Search results for: radiation protective double layered slabs
3182 Treatment of Histopathological Symptoms in N-Nitrosopyrrolidine Induced Changes in Lung Tissue by Isolated Flavonoid from Indigofera tinctoria
Authors: Aastha Agarwal, Veena Sharma
Abstract:
N-nitrosopyrollidine or NPYR is a tobacco-specific nitrosamine which upon intoxicated causes abnormal production of Reactive Oxygen Species disrupt the endogenous antioxidant system. The study was designed to evaluate the histological changes in lung tissue of Mus musculus in NPYR administered lungs and effect of isolated flavonoid 3,6-dihydroxy-(3’,4’,7’-trimethoxyphenyl)-chromen-4-one-7-glucoside (ITC) from experimental plant Indigofera tinctorial. Post treatment with isolated compound significantly restored the abnormal symptoms and changes in pulmonary tissue. Transverse section of mouse lung in control animals appeared as a thin lace. Histologically, most of the lung was arranged as alveoli which were thin walled structures made up of single layered squamous epithelial cells. In the transverse section of lung at 100 X will clearly show the component of alveoli, surround by a thin layer of connective tissue and blood vessels. Smaller bronchioles were lined by cuboidal epithelial cells while larger bronchioles were lined by ciliated columnar epithelium layer while in NPYR intoxicated lungs signs of vast pulmonary damages and carcinogenesis as alveolar damage, necrosis, DADs or defused alveolar damages hyperplasia, metaplasia, dysplasia and next stage of carcinogenesis were revealed. Treatment with ITC showed the significant positive changes in the lung tissue due to the side hydroxyl and methoxy groups in its structure which help in combating oxidative injuries and give protection from the free radicals generated during the metabolism of NPYR in body. Thus, histopathological analysis confirms the development of the cancerous conditions in the lung tissue in mice model and the protective effects of ITC.Keywords: flavonoid, histopathology, Indigofera tinctoria, lung
Procedia PDF Downloads 2963181 Factors Influencing Infection Prevention and Control Practices in the Emergency Department of Mbarara Regional Referral Hospital in Mbarara District- Uganda
Authors: Baluku Nathan
Abstract:
Infection prevention and control (IPC) is a practical, evidence-based approach that prevents patients and emergency health workers from being harmed by avoidable infections as a result of antimicrobial resistance; all hospital infection control programs put together various practices which, when used appropriately, restrict the spread of infection. A breach in these control practices facilitates the transmission of infections from patients to health workers, other patients and attendants. It is, therefore, important for all EMTs and patients to adhere to them strictly. It is also imperative for administrators to ensure the implementation of the infection control program for their facilities. Purpose: The purpose of this study was to investigate the influencing factors of prevention practices against Infection exposure among emergency medical technicians (EMTs) in the emergency department at Mbarara hospital. Methodology: This was a descriptive cross-sectional study that employed a self-reported questionnaire that was filled out by 32 EMTs in the emergency department from 12th February to 3rd march 2022. The questionnaire consisted of items concerning the defensive environment and other Factors influencing Infection prevention and control practices in the accident and emergency department of Mbarara hospital. Results: From the findings, majority16(50%) always used protective gear when doing clinical work,14 (43.8%) didn’t use protective gear, citing they were only assisting those performing resuscitations, gumboots were the least used protective gear with only3(9.4%) usage. Regarding disposal techniques of specific products like blood and sharps, results showed 10 (31.3%) said blood is disposed of in red buckets, 5(15.6%) in yellow buckets and only5(15.6%) in black buckets and 12(37.5%) didn’t respond. However, 28(87.5%) said sharps were disposed of in a sharps container. The majority, 17(53.1%), were not aware of the infection control guidelines even though they were pinned on walls of the emergency rooms,15(46.9%) said they had never had quality assurance monitoring events,14(43.8%) said monitoring was continuous while15(46.9 %) said it was discrete. Conclusions: The infection control practices at the emergency department were inadequate in view of less than 100% of the EMTs observing the five principles of infection prevention, such as the use of personal protective equipment and proper waste disposal in appropriate color-coded bins. Dysfunctional infection prevention and control committees accompanied by inadequate supervision to ensure infection control remained a big challenge.Keywords: infection prevention, influencing factors, emergency medical technician (EMT), emergency unit
Procedia PDF Downloads 1133180 Factors Influencing Infection Prevention and Control Practices in the Emergency Department of Mbarara Regional Referral Hospital in Mbarara District-Uganda
Authors: Baluku Nathan
Abstract:
Infection prevention and control (IPC) is a practical, evidence-based approach that prevents patients and emergency health workers from being harmed by avoidable infections as a result of antimicrobial resistance; all hospital infection control programs put together various practices which, when used appropriately, restrict the spread of infection. A breach in these control practices facilitates the transmission of infections from patients to health workers, other patients, and attendants. It is, therefore important for all emergency medical technicians (EMTs) and patients to strictly adhere to them. It is also imperative for administrators to ensure the implementation of the infection control programme for their facilities. Purpose: The purpose of this study was to investigate the influencing factors of prevention practices against infection exposure among emergency medical technicians (EMTs) in the emergency department at Mbarara hospital. Methodology: This was a descriptive cross-sectional study that employed a self-reported questionnaire that was filled out by 32 EMTs in the emergency department from 12th February to 3rd march 2022. The questionnaire consisted of items concerning the defensive environment and other factors influencing infection prevention and control practices in the accident and emergency department of Mbarara hospital. Results: From the findings, the majority 16 (50%) always used protective gear when doing clinical work, 14 (43.8%) didn’t use protective gear, citing they were only assisting those performing resuscitations, gumboots were the least used protective gear with only3(9.4%) usage. About disposal techniques of specific products like blood and sharps, results showed 10 (31.3%) said blood is disposed of in red buckets, 5 (15.6%) in yellow buckets, and only 5(15.6%) in black buckets, and 12(37.5%) didn’t respond, however, 28(87.5%) said sharps were disposed of in a sharps container. The majority, 17 (53.1%), were not aware of the infection control guidelines even though they were pinned on walls of the emergency rooms, 15(46.9%) said they have never had quality assurance monitoring events, 14(43.8%) said monitoring was continuous while 15(46.9 %) said it was discrete. Conclusions: The infection control practices at the emergency department were inadequate in view of less than 100% of the EMTs observing the five principles of infection prevention, such as the use of personal protective equipment and proper waste disposal in appropriate color-coded bins. Dysfunctional infection prevention and control committees accompanied by inadequate supervision to ensure infection control remained a big challenge.Keywords: emergency medical technician, infection prevention, influencing factors, infection control
Procedia PDF Downloads 1083179 Bifidobacterium lactis Fermented Milk Was Not Effective to Eradication of Helicobacter Pylori Infection: A Prospective, Randomized, Double-Blind, Controlled Study
Authors: R. C. Barbuti, M. N. Oliveira, N. P. Perina, C. Haro, P. Bosch, C. S. Bogsan, J. N. Eisig, T. Navarro-Rodriguez
Abstract:
Background: The management of Helicobacter pylori (H. pylori) eradication is still a matter of discussion, full effectiveness is rarely achieved and it has many adverse effects. Probiotics are believed to have a role in eradicating and possibly preventing H. pylori infection as an adjunctive treatment. The present clinical study was undertaken to see the efficacy of a specially designed fermented milk product containing Bifidobacterium lactis B420 on the eradication of H. pylori infection in a prospective, randomized, double-blind, controlled study in humans. Method: Four test products were specially designed fermented milks, counts of viable cells in all products were 1010 Log CFU. 100 mL-1 for Bifidobacterium lactis-Bifidobacterium species 420, and 1011 Log CFU. 100 mL-1 for Streptococcus thermophiles were administered to subjects infected with H. pylori with a previous diagnosis of functional dyspepsia according to the Rome III criteria in a prospective, randomized, double-blind, placebo-controlled study in humans. Results: After FM supplementation, not all subjects showed a reduction in H. pylori colonization. Conclusion: Bifidobacterium lactis B420, administered twice a day for 90 days did not show an increase in H. pylori eradication effectiveness in Brazilian patients with functional dyspepsia.Keywords: antibacterial therapy, Bifidobacteria fermented milk, Helicobacter pylori, probiotics
Procedia PDF Downloads 2873178 Proton Irradiation Testing on Commercial Enhancement Mode GaN Power Transistor
Authors: L. Boyaci
Abstract:
Two basic equipment of electrical power subsystem of space satellites are Power Conditioning Unit (PCU) and Power Distribution Unit (PDU). Today, the main switching element used in power equipment in satellites is silicon (Si) based radiation-hardened MOSFET. GaNFETs have superior performances over MOSFETs in terms of their conduction and switching characteristics. GaNFET has started to take MOSFET’s place in many applications in industry especially by virtue of its switching performances. If GaNFET can also be used in equipment for space applications, this would be great revolution for future space power subsystem designs. In this study, the effect of proton irradiation on Gallium Nitride based power transistors was investigated. Four commercial enhancement mode GaN power transistors from Efficient Power Conversion Corporation (EPC) are irradiated with 30MeV protons while devices are switching. Flux of 8.2x10⁹ protons/cm²/s is applied for 12.5 seconds to reach ultimate fluence of 10¹¹ protons/cm². Vgs-Ids characteristics are measured and recorded for each device before, during and after irradiation. It was observed that if there would be destructive events. Proton induced permanent damage on devices is not observed. All the devices remained healthy and continued to operate. For two of these devices, further irradiation is applied with same flux for 30 minutes up to a total fluence level of 1.476x10¹³ protons/cm². We observed that GaNFETs are fully functional under this high level of radiation and no destructive events and irreversible failures took place for transistors. Results reveal that irradiated GaNFET in this experiment has radiation tolerance under proton testing and very important candidate for being one of the future power switching element in space.Keywords: enhancement mode GaN power transistors, proton irradiation effects, radiation tolerance
Procedia PDF Downloads 1523177 Estimation of Lungs Physiological Motion for Patient Undergoing External Lung Irradiation
Authors: Yousif Mohamed Y. Abdallah
Abstract:
This is an experimental study deals with detection, measurement and analysis of the periodic physiological organ motion during external beam radiotherapy; to improve the accuracy of the radiation field placement, and to reduce the exposure of healthy tissue during radiation treatments. The importance of this study is to detect the maximum path of the mobile structures during radiotherapy delivery, to define the planning target volume (PTV) and irradiated volume during both inspiration and expiration period and to verify the target volume. In addition to its role to highlight the importance of the application of Intense Guided Radiotherapy (IGRT) methods in the field of radiotherapy. The results showed (body contour was equally (3.17 + 0.23 mm), for left lung displacement reading (2.56 + 0.99 mm) and right lung is (2.42 + 0.77 mm) which the radiation oncologist to take suitable countermeasures in case of significant errors. In addition, the use of the image registration technique for automatic position control is predicted potential motion. The motion ranged between 2.13 mm and 12.2 mm (low and high). In conclusion, individualized assessment of tumor mobility can improve the accuracy of target areas definition in patients undergo Sterostatic RT for stage I, II and III lung cancer (NSCLC). Definition of the target volume based on a single CT scan with a margin of 10 mm is clearly inappropriate.Keywords: respiratory motion, external beam radiotherapy, image processing, lung
Procedia PDF Downloads 5353176 Prediction of Ionizing Radiation Doses in Irradiated red Pepper (Capsicum annuum) and Mint (Mentha piperita) by Gel Electrophoresis
Authors: Şeyma Özçirak Ergün, Ergün Şakalar, Emrah Yalazi̇, Nebahat Şahi̇n
Abstract:
Food irradiation is a usage of exposing food to ionising radiation (IR) such as gamma rays. IR has been used to decrease the number of harmful microorganisms in the food such as spices. Excessive usage of IR can cause damage to both food and people who consuming food. And also it causes to damages on food DNA. Generally, IR detection techniques were utilized in literature for spices are Electron Spin Resonance (ESR), Thermos Luminescence (TL). Storage creates negative effect on IR detection method then analyses of samples have been performed without storage in general. In the experimental part, red pepper (Capsicum annuum) and mint (Mentha piperita) as spices were exposed to 0, 0.272, 0.497, 1.06, 3.64, 8.82, and 17.42 kGy ionize radiation. ESR was applied to samples irradiated. DNA isolation from irradiated samples was performed using GIDAGEN Multi Fast DNA isolation kit. The DNA concentration was measured using a microplate reader spectrophotometer (Infinite® 200 PRO-Life Science–Tecan). The concentration of each DNA was adjusted to 50 ng/µL. Genomic DNA was imaged by UV transilluminator (Gel Doc XR System, Bio-Rad) for the estimation of genomic DNA bp-fragment size after IR. Thus, agarose gel profiles of irradiated spices were obtained to determine the change of band profiles. Besides, samples were examined at three different time periods (0, 3, 6 months storage) to show the feasibility of developed method. Results of gel electrophoresis showed especially degradation of DNA of irradiated samples. In conclusion, this study with gel electrophoresis can be used as a basis for the identification of the dose of irradiation by looking at degradation profiles at specific amounts of irradiation. Agarose gel results of irradiated samples were confirmed with ESR analysis. This method can be applied widely to not only food products but also all biological materials containing DNA to predict radiation-induced damage of DNA.Keywords: DNA, electrophoresis, gel electrophoresis, ionizeradiation
Procedia PDF Downloads 2593175 Structural, Vibrational, Magnetic, and Electronic Properties of La₂MMnO₆ Double Perovskites with M = Ni, Co, and Zn
Authors: Hamza Ouachtouk, Amine Harbi, Said Azerblou, Youssef Naimi, El Mostafa Tace
Abstract:
This study delves into the structural, vibrational, magnetic, and electronic properties of La₂MMnO₆ double perovskites, where M denotes Ni, Co, and Zn. Recognized for their versatile ionic configurations within the A and B sub-lattices, double perovskite oxides have attracted considerable interest due to their extensive array of physical properties, which include multiferroic behavior, colossal magnetoresistance, and ferroelectric/piezoelectric functionalities. These materials are pivotal for energy-related technologies like solid oxide fuel cells and water-splitting catalysis, attributed to their superior oxygen ion transport and storage capabilities. This research places particular emphasis on La₂NiMnO₆ and La₂CoMnO₆, known for their distinct magnetic, electric, and multiferroic properties, and extends the investigation to La₂ZnMnO₆, synthesized via high-temperature solid-state chemistry. This addition aims to ascertain the impact of zinc substitution on these properties. Structural analysis through X-ray diffraction has confirmed a monoclinic structure within the P2₁/n space group. Comprehensive vibrational studies utilizing infrared and Raman spectroscopy, alongside additional XRD assessments, provide a detailed examination of the dynamic and electronic behaviors of these compounds. The results underscore the significant role of chemical composition in modulating their functional properties. Comparatively, this study highlights that zinc substitution notably alters the electronic and magnetic responses, which could enhance the applicability of these materials in advanced energy technologies. This expanded analysis not only reinforces our understanding of La₂MMnO₆'s physical characteristics but also highlights its potential applications in the next generation of energy solutions.Keywords: double perovskites, structural analysis, vibrational spectroscopy, magnetic properties, electronic properties, high-temperature solid-state chemistry, La₂MMnO₆, monoclinic structure, x-ray diffraction
Procedia PDF Downloads 533174 Protection of Patients and Staff in External Beam Radiotherapy Using Linac in Kenya
Authors: Calvince Okome Odeny
Abstract:
There is a current action to increase radiotherapy services in Kenya. The National government of Kenya, in collaboration with the county governments, has embarked on building radiotherapy centers in all 47 regions of the country. As these new centers are established in Kenya, it has to be ensured that minimum radiation safety standards are in place prior to operation. For full implementation of this, it is imperative that more Research and training for regulators are done on radiation protection, and safety and national regulatory infrastructure is geared towards ensuring radiation protection and safety in all aspects of the use of external radiotherapy practices. The present work aims at reviewing the level of protection and safety for patients and staff during external beam radiotherapy using Linac in Kenya and provides relevant guidance to improve protection and safety. A retrospective evaluation was done to verify whether those occupationally exposed workers and patients are adequately protected from the harmful effect of radiation exposure during the treatment procedures using Linac. The project was experimental Research, also including an analysis of resource documents obtained from the literature and international organizations. The critical findings of the work revealed that the key elements of protection of occupationally exposed workers and patients include a comprehensive quality Management system governing all planned activities from siting, safety, and design of the Facility, construction, acceptance testing, commissioning, operation, and decommissioning of the Facility; Government empowering the Regulatory Authority to license Medical Linear facilities and to enforce the applicable regulations to ensure adequate protection; A comprehensive Radiation Protection and Safety program must be established to ensure adequate safety and protection of workers and patients during treatment planning and treatment delivery of patients and categories of staff associated with the Facility must be well educated and trained to perform professionally with a commitment to sound safety culture. Relevant recommendations from the findings are shared with the Medical Linear Accelerator facilities and the regulatory authority to provide guidance and continuous improvement of protection and safety to improve regulatory oversight.Keywords: oncology, radiotherapy, protection, staff
Procedia PDF Downloads 753173 Durability of Functionally Graded Concrete
Authors: Prasanna Kumar Acharya, Mausam Kumari Yadav
Abstract:
Cement concrete has emerged as the most consumed construction material. It has also dominated all other construction materials because of its versatility. Apart from numerous advantages it has a disadvantage concerning durability. The large structures constructed with cement concrete involving the consumption of huge natural materials remain in serviceable condition for 5 – 7 decades only while structures made with stones stand for many centuries. The short life span of structures not only affects the economy but also affects the ecology greatly. As such, the improvement of durability of cement concrete is a global concern and scientists around the globe are trying for this purpose. Functionally graded concrete (FGC) is an exciting development. In contrast to conventional concrete, FGC demonstrates different characteristics depending on its thickness, which enables it to conform to particular structural specifications. The purpose of FGC is to improve the performance and longevity of conventional concrete structures with cutting-edge building materials. By carefully distributing various kinds and amounts of reinforcements, additives, mix designs and/or aggregates throughout the concrete matrix, this variety is produced. A key component of functionally graded concrete's performance is its durability, which affects the material's capacity to tolerate aggressive environmental influences and load-bearing circumstances. This paper reports the durability of FGC made using Portland slag cement (PSC). For this purpose, control concretes (CC) of M20, M30 and M40 grades were designed. Single-layered samples were prepared using each grade of concrete. Further using combinations of M20 + M30, M30 + M40 and M40 + M20, doubled layered concrete samples in a depth ratio of 1:1 was prepared those are herein called FGC samples. The efficiency of FGC samples was compared with that of the higher-grade concrete of parent materials in terms of compressive strength, water absorption, sorptivity, acid resistance, sulphate resistance, chloride resistance and abrasion resistance. The properties were checked at the age of 28 and 91 days. Apart from strength and durability parameters, the microstructure of CC and FGC were studied in terms of X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray. The result of the study revealed that there is an increase in the efficiency of concrete evaluated in terms of strength and durability when it is made functionally graded using a layered technology having different grades of concrete in layers. The results may help to enhance the efficiency of structural concrete and its durability.Keywords: fresh on compacted, functionally graded concrete, acid, chloride, sulphate test, sorptivity, abrasion, water absorption test
Procedia PDF Downloads 183172 The Effect of the Adhesive Ductility on Bond Characteristics of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings
Authors: Haider Al-Zubaidy, Xiao-Ling Zhao, Riadh Al-Mahaidi
Abstract:
In recent years, the technique adhesively-bonded fibre reinforced polymer (FRP) composites has found its way into civil engineering applications and it has attracted a widespread attention as a viable alternative strategy for the retrofitting of civil infrastructure such as bridges and buildings. When adopting this method, adhesive has a significant role and controls the general performance and degree of enhancement of the strengthened and/or upgraded structures. This is because the ultimate member strength is highly affected by the failure mode which is considerably dependent on the utilised adhesive. This paper concerns with experimental investigations on the effect of the adhesive used on the bond between CFRP patch and steel plate under medium impact tensile loading. Experiment were conducted using double strap joints and these samples were prepared using two different types of adhesives, Araldite 420 and MBrace saturant. Drop mass rig was used to carry out dynamic tests at impact speeds of 3.35, 4.43 and m/s while quasi-static tests were implemented at 2mm/min using Instrone machine. In this test program, ultimate load-carrying capacity and failure modes were examined for all loading speeds. For both static and dynamic tests, the adhesive type has a significant effect on ultimate joint strength. It was found that the double strap joints prepared using Araldite 420 showed higher strength than those prepared utilising MBrace saturant adhesive. Failure mechanism for joints prepared using Araldite 420 is completely different from those samples prepared utilising MBrace saturant. CFRP failure is the most common failure pattern for joints with Araldite 420, whereas the dominant failure for joints with MBrace saturant adhesive is adhesive failure.Keywords: CFRP/steel double strap joints, adhesives of different ductility, dynamic tensile loading, bond between CFRP and steel
Procedia PDF Downloads 2363171 Annular Hyperbolic Profile Fins with Variable Thermal Conductivity Using Laplace Adomian Transform and Double Decomposition Methods
Authors: Yinwei Lin, Cha'o-Kuang Chen
Abstract:
In this article, the Laplace Adomian transform method (LADM) and double decomposition method (DDM) are used to solve the annular hyperbolic profile fins with variable thermal conductivity. As the thermal conductivity parameter ε is relatively large, the numerical solution using DDM become incorrect. Moreover, when the terms of DDM are more than seven, the numerical solution using DDM is very complicated. However, the present method can be easily calculated as terms are over seven and has more precisely numerical solutions. As the thermal conductivity parameter ε is relatively large, LADM also has better accuracy than DDM.Keywords: fins, thermal conductivity, Laplace transform, Adomian, nonlinear
Procedia PDF Downloads 3343170 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor, and sensor layout geometrical form factor. Based on the properties of electrons, phonons, grain boundaries, and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of the Boltzmann transport equation. The model includes the effect of grain structure, grain boundary trap properties, and doping concentration. The layer structure factor is analyzed with respect to the infrared absorption coefficient. The optimization of layout design is characterized by the form factor, which is calculated for different sensor designs. A double-layer polycrystalline silicon thermopile infrared sensor on a suspended membrane has been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed by measurement results.Keywords: polycrystalline silicon, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor
Procedia PDF Downloads 1393169 Performance Evaluation of Thermosiphon Based Solar Water Heater in India
Authors: Dnyandip K. Bhamare, Manish K Rathod, Jyotirmay Banerjee
Abstract:
This paper aims to study performance of a thermosiphon solar water heating system with the help of the proposed analytical model. This proposed model predicts the temperature and mass flow rate in a thermosiphon solar water heating system depending on radiation intensity and ambient temperature. The performance of the thermosiphon solar water heating system is evaluated in the Indian context. For this, eight cities in India are selected considering radiation intensity and geographical positions. Predicted performance at various cities reveals the potential for thermosiphon solar water in India.Keywords: solar water heater, collector outlet temperature, thermosyphon, India
Procedia PDF Downloads 2593168 Mn3O4-NiFe Layered Double Hydroxides(LDH)/Carbon Composite Cathode for Rechargeable Zinc-Air Battery
Authors: L. K. Nivedha, V. Maruthapandian, R. Kothandaraman
Abstract:
Rechargeable zinc-air batteries (ZAB) are gaining significant research attention owing to their high energy density and copious zinc resources worldwide. However, the unsolved obstacles such as dendrites, passivation, depth of discharge and the lack of an efficient cathode catalyst restrict their practical application1. By and large, non-noble transition metal-based catalysts are well-reputed materials for catalysing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with greater stability in alkaline medium2. Herein, we report the synthesis and application of Mn₃O4-NiFeLDH/Carbon composite as a cathode catalyst for rechargeable ZAB. The synergetic effects of the mixed transition metals (Mn/Ni/Fe) have aided in catalysing ORR and OER in alkaline electrolyte with a shallow potential gap of 0.7 V. The composite, by its distinctive physicochemical characteristics, shows an excellent OER activity with a current density of 1.5 mA cm⁻² at a potential of 1.6 V and a superior ORR activity with an onset potential of 0.8 V when compared with their counterparts. Nevertheless, the catalyst prefers a two-electron pathway for the electrochemical reduction of oxygen which results in a limiting current density of 2.5 mA cm⁻². The bifunctional activity of the Mn₃O₄-NiFeLDH/Carbon composite was utilized in developing rechargeable ZAB. The fully fabricated ZAB delivers an open circuit voltage of 1.4 V, a peak power density of 70 mW cm⁻², and a specific capacity of 800 mAh g⁻¹ at a current density of 20 mA cm⁻² with an average discharge voltage of 1 V and the cell is operable upto 50 mA cm-2. Rechargeable ZAB demonstrated over 110 h at 10 mA cm⁻². Further, the cause for the diminished charge-discharge performance experienced beyond the 100th cycle was investigated, and carbon corrosion was testified using Infrared spectroscopy.Keywords: rechargeable zinc-air battery, oxygen evolution reaction, bifunctional catalyst, alkaline medium
Procedia PDF Downloads 803167 Analyzing Current Transformer’s Transient and Steady State Behavior for Different Burden’s Using LabVIEW Data Acquisition Tool
Abstract:
Current transformers (CTs) are used to transform large primary currents to a small secondary current. Since most standard equipment’s are not designed to handle large primary currents the CTs have an important part in any electrical system for the purpose of Metering and Protection both of which are integral in Power system. Now a days due to advancement in solid state technology, the operation times of the protective relays have come to a few cycles from few seconds. Thus, in such a scenario it becomes important to study the transient response of the current transformers as it will play a vital role in the operating of the protective devices. This paper shows the steady state and transient behavior of current transformers and how it changes with change in connected burden. The transient and steady state response will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer characteristics with changes in burden will be discussed.Keywords: accuracy, accuracy limiting factor, burden, current transformer, instrument security factor
Procedia PDF Downloads 3433166 Nondestructive Acoustic Microcharacterisation of Gamma Irradiation Effects on Sodium Oxide Borate Glass X2Na2O-X2B2O3 by Acoustic Signature
Authors: Ibrahim Al-Suraihy, Abdellaziz Doghmane, Zahia Hadjoub
Abstract:
We discuss in this work the elastic properties by using acoustic microscopes to measure Rayleigh and longitudinal wave velocities in a no radiated and radiated sodium borate glasses X2Na2O-X2B2O3 with 0 ≤ x ≤ 27 (mol %) at microscopic resolution. The acoustic material signatures were first measured, from which the characteristic surface velocities were determined.Longitudinal and shear ultrasonic velocities were measured in a different composition of sodium borate glass samples before and after irradiation with γ-rays. Results showed that the effect due to increasing sodium oxide content on the ultrasonic velocity appeared more clearly than due to γ-radiation. It was found that as Na2O composition increases, longitudinal velocities vary from 3832 to 5636 m/s in irradiated sample and it vary from 4010 to 5836 m/s in high radiated sample by 10 dose whereas shear velocities vary from 2223 to 3269 m/s in irradiated sample and it vary from 2326 m/s in low radiation to 3385 m/s in high radiated sample by 10 dose. The effect of increasing sodium oxide content on ultrasonic velocity was very clear. The increase of velocity was attributed to the gradual increase in the rigidity of glass and hence strengthening of network due to gradual change of boron atoms from the three-fold to the four-fold coordination of oxygen atoms. The ultrasonic velocities data of glass samples have been used to find the elastic modulus. It was found that ultrasonic velocity, elastic modulus and microhardness increase with increasing barium oxide content and increasing γ-radiation dose.Keywords: mechanical properties X2Na2O-X2B2O3, acoustic signature, SAW velocities, additives, gamma-radiation dose
Procedia PDF Downloads 3963165 Comparison and Effectiveness of Cranial Electrical Stimulation Treatment, Brain Training and Their Combination on Language and Verbal Fluency of Patients with Mild Cognitive Impairment: A Single Subject Design
Authors: Firoozeh Ghazanfari, Kourosh Amraei, Parisa Poorabadi
Abstract:
Mild cognitive impairment is one of the neurocognitive disorders that go beyond age-related decline in cognitive functions, but in fact, it is not so severe which affects daily activities. This study aimed to investigate and compare the effectiveness of treatment with cranial electrical stimulation, brain training and their double combination on the language and verbal fluency of the elderly with mild cognitive impairment. This is a single-subject method with comparative intervention designs. Four patients with a definitive diagnosis of mild cognitive impairment by a psychiatrist were selected via purposive and convenience sampling method. Addenbrooke's Cognitive Examination Scale (2017) was used to assess language and verbal fluency. Two groups were formed with different order of cranial electrical stimulation treatment, brain training by pencil and paper method and their double combination, and two patients were randomly replaced in each group. The arrangement of the first group included cranial electrical stimulation, brain training, double combination and the second group included double combination, cranial electrical stimulation and brain training, respectively. Treatment plan included: A1, B, A2, C, A3, D, A4, where electrical stimulation treatment was given in ten 30-minutes sessions (5 mA and frequency of 0.5-500 Hz) and brain training in ten 30-minutes sessions. Each baseline lasted four weeks. Patients in first group who first received cranial electrical stimulation treatment showed a higher percentage of improvement in the language and verbal fluency subscale of Addenbrooke's Cognitive Examination in comparison to patients of the second group. Based on the results, it seems that cranial electrical stimulation with its effect on neurotransmitters and brain blood flow, especially in the brain stem, may prepare the brain at the neurochemical and molecular level for a better effectiveness of brain training at the behavioral level, and the selective treatment of electrical stimulation solitude in the first place may be more effective than combining it with paper-pencil brain training.Keywords: cranial electrical stimulation, treatment, brain training, verbal fluency, cognitive impairment
Procedia PDF Downloads 893164 Use of GIS and Remote Sensing for Calculating the Installable Photovoltaic and Thermal Power on All the Roofs of the City of Aix-en-Provence, France
Authors: Sofiane Bourchak, Sébastien Bridier
Abstract:
The objective of this study is to show how to calculate and map solar energy’s quantity (instantaneous and accumulated global solar radiation during the year) available on roofs in the city Aix-en-Provence which has a population of 140,000 inhabitants. The result is a geographic information system (GIS) layer, which represents hourly and monthly the production of solar energy on roofs throughout the year. Solar energy professionals can use it to optimize implementations and to size energy production systems. The results are presented as a set of maps, tables and histograms in order to determine the most effective costs in Aix-en-Provence in terms of photovoltaic power (electricity) and thermal power (hot water).Keywords: geographic information system, photovoltaic, thermal, solar potential, solar radiation
Procedia PDF Downloads 4363163 Analysis of Rectangular Concrete-Filled Double Skin Tubular Short Columns with External Stainless Steel Tubes
Authors: Omnia F. Kharoob, Nashwa M. Yossef
Abstract:
Concrete-filled double skin steel tubular (CFDST) columns could be utilized in structures such as bridges, high-rise buildings, viaducts, and electricity transmission towers due to its great structural performance. Alternatively, lean duplex stainless steel has recently gained significant interest for its high structural performance, similar corrosion resistance and lower cost compared to the austenitic steel grade. Hence, this paper presents the nonlinear finite element (FE) analysis, behaviour and design of rectangular outer lean duplex stainless steel (EN 1.4162) CFDST short columns under compression. All classes of the outer rectangular hollow section according to the depth-to-thickness (D/t) ratios were considered. The results showed that the axial ultimate strength of rectangular CFDST short columns increased linearly by increasing the concrete compressive strength, while it does not influence when changing the hollow ratios. Finally, the axial capacities were compared with the available design methods, and recommendations were conducted for the design strength of this type of column.Keywords: concrete-filled double skin columns, compressive strength, finite element analysis, lean duplex stainless steel, ultimate axial strength, short columns
Procedia PDF Downloads 3023162 PTSD in Peacekeepers: A Systematic Review
Authors: Laura Rodrigues Carmona, Maria José Chambel, Vânia Sofia Carvalho
Abstract:
Background: In peacekeeping operations, military personnel are often exposed to the same traumatic stress factors found during conventional war and may also be subject to the physical risks and psychological stressors associated with posttraumatic stress disorder (PTSD). Objectives: To discuss the prevalence of PTSD among peacekeepers as well as the risks of and protective factors against this disorder and its comorbidities and/or consequences. Methods: A systematic literature search was performed with relevant keywords, and 53 articles were identified for this review. Results and conclusions: Military personnel deployed in peacekeeping operations have a higher prevalence of PTSD than nonmilitary personnel, a prevalence similar to that of military personnel deployed in war situations. Concerning the salient risk factors, the contextual factors are highlighted, and in regard to the protective factors, the individual factors are highlighted. This study thus demonstrates that there are factors in which the role of the military is essential, via both its selection and monitoring of peacekeepers during and after their deployment, to protect deployed personnel’s mental health.Keywords: peacekeepers, peacekeeping, military, PTSD, post-traumatic stress disorder, posttraumatic stress disorder
Procedia PDF Downloads 853161 Power and Efficiency of Photovoltaic Module: Effect of Cell Temperature
Authors: R. Nasrin, M. Ferdows
Abstract:
Among the renewable energy sources, photovoltaic (PV) is a high potential, effective, and sustainable system. Irradiation intensity from 200 W/m2 to 1000 W/m2 has been considered to observe the performance of PV module. Generally, this module converts only about 15% - 20% of incident irradiation into electrical energy and the rest part is converted into heat energy. Finite element method has been used to solve the problem numerically. Simulation has been performed by considering the ambient temperature 30°C. Higher irradiation increase solar cell temperature and electrical power. The electrical efficiency of PV module decreases with the variation of solar radiation. The efficiency of PV module can be increased if cell temperature is reduced. Thus the effect of irradiation is significant to enhance the efficiency of PV module if the solar cell temperature is kept at a certain level.Keywords: PV module, solar radiation, efficiency, cell temperature
Procedia PDF Downloads 3613160 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification
Authors: Hung-Sheng Lin, Cheng-Hsuan Li
Abstract:
Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction
Procedia PDF Downloads 3443159 A More Powerful Test Procedure for Multiple Hypothesis Testing
Authors: Shunpu Zhang
Abstract:
We propose a new multiple test called the minPOP test for testing multiple hypotheses simultaneously. Under the assumption that the test statistics are independent, we show that the minPOP test has higher global power than the existing multiple testing methods. We further propose a stepwise multiple-testing procedure based on the minPOP test and two of its modified versions (the Double Truncated and Left Truncated minPOP tests). We show that these multiple tests have strong control of the family-wise error rate (FWER). A method for finding the p-values of the proposed tests after adjusting for multiplicity is also developed. Simulation results show that the Double Truncated and Left Truncated minPOP tests, in general, have a higher number of rejections than the existing multiple testing procedures.Keywords: multiple test, single-step procedure, stepwise procedure, p-value for multiple testing
Procedia PDF Downloads 833158 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System
Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko
Abstract:
Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic
Procedia PDF Downloads 613157 Quality Control Assessment of X-Ray Equipment in Hospitals of Katsina State, Nigeria
Authors: Aminu Yakubu Umar
Abstract:
X-ray is the major contributor to the effective dose of both the patient and the personnel. Because of the radiological risks involved, it is usually recommended that dose to patient from X-ray be kept as low as reasonably achievable (ALARA) with adequate image quality. The implementation of quality assurance in diagnostic radiology can help greatly in achieving that, as it is a technique designed to reduce X-ray doses to patients undergoing radiological examination. In this study, quality control was carried out in six hospitals, which involved KVp test, evaluation of total filtration, test for constancy of radiation output, and check for mA linearity. Equipment used include KVp meter, Rad-check meter, aluminum sheets (0.1–1.0 mm) etc. The results of this study indicate that, the age of the X-ray machines in the hospitals ranges from 3-13 years, GHI and GH2 being the oldest and FMC being the newest. In the evaluation of total filtration, the HVL of the X-ray machines in the hospitals varied, ranging from 2.3-5.2 mm. The HVL was found to be highest in AHC (5.2 mm), while it was lowest in GH3 (2.3 mm). All HVL measurements were done at 80 KVp. The variation in voltage accuracy in the hospitals ranges from 0.3%-127.5%. It was only in GH1 that the % variation was below the allowed limit. The test for constancy of radiation output showed that, the coefficient of variation ranges from 0.005–0.550. In GH3, FMC and AHC, the coefficient of linearity were less than the allowed limit, while in GH1, GH2 and GH4 the coefficient of linearity had exceeded the allowed limit. As regard to mA linearity, FMC and AHC had their coefficients of linearity as 0.12 and 0.10 respectively, which were within the accepted limit, while GH1, GH3 and GH4 had their coefficients as 0.16, 0.69 and 0.98 respectively, which exceeded the allowed limit.Keywords: radiation, X-ray output, quality control, half-value layer, mA linearity, KVp variation
Procedia PDF Downloads 6093156 UV Resistibility of a Carbon Nanofiber Reinforced Polymer Composite
Authors: A. Evcin, N. Çiçek Bezir, R. Duman, N. Duman
Abstract:
Nowadays, a great concern is placed on the harmfulness of ultraviolet radiation (UVR) which attacks human bodies. Nanocarbon materials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs) and graphene, have been considered promising alternatives to shielding materials because of their excellent electrical conductivities, very high surface areas and low densities. In the present work, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. We present the fabrication and characterization of transparent and ultraviolet (UV) shielding CNF/polymer composites. The content of CNF filler has been varied from 0.2% to 0.6 % by weight. UV Spectroscopy has been performed to study the effect of composition on the transmittance of polymer composites.Keywords: electrospinning, carbon nanofiber, characterization, composites, nanofiber, ultraviolet radiation
Procedia PDF Downloads 2253155 EMI Radiation Prediction and Final Measurement Process Optimization by Neural Network
Authors: Hussam Elias, Ninovic Perez, Holger Hirsch
Abstract:
The completion of the EMC regulations worldwide is growing steadily as the usage of electronics in our daily lives is increasing more than ever. In this paper, we introduce a novel method to perform the final phase of Electromagnetic compatibility (EMC) measurement and to reduce the required test time according to the norm EN 55032 by using a developed tool and the conventional neural network(CNN). The neural network was trained using real EMC measurements, which were performed in the Semi Anechoic Chamber (SAC) by CETECOM GmbH in Essen, Germany. To implement our proposed method, we wrote software to perform the radiated electromagnetic interference (EMI) measurements and use the CNN to predict and determine the position of the turntable that meets the maximum radiation value.Keywords: conventional neural network, electromagnetic compatibility measurement, mean absolute error, position error
Procedia PDF Downloads 2003154 Radiological Assessment of Fish Samples Due to Natural Radionuclides in River Yobe, North Eastern Nigeria
Authors: H. T. Abba, Abbas Baba Kura
Abstract:
Assessment of natural radioactivity of some fish samples in river Yobe was conducted, using gamma spectroscopy method with NaI(TI) detector. Radioactivity is phenomenon that leads to production of radiations, whereas radiation is known to trigger or induce cancer. The fish were analyzed to estimate the radioactivity (activity) concentrations due to natural radionuclides (Radium 222(226Ra), Thorium 232 (232Th) and Potassium 40 (40K)). The obtained result show that the activity concentration for (226Ra), in all the fish samples collected ranges from 15.23±2.45 BqKg-1 to 67.39±2.13 BqKg-1 with an average value of 34.13±1.34 BqKg-1. That of 232Th, ranges from 42.66±0.81 BqKg-1 to 201.18±3.82 BqKg-1, and the average value stands at 96.01±3.82 BqKg-1. The activity concentration for 40K, ranges between 243.3±1.56 BqKg-1 to 618.2±2.81 BqKg-1 and the average is 413.92±1.7 BqKg-1. This study indicated that average daily intake due to natural activity from the fish is valued at 0.913 Bq/day, 2.577Bq/day and 11.088 Bq/day for 226Ra, 232Th and 40K respectively. This shows that the activity concentration values for fish, shows a promising result with most of the fish activity concentrations been within the acceptable limits. However locations (F02, F07 and F12) fish, became outliers with significant values of 112.53μSvy-1, 121.11μSvy-1 and 114.32μSvy-1 effective Dose. This could be attributed to variation in geological formations within the river as while as the feeding habits of these fish. The work shows that consumers of fish from River Yobe have no risk of radioactivity ingestion, even though no amount of radiation is assumed to be totally safe.Keywords: radiation, radio-activity, dose, radionuclides, river Yobe
Procedia PDF Downloads 3183153 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites
Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash
Abstract:
Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work, it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.Keywords: gamma ray irradiation, hard ferrite, magnetic coefficient, magnetic material, radiation dose
Procedia PDF Downloads 239