT images and pattern recognition systems, it is possible to develop a support system for doctors to make their decisions on glaucoma. Thus, in this recent study, we develop an evaluation and support system to the usage of doctors. Pattern recognition system based computer software would help the doctors to make an objective evaluation for their patients. It is intended that after development and evaluation processes of the software, the system is planning to be serve for the usage of doctors in different hospitals.

Keywords: decision support system, glaucoma, image processing, pattern recognition

Procedia PDF Downloads 267
383 Orthostatic Hypotension among Patients Aged above 65 Years Admitted to Medical Wards in a Tertiary Care Hospital, Sri Lanka

Authors: G. R. Constantine, M.C.K. Thilakasiri, V.S. Mohottala, T.V. Soundaram, D.S. Rathnayake, E.G.H.E. De Silva, A.L.S. Mohamed, V.R. Weerasekara

Abstract:

Orthostatic hypotension is prevalent in the elderly population, and it is an important risk factor contributing to falls in the elderly. This study aims to evaluate the prevalence of orthostatic hypotension in hospitalized elderly patients, changes in blood pressure during the hospital stay, morbidities associated with it and its association with falls in the elderly. A cross-sectional descriptive study was conducted in the National Hospital of Sri Lanka (NHSL) in a sample of 120 patients of age 65 years or above who were admitted to the medical wards. The demographic, clinical data was obtained by an interviewer-administered questionnaire. Two validated questionnaires were used to assess symptoms and effects of orthostatic hypotension and risk factors associated with falls. Orthostatic hypotension on admission and after 3 days of hospital stay was measured by bed-side mercury sphygmomanometer. Prevalence of orthostatic hypotension among the study population was 63.3%(76 patients). But no significant change in the orthostatic hypotension noted after 3 days of hospital admission (SND 0.61, SE= 5.59, p=0.27). There was no significant association found between orthostatic hypotension and its symptoms (dizziness and vertigo, vision problems, malaise, fatigue, poor concentration, neck stiffness), impact on standing or walking and non-communicable diseases. Falls were experienced by 27.5 % (33 patients) of the study population and prevalence of patients with orthostatic hypotension who had experienced falls was 25.9% (28 patients). In conclusions, orthostatic hypotension is more prevalent among elderly patients, but It wasn’t associated with symptoms, and non-communicable diseases, or as a risk factor for falls in elderly.

Keywords: orthostatic hypotension, elderly falls, emergency geriatric, Sri Lanka

Procedia PDF Downloads 87
382 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition

Authors: Mohamed Lotfy, Ghada Soliman

Abstract:

Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.

Keywords: computer vision, pattern recognition, optical character recognition, deep learning

Procedia PDF Downloads 55
381 Development of Creatively Integrated Teaching Skills Using Information and Communication Technology for Professional Teacher

Authors: Siwanit Autthawuttikul, Prakob Koraneekid, Sayamon Insa-ard

Abstract:

The purposes of this research were to development creatively integrated teaching skills using Information and Communication Technology (ICT) for professional teacher in schools under the education area of the basic education commission, ministry of education both schools under the office of primary education and those under The office of secondary education in eight western region provinces of Thailand. This is useful in defining a vision for the school strategy and restructuring schools in addition, teachers will have developed skills in teaching creative integrated ICT. The research methodology comprises quantitative and qualitative data collection. The Baseline Survey, focus group for discussions and then the model was developed creatively integrated teaching skills using ICT. The findings showed that 7 elements were important: (1) Academy Transformation (2) Information Technology Infrastructure (3) Personal Development (4) Supervision, Monitoring and Evaluation (5) Motivating and Rewarding (6) Important factor affecting the success of teaching integrated with ICT were knowledge, skills, attitudes and (7) The role of the individual concerned. The comparison creatively integrated teaching skills before and after participating in the overall shows that the average creatively integrated teaching skills using ICT after attending the event is 3.27, and standard deviation was 0.56, higher than before which is 2.60 and the standard deviation was 0.56. There are significant differences significant statistically level of .05. The final average score of the evaluation plan design creatively integrated teaching skills using ICT teachers' average score was 26.94 at the high levels.

Keywords: integrated curriculum, information and communications technology, teachers in the western region, schools

Procedia PDF Downloads 426
380 Developing Value Chain of Synthetic Methane for Net-zero Carbon City Gas Supply in Japan

Authors: Ryota Kuzuki, Mitsuhiro Kohara, Noboru Kizuki, Satoshi Yoshida, Hidetaka Hirai, Yuta Nezasa

Abstract:

About fifty years have passed since Japan's gas supply industry became the first in the world to switch from coal and oil to LNG as a city gas feedstock. Since the Japanese government target of net-zero carbon emission in 2050 was announced in October 2020, it has now entered a new era of challenges to commit to the requirement for decarbonization. This paper describes the situation that synthetic methane, produced from renewable energy-derived hydrogen and recycled carbon, is a promising national policy of transition toward net-zero society. In November 2020, the Japan Gas Association announced the 'Carbon Neutral Challenge 2050' as a vision to contribute to the decarbonization of society by converting the city gas supply to carbon neutral. The key technologies is methanation. This paper shows that methanation is a realistic solution to contribute to the decarbonization of the whole country at a lower social cost, utilizing the supply chain that already exists, from LNG plants to burner chips. The challenges during the transition period (2030-2050), as CO2 captured from exhaust of thermal power plants and industrial factories are expected to be used, it is proposed that a system of guarantee of origin (GO) for H2 and CO2 should be established and harmonize international rules for calculating and allocating greenhouse gas emissions in the supply chain, a platform is also needed to manage tracking information on certified environmental values.

Keywords: synthetic methane, recycled carbon fuels, methanation, transition period, environmental value transfer platform

Procedia PDF Downloads 82
379 Benefits of Collegial Teaming to Improve Knowledge-Worker Productivity

Authors: Prakash Singh, Piet Maphodisa Kgohlo

Abstract:

Knowledge-worker productivity is one of the biggest leadership challenges facing all organizations in the twenty-first century. It cannot be denied that knowledge-worker productivity affects all organizations. The work and the workforce are both undergoing greater changes currently than at any time, since the beginning of the industrial revolution two centuries ago. Employees welcome collegial teaming (CT) as an innovative way to develop their work-integrated learning competencies. Human resource development policies must evoke the symbiotic relationship between CT and work-integrated learning, seeing that employees need to be endowed with the competence to move from one skill to another, as each one becomes obsolete, and to simultaneously develop their cognitive and emotional intelligence. The outcome of this relationship must culminate in the development of highly productive knowledge-workers. While this study focuses on teachers, the conceptual framework and the findings of this research can be beneficial for any organization, public or private sector, business or non-business. Therefore, in this quantitative study, the benefits of CT are considered in developing human resources to sustain knowledge-worker productivity. The ANOVA p-values reveal that the majority of teachers agree that CT can empower them to overcome the challenges of managing curriculum change. CT can equip them with continuous and sustained learning, growth and improvement, necessary for knowledge-worker productivity. This study, therefore, confirms that CT benefits all workers, immaterial of their age, gender or experience. Hence, this exploratory research provides a new perspective of CT in addressing knowledge-worker productivity when organizational change alters the vision of the organization.

Keywords: collegial teaming, human resource development, knowledge-worker productivity, work-integrated learning

Procedia PDF Downloads 256
378 Students' Perception of Virtual Learning Environment (VLE) Skills in Setting up the Simulator Welding Technology

Authors: Mohd Afif Md Nasir, Faizal Amin Nur Yunus, Jamaluddin Hashim, Abd Samad Hassan Basari, A. Halim Sahelan

Abstract:

The aim of this study is to identify the suitability of Virtual Learning Environment (VLE) in welding simulator application towards Computer-Based Training (CBT) in developing skills upon new students at the Advanced Technology Training Center (ADTEC), Batu Pahat, Johor, Malaysia and GIATMARA, Batu Pahat, Johor, Malaysia. The purpose of the study is to create a computer-based skills development approach in welding technology among new students in ADTEC and GIATMARA, as well as cultivating the elements of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-workers) working in manufacturing industry in order to achieve a national vision which is to be an industrial nation in the year of 2020. The design of the study is a survey type of research which uses questionnaires as the instruments and 136 students from ADTEC and GIATMARA were interviewed. Descriptive analysis is used to identify the frequency and mean values. The findings of the study shows that the welding technology skills have developed in the students as a result of the application of VLE simulator at a high level and the respondents agreed that the skills could be embedded through the application of the VLE simulator. In summary, the VLE simulator is suitable in welding skills development training in terms of exposing new students with the relevant characteristics of welding skills and at the same time spurring the students’ interest towards learning more about the skills.

Keywords: computer-based training (CBT), knowledge workers (K-workers), virtual learning environment, welding simulator, welding technology

Procedia PDF Downloads 323
377 Exploring the Experiences of Transnational TESOL Professionals about Their Writing Assessment Practices: A Critical Ethnography in the Saudi EFL Context

Authors: Abdullah Alshakhi

Abstract:

This study aims to explore the assessment practices of transnational western teachers in Saudi EFL writing classrooms. The study adopts a critical ethnographic approach to understand the views and the experiences of four transnational TESOL professionals about how they navigate and negotiate their writing assessment practices in the Saudi EFL context. The qualitative data were collected through classroom observations and video recordings of the classroom teaching, which were followed by semi-structured interviews with the four TESOL teachers from Australia, England, USA, and Ireland. The data were analyzed from three perspectives of these transnational TESOL teachers in the Saudi EFL context: as a transnational teacher in monolingual context, as a transitional teacher abides by the prescribed curriculum and assessment instructions, and as a transnational teacher’s vision for monolingual students. The results of the study revealed that owing to the transnational teachers’ lack of understanding of the Saudi monolingual culture, bureaucratic structures, and top-down assessment policies in the institute where they work, their teaching and assessment of writing and other language skills are negatively affected and consequently had to be modified. Also, the Saudi learners’ lack of interest and their lower level of English proficiency pose serious challenges to those transnational teachers’ writing assessment practices. More often, the teachers find the prescribed writing curriculum and assessment tools ineffective in the Saudi EFL context. Because of these experiences, the transnational teachers in this study have exhibited their awareness of their monolingual/monoculture background, Saudi’s cultural and religious values, and institutional structures, which have helped them customize or supplement the writing assessment practices accordingly.

Keywords: critical ethnography, Saudi EFL context, TESOL professionals, transnationalism, writing assessment

Procedia PDF Downloads 94
376 A Comparative Study on Deep Learning Models for Pneumonia Detection

Authors: Hichem Sassi

Abstract:

Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.

Keywords: deep learning, computer vision, pneumonia, models, comparative study

Procedia PDF Downloads 29
375 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: computer vision, deep learning, object detection, semiconductor

Procedia PDF Downloads 112
374 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling

Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel

Abstract:

Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.

Keywords: green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia

Procedia PDF Downloads 357