Search results for: social research networks sites (SRNS)
32244 Blockchain Security in MANETs
Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara
Abstract:
The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.Keywords: Ad hocs networks, blockchain, MPR, security
Procedia PDF Downloads 18732243 A Case Study: Social Network Analysis of Construction Design Teams
Authors: Elif D. Oguz Erkal, David Krackhardt, Erica Cochran-Hameen
Abstract:
Even though social network analysis (SNA) is an abundantly studied concept for many organizations and industries, a clear SNA approach to the project teams has not yet been adopted by the construction industry. The main challenges for performing SNA in construction and the apparent reason for this gap is the unique and complex structure of each construction project, the comparatively high circulation of project team members/contributing parties and the variety of authentic problems for each project. Additionally, there are stakeholders from a variety of professional backgrounds collaborating in a high-stress environment fueled by time and cost constraints. Within this case study on Project RE, a design & build project performed at the Urban Design Build Studio of Carnegie Mellon University, social network analysis of the project design team will be performed with the main goal of applying social network theory to construction project environments. The research objective is to determine a correlation between the network of how individuals relate to each other on one’s perception of their own professional strengths and weaknesses and the communication patterns within the team and the group dynamics. Data is collected through a survey performed over four rounds conducted monthly, detailed follow-up interviews and constant observations to assess the natural alteration in the network with the effect of time. The data collected is processed by the means of network analytics and in the light of the qualitative data collected with observations and individual interviews. This paper presents the full ethnography of this construction design team of fourteen architecture students based on an elaborate social network data analysis over time. This study is expected to be used as an initial step to perform a refined, targeted and large-scale social network data collection in construction projects in order to deduce the impacts of social networks on project performance and suggest better collaboration structures for construction project teams henceforth.Keywords: construction design teams, construction project management, social network analysis, team collaboration, network analytics
Procedia PDF Downloads 20232242 The Mediatory Role of Innovation in the Link between Social and Financial Performance
Authors: Bita Mashayekhi, Amin Jahangard, Milad Samavat, Saeid Homayoun
Abstract:
In the modern competitive business environment, one cannot overstate the importance of corporate social responsibility. The controversial link between the social and financial performance of firms has become a topic of interest for scholars. Hence, this study examines the social and financial performance link by taking into account the mediating role of innovation performance. We conducted the Covariance-based Structural Equation Modeling (CB-SEM) method on an international sample of firms provided by the ASSET4 database. In this research, to explore the black box of the social and financial performance relationship, we first examined the effect of social performance separately on financial performance and innovation; then, we measured the mediation role of innovation in the social and financial performance link. While our results indicate the positive effect of social performance on financial performance and innovation, we cannot document the positive mediating role of innovation. This possibly relates to the long-term nature of benefits from investments in innovation.Keywords: ESG, financial performance, innovation, social performance, structural equation modeling
Procedia PDF Downloads 10432241 Private Universities and Socio-Economic Development of Host Communities: The Case of Fountain University, Nigeria
Authors: Ganiyu Rasaq Omokeji
Abstract:
The growing recognition of the pivotal role of universities in promoting socio-economic development has led to a focus upon the expansion of the sector around the world. As the economy and society become more ‘knowledge intensive’, the role of universities in development is more onerous than just teaching, research, and service. It is to help create the open society upon which the progress of ideas depends on. Driven to fulfill this role, universities are likely to become even more important in building regional networks of their host communities. Currently, there are about 129 universities in Nigeria, with a total number of 37 federal, 36 state, and 56 privately owned universities. Fountain University is among the private universities in Nigeria located in Osogbo, Osun State. The university is committed to the total development of men and women in an enabling environment, through appropriate teaching, research, and service to humanity, influenced by Islamic ethics and culture. The university focuses on educational development and growth that are relevant to the nation’s manpower needs and global competitiveness through a gradual but steady process. This paper examines the role of Private University in the socio-economic development of host community using Fountain University as a case study. The research methodology design for this paper has a total of 200 respondents. The research instrument of data collection was a questionnaire and in-depth interview (IDI). The finding reveals that Fountain University plays an important role in socio-economic and cultural development through their Islamic culture. The paper recommend that universities must bridge the gaps between creative individual with innovative ideas and the application of technology for economic progress and social betterment of their host communities. University also must serve as a bridge that carries the traffic of social and economic development.Keywords: private university, socio-economic development, host communities, role of universities and community development
Procedia PDF Downloads 28432240 Use of Protection Motivation Theory to Assess Preventive Behaviors of COVID-19
Authors: Maryam Khazaee-Pool, Tahereh Pashaei, Koen Ponnet
Abstract:
Background: The global prevalence and morbidity of Coronavirus disease 2019 (COVID-19) are high. Preventive behaviors are proven to reduce the damage caused by the disease. There is a paucity of information on determinants of preventive behaviors in response to COVID-19 in Mazandaran province, north of Iran. So, we aimed to evaluate the protection motivation theory (PMT) in promoting preventive behaviors of COVID-19 in Mazandaran province. Materials and Methods: In this descriptive cross-sectional study, 1220 individuals participated. They were selected via social networks using convenience sampling in 2020. Data were collected online using a demographic questionnaire and a valid and reliable scale based on PMT. Data analysis was done using the Pearson correlation coefficient and linear regression in SPSS V24. Result: The mean age of the participants was 39.34±8.74 years. The regression model showed perceived threat (ß =0.033, P =0.007), perceived costs (ß=0.039, P=0.045), perceived self-efficacy (ß =0.116, P>0.001), and perceived fear (ß=0.131, P>0.001) as the significant predictors of COVID-19 preventive behaviors. This model accounted for 78% of the variance in these behaviors. Conclusion: According to constructs of the PMT associated with protection against COVID-19, educational programs and health promotion based on the theory and benefiting from social networks could be helpful in increasing the motivation of people towards protective behaviors against COVID-19.Keywords: questionnaire development, validation, intention, prevention, covid-19
Procedia PDF Downloads 4432239 Using Contingency Valuation Approaches to Assess Community Benefits through the Use of Great Zimbabwe World Heritage Site as a Tourism Attraction
Authors: Nyasha Agnes Gurira, Patrick Ngulube
Abstract:
Heritage as an asset can be used to achieve cultural and socio-economic development through its careful use as a tourist attraction. Cultural heritage sites, especially those listed as World Heritage sites generate a lot of revenue through their use as tourist attractions. According to article 5(a) of the World Heritage Convention, World Heritage Sites (WHS) must serve a function in the life of the communities. This is further stressed by the International Council on Monuments and Sites (ICOMOS) charter on cultural heritage tourism which recognizes the positive effects of tourism on cultural heritage and underlines that domestic and international tourism is among the foremost vehicles for cultural exchange, conservation should thus provide for responsible and well-managed opportunities for local communities. The inclusion of communities in the world heritage agenda identifies them as the owners of the heritage and partners in the management planning process. This reiterates the need to empower communities and enable them to participate in the decisions which relate to the use of their heritage divorcing from the ideals of viewing communities as beneficiaries from the heritage resource. It recognizes community ownership rights to cultural heritage an element enshrined in Zimbabwe’ national constitution. Through the use of contingency valuation approaches, by assessing the Willingness to pay for visitors at the site the research determined the tourism use value of Great Zimbabwe (WHS). It assessed the extent to which the communities at Great Zimbabwe (WHS) have been developed through the tourism use of the WHS. Findings show that the current management mechanism in place regards communities as stakeholders in the management of the WHS, their ownership and property rights are not fully recognized. They receive indirect benefits from the tourism use of the WHS. This paper calls for a shift in management approach where community ownership rights are fully recognized and more inclusive approaches are adopted to ensure that the goal of sustainable development is achieved. Pro-poor benefits of tourism are key to enhancing the livelihoods of communities and can only be achieved if their rights are recognized and respected.Keywords: communities, cultural heritage tourism, development, property ownership rights, pro-poor benefits, sustainability, world heritage site
Procedia PDF Downloads 25932238 The Evolutionary Characteristics and Mechanisms and of Multi-scale Intercity Innovation Enclave Networks in China’s Yangtze River Delta Region
Authors: Yuhua Yang, Yingcheng Li
Abstract:
As a new form of intercity economic cooperation, innovation enclaves have received much attention from governments and scholars in China, which are of great significance in promoting the flow of innovation elements and advancing regional integration. Utilizing inter-city linkages of innovation enclaves within and beyond the Yangtze River Delta Region, we construct multi-scalar innovation enclave networks in 2018 and 2022, and analyze the evolutionary characteristics and underlying mechanisms of the networks. Overall, we find that: (1) The intercity innovation enclave networks have the characteristics of preferential connection and are gradually forming a clear multi-scale and hierarchical structure, with Shanghai, Hangzhou and Nanjing as the core and other cities as the general nodes; (2) The intercity innovation enclave networks exhibit local clustering dominated by geographical proximity connections, and are becoming more noticeable in the effect of distance decay and functionally polycentric as the spatial scale decreases; (3) The intercity innovation enclave networks are influenced by both functional distance and multidimensional proximity. While the innovation potential differences caused by urban attributes internally drive the formation of innovation enclave cooperation, geographic proximity, technological proximity and institutional proximity externally affect the selection of cooperation partners.Keywords: economic enclave, intercity cooperation, proximity, yangtze river delta region
Procedia PDF Downloads 2732237 Impact of Web 2.0 on Digital Divide in Azad Jammu and Kashmir
Authors: Sana Shokat, Rabia Riaz, Raja Shoaib Hussain, Saba Shabir
Abstract:
Digital divide is usually measured in terms of gap between those who can efficiently use new technological tools, such as Internet, and those who cannot. It is also hypothesized that web 2.0 tools motivate people to use technology i.e. Social networking sites can play an important role in bridging digital gap. This study was to determine the presence of digital divide in urban and rural areas of district Muzaffrabad, Azad Jammu & Kashmir taking internet usage as the key element. A cross-sectional community based survey was conducted involving 384 respondents from city Muzaffrabad and village Garhi Doppta. The existence of digital divide was accessed on the basis of the questionnaires given. Chi- square test was used to find the association of different demographic and ICT related factors with internet usage. Age based and area based divide still exist among the targeted population but gender based digital divide is vanishing from the intended area of study. Outcomes of the survey also revealed that web 2.0-based web sites are also becoming popular and attracting people to use internet. Trend of using internet and communication technologies can be increased by solving the highlighted problems.Keywords: Azad Jammu and Kashmir, digital divide, ICT, information and communication technology, Web2.0
Procedia PDF Downloads 36932236 Policies to Reduce the Demand and Supply of Illicit Drugs in the Latin America: 2004 to 2016
Authors: Ana Caroline Ibrahim Lino, Denise Bomtempo Birche de Carvalho
Abstract:
The background of this research is the international process of control and monitoring of illicit psychoactive substances that has commenced in the early 20th century. This process was intensified with the UN Single Convention on Narcotic Drugs of 1961 and had its culmination in the 1970s with the "War on drugs", a doctrine undertaken by the United States of America. Since then, the phenomenon of drug prohibition has been pushing debates around alternatives of public policies to confront their consequences at a global level and in the specific context of Latin America. Previous research has answered the following key questions: a) With what characteristics and models has the international illicit drug control system consolidated in Latin America with the creation of the Organization of American States (OAS) and the Inter-American Drug Abuse Control Commission (CICAD)? b) What drug policies and programs were determined as guidelines for the member states by the OAS and CICAD? The present paper mainly addresses the analysis of the drug strategies developed by the OAS/CICAD for the Americas from 2004 to 2016. The primary sources have been extracted from the OAS/CICAD documents and reports, listed on the Internet sites of these organizations. Secondary sources refer to bibliographic research on the subject with the following descriptors: illicit drugs, public policies, international organizations, OAS, CICAD, and reducing the demand and supply of illicit drugs. The "content analysis" technique was used to organize the collected material and to choose the axes of analysis. The results show that the policies, strategies, and action plans for Latin America had been focused on anti-drug actions since the creation of the Commission until 2010. The discourses and policies to reduce drug demand and supply were of great importance for solving the problem. However, the real focus was on eliminating the substances by controlling the production, marketing, and distribution of illicit drugs. Little attention was given to the users and their families. The research is of great relevance to the Social Work. The guidelines and parameters of the Social Worker's profession are in line with the need for social, ethical, and political strengthening of any dimension that guarantees the rights of users of psychoactive substances. In addition, it contributed to the understanding of the political, economic, social, and cultural factors that structure the prohibitionism, whose matrix anchors the deprivation of rights and violence.Keywords: illicit drug policies, international organizations, latin America, prohibitionism, reduce the demand and supply of illicit drugs
Procedia PDF Downloads 16332235 Working Between Human and Non-Human Nature: Using Labour as a Tool to Capture the Transformations of Planetary Life
Authors: Ellen Kirkpatrick
Abstract:
Deforestation, toxification, and loss of environmental habitats, accompanied by expanding production and urbanization, are visibly altering planetary life. This is bringing humans and non-human nature into closer contact, resulting in the emergence of infectious diseases such as the Covid-19 virus which, while zoonotic in origin, spread through market relations and networks of local and global production. However, while the pandemic sharply illuminated the role of labour within social transformations, the question remains about the role of labour in transforming ecological relations. Drawing on a historical materialist approach, this paper explores the emergence and transmission of the COVID-19 virus through the Marxist conceptualization of metabolic rift. This allows for a perspective of human and non-human nature, which is in constant motion and dialectical. This negotiates distinctions and binaries between them as humans and non-human nature are taken to mutually constrain, enable and constitute one another. This is particularly significant when considering the ongoing transformations of a climate-changing world and the corresponding effects on social life. To do this, this paper empirically focuses on the Huanan Seafood Wholesale Market in Wuhan, China, where the COVID-19 virus was first detected. It examines how the virus jumped from non-human animals to humans through concrete production operations locally before traveling globally through networks of abstract market relations based on the logic of circulation, trade and exchange. As a mediating relation between human and non-human nature, labour is an analytical tool that can create a dialogue between the concrete and the abstract, as well as the local and global.Keywords: Marxism, social reproduction, metabolic rift, labour
Procedia PDF Downloads 2232234 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text
Procedia PDF Downloads 11632233 The Influence of Social Media on the Body Image of First Year Female Medical Students of University of Khartoum, 2022
Authors: Razan Farah, Siham Ballah
Abstract:
Facebook, Instagram, TikTok and other social media applications have become an integral component of everyone’s social life, particularly among younger generations and adolescences. These social apps have been changing a lot of conceptions and believes in the population by representing public figures and celebrities as role models. The social comparison theory, which says that people self-evaluate based on comparisons with similar others, is commonly used to explore the impact of social media on body image. There is a need to study the influence of those social platforms on the body image as there have been an increase in body dissatisfaction in the recent years. This cross sectional study used a self administered questionnaire on a simple random sample of 133 female medical students of the first year. Finding shows that the response rate was 75%. There was an association between social media usage and noticing how the person look(p value = .022), but no significant association between social media use and body image influence or dissatisfaction was found. This study implies more research under this topic in Sudan as the literature are scarce.Keywords: body image, body dissatisfaction, social media, adolescences
Procedia PDF Downloads 7332232 Ubiquitous Collaborative Mobile Learning (UCML): A Flexible Instructional Design Model for Social Learning
Authors: Hameed Olalekan Bolaji
Abstract:
The digital natives are driving the trends of literacy in the use of electronic devices for learning purposes. This has reconfigured the context of learning in the exploration of knowledge in a social learning environment. This study explores the impact of Ubiquitous Collaborative Mobile Learning (UCML) instructional design model in a quantitative designed-based research approach. The UCML model was a synergetic blend of four models that are relevant to the design of instructional content for a social learning environment. The UCML model serves as the treatment and instructions were transmitted via mobile device based on the principle of ‘bring your own device’ (BYOD) to promote social learning. Three research questions and two hypotheses were raised to guide the conduct of this study. A researcher-designed questionnaire was used to collate data and the it was subjected to reliability of Cronbach Alpha which yielded 0.91. Descriptive statistics of mean and standard deviation were used to answer research questions while inferential statistics of independent sample t-test was used to analyze the hypotheses. The findings reveal that the UCML model was adequately evolved and it promotes social learning its design principles through the use of mobile devices.Keywords: collaboration, mobile device, social learning, ubiquitous
Procedia PDF Downloads 15832231 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab
Procedia PDF Downloads 9232230 Detecting Hate Speech And Cyberbullying Using Natural Language Processing
Authors: Nádia Pereira, Paula Ferreira, Sofia Francisco, Sofia Oliveira, Sidclay Souza, Paula Paulino, Ana Margarida Veiga Simão
Abstract:
Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers.Keywords: aggression, classifiers, cyberbullying, datasets, hate speech, machine learning
Procedia PDF Downloads 22932229 TikTok as a Search Engine for Selecting Traveling Destinations and Its Relation to Nation’s Destinations Branding: Comparative Study Between Gen-Y and Gen-Z in the Egyptian Community
Authors: Ghadeer Aly, Yasmeen Hanafy
Abstract:
The way we research travel options and decide where to go has substantially changed in the digital age. Atypical search engines like social networking sites like TikTok have evolved, influencing the preferences of various generations. The influence of TikTok use as a search engine for choosing travel locations and its effect on a country's destination branding are both examined in this study. The study specifically focuses on the comparative preferences and actions of Generations Y and Z within the Egyptian community, shedding light on how these generations interact with travel related TikTok content and how it influences their perceptions of various destinations. It also investigates how TikTok Accounts use tourism branding techniques to promote a country's tourist destination. The investigation of how social media platforms are changing as unconventional search engines has theoretical relevance. This study can advance our knowledge of how digital platforms alter information-seeking behaviors and affect the way people make decisions. Furthermore, investigating the relationship between TikTok video and destination branding might shed light on the intricate interplay between social media, perceptions of locations, and travel preferences, enhancing theories about consumer behavior and communication in the digital age. Regarding the methodology of the research, the study is conducted in two stages: first, both generations are polled, and from the results, the top three destinations are chosen to be subjected to content analysis. As for the research's theoretical framework, it incorporates the tourism destination branding model as well as the conceptual model of nation branding. Through the use of the survey as a quantitative approach and the qualitative content analysis, the research will rely on both quantitative and qualitative methods. When it comes to the theoretical framework, both the Nation Branding Model and the Tourism Branding Model can offer useful frameworks for analyzing and comprehending the dynamics of using TikTok as a search engine to choose travel destinations, especially in the context of Generation Y and Generation Z in the Egyptian community. Additionally, the sample will be drawn specifically from both Gen-Y and Gen-Z. 100 members of Gen Z and 100 members of Gen Y will be chosen from TikTok users and followers of travel-related accounts, and the sample for the content analysis will be chosen based on the survey's results.Keywords: tiktok, nation image, egyptian community, tourism branding
Procedia PDF Downloads 7732228 Songwriting in the Postdigital Age: Using TikTok and Instagram as Online Informal Learning Technologies
Authors: Matthias Haenisch, Marc Godau, Julia Barreiro, Dominik Maxelon
Abstract:
In times of ubiquitous digitalization and the increasing entanglement of humans and technologies in musical practices in the 21st century, it is to be asked, how popular musicians learn in the (post)digital Age. Against the backdrop of the increasing interest in transferring informal learning practices into formal settings of music education the interdisciplinary research association »MusCoDA – Musical Communities in the (Post)Digital Age« (University of Erfurt/University of Applied Sciences Clara Hoffbauer Potsdam, funded by the German Ministry of Education and Research, pursues the goal to derive an empirical model of collective songwriting practices from the study of informal lelearningf songwriters and bands that can be translated into pedagogical concepts for music education in schools. Drawing on concepts from Community of Musical Practice and Actor Network Theory, lelearnings considered not only as social practice and as participation in online and offline communities, but also as an effect of heterogeneous networks composed of human and non-human actors. Learning is not seen as an individual, cognitive process, but as the formation and transformation of actor networks, i.e., as a practice of assembling and mediating humans and technologies. Based on video stimulated recall interviews and videography of online and offline activities, songwriting practices are followed from the initial idea to different forms of performance and distribution. The data evaluation combines coding and mapping methods of Grounded Theory Methodology and Situational Analysis. This results in network maps in which both the temporality of creative practices and the material and spatial relations of human and technological actors are reconstructed. In addition, positional analyses document the power relations between the participants that structure the learning process of the field. In the area of online informal lelearninginitial key research findings reveal a transformation of the learning subject through the specific technological affordances of TikTok and Instagram and the accompanying changes in the learning practices of the corresponding online communities. Learning is explicitly shaped by the material agency of online tools and features and the social practices entangled with these technologies. Thus, any human online community member can be invited to directly intervene in creative decisions that contribute to the further compositional and structural development of songs. At the same time, participants can provide each other with intimate insights into songwriting processes in progress and have the opportunity to perform together with strangers and idols. Online Lelearnings characterized by an increase in social proximity, distribution of creative agency and informational exchange between participants. While it seems obvious that traditional notions not only of lelearningut also of the learning subject cannot be maintained, the question arises, how exactly the observed informal learning practices and the subject that emerges from the use of social media as online learning technologies can be transferred into contexts of formal learningKeywords: informal learning, postdigitality, songwriting, actor-network theory, community of musical practice, social media, TikTok, Instagram, apps
Procedia PDF Downloads 12832227 Social Data-Based Users Profiles' Enrichment
Authors: Amel Hannech, Mehdi Adda, Hamid Mcheick
Abstract:
In this paper, we propose a generic model of user profile integrating several elements that may positively impact the research process. We exploit the classical behavior of users and integrate a delimitation process of their research activities into several research sessions enriched with contextual and temporal information, which allows reflecting the current interests of these users in every period of time and infer data freshness. We argue that the annotation of resources gives more transparency on users' needs. It also strengthens social links among resources and users, and can so increase the scope of the user profile. Based on this idea, we integrate the social tagging practice in order to exploit the social users' behavior to enrich their profiles. These profiles are then integrated into a recommendation system in order to predict the interesting personalized items of users allowing to assist them in their researches and further enrich their profiles. In this recommendation, we provide users new research experiences.Keywords: user profiles, topical ontology, contextual information, folksonomies, tags' clusters, data freshness, association rules, data recommendation
Procedia PDF Downloads 26632226 Social Anxiety Connection with Individual Characteristics: Theory of Mind, Verbal Irony Comprehension and Personal Traits
Authors: Anano Tenieshvili, Teona Lodia
Abstract:
Social anxiety disorder (SAD) is one of the most common mental health problems not only in adults but also in adolescents. Individuals with SAD exhibit difficulties in interpersonal relationships, understanding emotions, and regulating them as well. For social and emotional adaptation, it is crucial to identify, understand, accept and manage emotions correctly. Researchers actively learn those factors that contribute to the development and maintenance of this condition. Therefore, the main purpose of this study is to acquire knowledge about the association between social anxiety and individual characteristics, such as theory of mind (ToM), verbal irony comprehension, and personal traits. 112 adolescents aged from 12 to 18 were selected for this research. 15 of them are diagnosed with Social anxiety disorder. Statistical analysis was performed on the entire sample, and furthermore, two groups, adolescents with and without social anxiety disorder, were compared separately. Social anxiety and personal traits were assessed by questionnaires. Theory of mind and comprehension of verbal irony were measured using tests. Statistical analysis indicated a positive relationship between social anxiety and comprehension of ironic criticism. Moreover, social anxiety was significantly positively correlated with neuroticism and isolation tendency, whereas it was negatively related to extraversion and frustration tolerance. On top of that, statistical analysis revealed a positive relationship between ToM and verbal irony comprehension. However, the relationship between social anxiety and ToM was not statistically significant. In conclusion, the current research expands knowledge about social anxiety and supports the results of some previous studies.Keywords: personal traits, social anxiety, theory of mind, verbal irony comprehension
Procedia PDF Downloads 20532225 Social Anxiety Connection with Individual Characteristics: Theory of Mind, Verbal Irony Comprehension and Personal Traits
Authors: Anano Tenieshvili, Teona Lodia
Abstract:
Social anxiety disorder (SAD) is one of the most common mental health problems not only in adults but also in adolescents. Individuals with SAD exhibit difficulties in interpersonal relationships, understanding emotions and regulating them as well. For social and emotional adaptation, it is crucial to identify, understand, accept and manage emotions correctly. Researchers actively learn those factors that contribute to the development and maintenance of this condition. Therefore, the main purpose of this study is to acquire knowledge about the association between social anxiety and individual characteristics, such as the theory of mind (ToM), verbal irony comprehension and personal traits. 112 adolescents aged from 12 to 18 were selected for this research. 15 of them are diagnosed with Social anxiety disorder. Statistical analysis was performed on the entire sample and furthermore, two groups, adolescents with and without a social anxiety disorder, were compared separately. Social anxiety and personal traits were assessed by questionnaires. Theory of mind and comprehension of verbal irony was measured using tests. Statistical analysis indicated a positive relationship between social anxiety and comprehension of ironic criticism. Moreover, social anxiety was significantly positively correlated with neuroticism and isolation tendency, whereas it was negatively related to extraversion and frustration tolerance. On top of that, statistical analysis revealed a positive relationship between ToM and verbal irony comprehension. However, the relationship between social anxiety and ToM was not statistically significant. In conclusion, the current research expands knowledge about social anxiety and supports the results of some previous studies.Keywords: personal traits, social anxiety, theory of mind, verbal irony comprehension
Procedia PDF Downloads 12532224 Institutional Levels Entrepreneurial Orientations and Social Entrepreneurial Intentions: Understanding the Mediating Role of Empathy
Authors: Paulson Young Ofenimu Okhawere
Abstract:
Research suggests that the main trait differentiating social entrepreneurs from traditional entrepreneurs is empathy. And although prior research has established the relevance of empathy in predicting social entrepreneurial intentions in different contexts, its usefulness at predicting social entrepreneurial intentions in emerging economy like Nigeria is yet to be well established. Whereas, it is well known that students in tertiary institutions in Nigeria (e.g. Universities, Polytechnics, and Colleges of Education) are given entrepreneurial orientations by being made to offer compulsory courses in entrepreneurship, research focusing on the effect of such students’ entrepreneurial orientation on entrepreneurial intentions is scant. To address this gap in the entrepreneurship literature, this study attempts to enhance our understanding by focusing on students selected from one University of Technology, one Polytechnic, and one College of Education in Niger State of Nigeria. The purpose of this study, therefore, is to examine the mechanism through which students’ institutional level entrepreneurial orientations affect their social entrepreneurial intentions and the role empathy plays in this relationship. Building on complexity theory (Satish & Streufert, 2003, 2001), this study proposes empathy as a proximal antecedent of social entrepreneurial intentions and that it is the mechanism through which the students’ entrepreneurial orientations affect their social entrepreneurial intentions. Data collected from 598 respondents were analyzed using multilevel structural equation modelling with Mplus version 7.3. The findings reveal that (i) although students’ entrepreneurial orientation directly relates to their social entrepreneurial intentions, this relationship differs according to the kind of institution; and (ii) students’ entrepreneurial orientations positively relates to social entrepreneurial intentions indirectly through empathy. Finally, the paper discusses the theoretical and practical implications of the findings, highlights the study’s strengths and limitations, and then maps out some directions for future research.Keywords: institutional level, entrepreneurial orientation, empathy, social entrepreneurial intentions
Procedia PDF Downloads 15432223 Social Sustainability and Affordability of the Transitional Housing Scheme in Hong Kong
Authors: Tris Kee
Abstract:
This research investigates social sustainability factors in transitional housing projects and their impact on fostering healthy living environments that promote physical activity and social interaction for residents. Social sustainability is integral to individual health and well-being, as emphasized by Goal 11 of the 2030 Agenda for Sustainable Development, which highlights the importance of safe, affordable, and accessible transport systems, green spaces, and public spaces catering to vulnerable populations' needs. Communal spaces in urban environments are essential for fostering social sustainability, as they serve as settings for physical activities and social interactions among diverse socio-economic groups. Factors such as neighborhood social atmosphere, historical context, social disparity, and mobility can influence the relationship between existing and transitional communities. Mental health effects can be measured through housing segregation, mobility and accessibility, and housing tenure. A significant research gap exists in understanding the living environment of transitional housing in Hong Kong and the social sustainability factors affecting residents' mental and physical health. To address this gap, our study employs a mixed-methods approach combining survey questionnaires and interviews to gather both quantitative and qualitative data. This methodology will provide comprehensive insights into residents' experiences and perceptions. Our research's main contribution is identifying key social sustainability factors in transitional housing and their impact on residents' well-being, informing policy-making and the creation of inclusive, healthy living environments. By addressing this research gap, we aim to provide valuable insights for future housing projects, ultimately promoting the development of socially sustainable transitional communities.Keywords: social sustainablity, affordable housing, transitional housing, high density housing
Procedia PDF Downloads 9032222 Gathering Space after Disaster: Understanding the Communicative and Collective Dimensions of Resilience through Field Research across Time in Hurricane Impacted Regions of the United States
Authors: Jack L. Harris, Marya L. Doerfel, Hyunsook Youn, Minkyung Kim, Kautuki Sunil Jariwala
Abstract:
Organizational resilience refers to the ability to sustain business or general work functioning despite wide-scale interruptions. We focus on organization and businesses as a pillar of their communities and how they attempt to sustain work when a natural disaster impacts their surrounding regions and economies. While it may be more common to think of resilience as a trait possessed by an organization, an emerging area of research recognizes that for organizations and businesses, resilience is a set of processes that are constituted through communication, social networks, and organizing. Indeed, five processes, robustness, rapidity, resourcefulness, redundancy, and external availability through social media have been identified as critical to organizational resilience. These organizing mechanisms involve multi-level coordination, where individuals intersect with groups, organizations, and communities. Because the nature of such interactions are often networks of people and organizations coordinating material resources, information, and support, they necessarily require some way to coordinate despite being displaced. Little is known, however, if physical and digital spaces can substitute one for the other. We thus are guided by the question, is digital space sufficient when disaster creates a scarcity of physical space? This study presents a cross-case comparison based on field research from four different regions of the United States that were impacted by Hurricanes Katrina (2005), Sandy (2012), Maria (2017), and Harvey (2017). These four cases are used to extend the science of resilience by examining multi-level processes enacted by individuals, communities, and organizations that together, contribute to the resilience of disaster-struck organizations, businesses, and their communities. Using field research about organizations and businesses impacted by the four hurricanes, we code data from interviews, participant observations, field notes, and document analysis drawn from New Orleans (post-Katrina), coastal New Jersey (post-Sandy), Houston Texas (post-Harvey), and the lower keys of Florida (post-Maria). This paper identifies an additional organizing mechanism, networked gathering spaces, where citizens and organizations, alike, coordinate and facilitate information sharing, material resource distribution, and social support. Findings show that digital space, alone, is not a sufficient substitute to effectively sustain organizational resilience during a disaster. Because the data are qualitative, we expand on this finding with specific ways in which organizations and the people who lead them worked around the problem of scarce space. We propose that gatherings after disaster are a sixth mechanism that contributes to organizational resilience.Keywords: communication, coordination, disaster management, information and communication technologies, interorganizational relationships, resilience, work
Procedia PDF Downloads 17232221 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction
Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar
Abstract:
In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy
Procedia PDF Downloads 62832220 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk
Authors: Yilin Liao, Hewen Li, Paula McConvey
Abstract:
Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.Keywords: artificial neural networks, concussion, machine learning, impact, speed skater
Procedia PDF Downloads 11032219 Translators as Agents: Jewish Translators and Zsolnay Publishing House’s Translational Culture in Pre-Anschluss Austria,1924-1938
Authors: Tatsiana Haiden
Abstract:
The role of the translator in the publishing process has been underestimated for centuries. Any translation is produced in a certain socio-political context by agents with different background, interests, and opinions, i.e., no translation is neutral. Any translation goes beyond the text; it is not only an interlingual transfer of signs but a social phenomenon. The case study shows how Jewish social networks influence publishing translations and aims to explain the unexpected success of the Jewish publishing house in pre-Anschluss Austria. The research shows that translators play a central role (‘Translator’s visibility’ - Pym, ‘Activist turn’ - Wolf, ‘Translator studies’ - Chesterman) in choosing what has to be translated and establishing communication between the author and the publisher. The concept of Translationskultur of Prunc is being historized and applied to the publishing house for the first time by analyzing business correspondence between the main actors of translation (publisher-translator-author). The translation studies project has become interdisciplinary –it encompasses sociology (concepts of Bourdieu’s ‘Field theory’ are used) and history. The historical research method Histoire croiseé is being used to avoid subjectivity and to introduce a new ‘translator-oriented’ vision in translation studies instead of the author-oriented one. In the course of the archival research, it was established that Jewish background plays an essential role in the destiny of the translators and the publishing house, so the Jewish studies have been added to the project. The study goes beyond the Austrian translational culture; it can be used as an example of dealing with publishing houses policies, publishing translations, and translator studies.Keywords: history of translation, Jewish studies, publishing translations, translation sociology, translator studies, translators as actors
Procedia PDF Downloads 15932218 Developing Artificial Neural Networks (ANN) for Falls Detection
Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai
Abstract:
The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold
Procedia PDF Downloads 49732217 Influential Factors Affecting the Creativity Scientific Problem Finding Ability of Social Science Ph.D. Students
Authors: Yuanyuan Song
Abstract:
For Ph.D. students, the skill of formulating incisive inquiries holds immense importance, as adept questioning can significantly unravel research complexities. Social Science Ph.D. students should possess specific abilities to formulate creative research questions, and identifying the most influential factors is essential. To respond to these questions, in this study, we engaged with Ph.D. candidates with social sciences backgrounds through interviews and questionnaires. Our objective was to identify the predominant determinants influencing their capacity to formulate inventive research queries, ultimately aiming to enhance the academic journey of social science doctoral candidates. Insights gleaned from semi-structured interviews and questionnaires with 15 doctoral scholars from different universities around the world highlighted that mentorship and scholarly exchanges, prior knowledge, positive mindset, and personal interests played pivotal roles in catalyzing these students' contemplation of research inquiries.Keywords: Ph.D. education, higher education, creativity cultivation, creativity scientific problem finding ability
Procedia PDF Downloads 6832216 The Neurofunctional Dissociation between Animal and Tool Concepts: A Network-Based Model
Authors: Skiker Kaoutar, Mounir Maouene
Abstract:
Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from McRae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.Keywords: animals, tools, network, semantics, small-worls, resilience to damage
Procedia PDF Downloads 54532215 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis
Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic
Abstract:
What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.Keywords: political tendency, prediction, sentiment analysis, Twitter
Procedia PDF Downloads 239