Search results for: natural treatment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13090

Search results for: natural treatment

12400 A Universal Hybrid Adsorbent Based on Chitosan for Water Treatment

Authors: Sandrine Delpeux-Ouldriane, Min Cai, Laurent Duclaux, Laurence Reinert, Fabrice Muller

Abstract:

A novel hybrid adsorbent, based on chitosan biopolymer, clays and activated carbon was prepared. Hybrid chitosan beads containing dispersed clays and activated carbons were prepared by precipitation in basic medium. Such a composite material is still very porous and presents a wide adsorption spectrum. The obtained composite adsorbent is able to handle all the pollution types including heavy metals, polar and hydrophobic organic molecules and nitrates. It could find a place of choice in tertiary water treatment processes or for an ‘at source’ treatment concerning chemical or pharmaceutical industries.

Keywords: adsorption, chitosan, clay mineral, activated carbon

Procedia PDF Downloads 386
12399 Natural Gas Flow Optimization Using Pressure Profiling and Isolation Techniques

Authors: Syed Tahir Shah, Fazal Muhammad, Syed Kashif Shah, Maleeha Gul

Abstract:

In recent days, natural gas has become a relatively clean and quality source of energy, which is recovered from deep wells by expensive drilling activities. The recovered substance is purified by processing in multiple stages to remove the unwanted/containments like dust, dirt, crude oil and other particles. Mostly, gas utilities are concerned with essential objectives of quantity/quality of natural gas delivery, financial outcome and safe natural gas volumetric inventory in the transmission gas pipeline. Gas quantity and quality are primarily related to standards / advanced metering procedures in processing units/transmission systems, and the financial outcome is defined by purchasing and selling gas also the operational cost of the transmission pipeline. SNGPL (Sui Northern Gas Pipelines Limited) Pakistan has a wide range of diameters of natural gas transmission pipelines network of over 9125 km. This research results in answer a few of the issues in accuracy/metering procedures via multiple advanced gadgets for gas flow attributes after being utilized in the transmission system and research. The effects of good pressure management in transmission gas pipeline network in contemplation to boost the gas volume deposited in the existing network and finally curbing gas losses UFG (Unaccounted for gas) for financial benefits. Furthermore, depending on the results and their observation, it is directed to enhance the maximum allowable working/operating pressure (MAOP) of the system to 1235 PSIG from the current round about 900 PSIG, such that the capacity of the network could be entirely utilized. In gross, the results depict that the current model is very efficient and provides excellent results in the minimum possible time.

Keywords: natural gas, pipeline network, UFG, transmission pack, AGA

Procedia PDF Downloads 87
12398 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites

Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin

Abstract:

Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.

Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties

Procedia PDF Downloads 149
12397 Effect of Phenolic Compounds on Off-Odor Development and Oxidative Stability of Camel Meat during Refrigerated Storage

Authors: Sajid Maqsood, Aysha Al Rashedi, Aisha Abushelaibi, Kusaimah Manheem

Abstract:

Impact of different natural antioxidants on lipid oxidation, microbial load and sensorial quality in ground camel meat (leg region) during 9 days of refrigerated storage were investigated. Control camel meat showed higher lipid oxidation products (Peroxide value and Thiobarbituric acid reactive substances (TBARS)) during the storage period. Upon addition of different natural antioxidants PV and TBARS were retarded, especially in samples added with tannic acid (TA), catechin (CT) and gallic acid (GA) (p<0.05). Haem iron content decreased with increasing storage period and was found to be lower in samples added with caffeic acid (CA) and gallic acid (GA) at the end of storage period (p<0.05). Furthermore, lower mesophilic bacterial count (MBC) and psychrophilic bacterial counts (PBC) were observed in TA and CT treated samples compared to control and other samples (p<0.05). Camel meat treated with TA and CT also received higher likeness scores for colour, odor and overall appearance compared to control samples (p<0.05). Therefore, adding different natural antioxidants especially TA and CT showed retarding effect on lipid oxidation and microbial growth and were also effective in maintaining sensory attributes (color and odor) of ground camel meat during storage at 4°C. Hence, TA and CT could be considered as the potential natural antioxidant for preserving the quality of the camel meat displayed at refrigerated shelves.

Keywords: natural antioxidants, lipid oxidation, quality, camel meat

Procedia PDF Downloads 423
12396 A Comparative Study of Simple and Pre-polymerized Fe Coagulants for Surface Water Treatment

Authors: Petros Gkotsis, Giorgos Stratidis, Manassis Mitrakas, Anastasios Zouboulis

Abstract:

This study investigates the use of original and pre-polymerized iron (Fe) reagents compared to the commonly applied polyaluminum chloride (PACl) coagulant for surface water treatment. Applicable coagulants included both ferric chloride (FeCl₃) and ferric sulfate (Fe₂(SO₄)₃) and their pre-polymerized Fe reagents, such as polyferric sulfate (PFS) and polyferric chloride (PFCl). The efficiency of coagulants was evaluated by the removal of natural organic matter (NOM) and suspended solids (SS), which were determined in terms of reducing the UV absorption at 254 nm and turbidity, respectively. The residual metal concentration (Fe and Al) was also measured. Coagulants were added at five concentrations (1, 2, 3, 4 and 5 mg/L) and three pH values (7.0, 7.3 and 7.6). Experiments were conducted in a jar-test device, with two types of synthetic surface water (i.e., of high and low organic strength) which consisted of humic acid (HA) and kaolin at different concentrations (5 mg/L and 50 mg/L). After the coagulation/flocculation process, clean water was separated with filters of pore size 0.45 μm. Filtration was also conducted before the addition of coagulants in order to compare the ‘net’ effect of the coagulation/flocculation process on the examined parameters (UV at 254 nm, turbidity, and residual metal concentration). Results showed that the use of PACl resulted in the highest removal of humics for both types of surface water. For the surface water of high organic strength (humic acid-kaolin, 50 mg/L-50 mg/L), the highest removal of humics was observed at the highest coagulant dosage of 5 mg/L and at pH=7. On the contrary, turbidity was not significantly affected by the coagulant dosage. However, the use of PACl decreased turbidity the most, especially when the surface water of high organic strength was employed. As expected, the application of coagulation/flocculation prior to filtration improved NOM removal but slightly affected turbidity. Finally, the residual Fe concentration (0.01-0.1 mg/L) was much lower than the residual Al concentration (0.1-0.25 mg/L).

Keywords: coagulation/flocculation, iron and aluminum coagulants, metal salts, pre-polymerized coagulants, surface water treatment

Procedia PDF Downloads 146
12395 A Review on the Mechanism Removal of Pesticides and Heavy Metal from Agricultural Runoff in Treatment Train

Authors: N. A. Ahmad Zubairi, H. Takaijudin, K. W. Yusof

Abstract:

Pesticides have been used widely over the world in agriculture to protect from pests and reduce crop losses. However, it affects the environment with toxic chemicals. Exceed of toxic constituents in the ecosystem will result in bad side effects. The hydrological cycle is related to the existence of pesticides and heavy metal which it can penetrate through varieties of sources into the soil or water bodies, especially runoff. Therefore, proper mechanisms of pesticide and heavy metal removal should be studied to improve the quality of ecosystem free or reduce from unwanted substances. This paper reviews the use of treatment train and its mechanisms to minimize pesticides and heavy metal from agricultural runoff. Organochlorine (OCL) is a common pesticide that was found in the agricultural runoff. OCL is one of the toxic chemicals that can disturb the ecosystem such as inhibiting plants' growth and harm human health by having symptoms as asthma, active cancer cell, vomit, diarrhea, etc. Thus, this unwanted contaminant gives disadvantages to the environment and needs treatment system. Hence, treatment train by bioretention system is suitable because removal efficiency achieves until 90% of pesticide removal with selected vegetated plant and additive.

Keywords: pesticides, heavy metal, agricultural runoff, bioretention, mechanism removal, treatment train

Procedia PDF Downloads 144
12394 Drought Resilient Water Supply for Livelihood: Establishment of Groundwater Treatment Plant at Construction Sites in Taichung City

Authors: Shang-Hsin Ou, Yang-Chun Lin, Ke-Hao Cheng

Abstract:

The year 2021 marked a historic drought in Taiwan, posing unprecedented challenges due to record-low rainfall and inadequate reservoir storage. The central region experienced water scarcity, leading to the implementation of "Groundwater Utilization at Construction Sites" for drought-resilient livelihood water supply. This study focuses on the establishment process of temporary groundwater treatment plants at construction sites in Taichung City, serving as a reference for future emergency response and the utilization of construction site groundwater. To identify suitable sites for groundwater reuse projects, site selection operations were carried out based on relevant water quality regulations and assessment principles. Subsequently, the planning and design of temporary water treatment plants were conducted, considering the water quality, quantity, and on-site conditions of groundwater wells associated with construction projects. The study consolidates the major water treatment facilities at each site and addresses encountered challenges during the establishment process. Practical insights gained from operating temporary groundwater treatment plants are presented, including improvements related to stable water quality, water quantity, equipment operation, and hydraulic control. In light of possible future droughts, this study provides an outlook and recommendations to expedite and improve the setup of groundwater treatment plants at construction sites. This includes considering on-site water abstraction, treatment, and distribution conditions. The study's results aim to offer practical guidelines for effectively establishing and managing such treatment plants, while offering experiences and recommendations for other regions facing similar emergencies, water shortages, and drought situations. These endeavors contribute to ensuring sustainable water supply for drought-resilient livelihoods and maintaining societal stability.

Keywords: drought resilience, groundwater treatment, construction site, water supply

Procedia PDF Downloads 71
12393 Study and Conservation of Cultural and Natural Heritages with the Use of Laser Scanner and Processing System for 3D Modeling Spatial Data

Authors: Julia Desiree Velastegui Caceres, Luis Alejandro Velastegui Caceres, Oswaldo Padilla, Eduardo Kirby, Francisco Guerrero, Theofilos Toulkeridis

Abstract:

It is fundamental to conserve sites of natural and cultural heritage with any available technique or existing methodology of preservation in order to sustain them for the following generations. We propose a further skill to protect the actual view of such sites, in which with high technology instrumentation we are able to digitally preserve natural and cultural heritages applied in Ecuador. In this project the use of laser technology is presented for three-dimensional models, with high accuracy in a relatively short period of time. In Ecuador so far, there are not any records on the use and processing of data obtained by this new technological trend. The importance of the project is the description of the methodology of the laser scanner system using the Faro Laser Scanner Focus 3D 120, the method for 3D modeling of geospatial data and the development of virtual environments in the areas of Cultural and Natural Heritage. In order to inform users this trend in technology in which three-dimensional models are generated, the use of such tools has been developed to be able to be displayed in all kinds of digitally formats. The results of the obtained 3D models allows to demonstrate that this technology is extremely useful in these areas, but also indicating that each data campaign needs an individual slightly different proceeding starting with the data capture and processing to obtain finally the chosen virtual environments.

Keywords: laser scanner system, 3D model, cultural heritage, natural heritage

Procedia PDF Downloads 298
12392 A Study on Utilizing Temporary Water Treatment Facilities to Tackle Century-Long Drought and Emergency Water Supply

Authors: Yu-Che Cheng, Min-Lih Chang, Ke-Hao Cheng, Chuan-Cheng Wang

Abstract:

Taiwan is an island located along the southeastern coast of the Asian continent, located between Japan and the Philippines. It is surrounded by the sea on all sides. However, due to the presence of the Central Mountain Range, the rivers on the east and west coasts of Taiwan are relatively short. This geographical feature results in a phenomenon where, despite having rainfall that is 2.6 times the world average, 58.5% of the rainwater flows into the ocean. Moreover, approximately 80% of the annual rainfall occurs between May and October, leading to distinct wet and dry periods. To address these challenges, Taiwan relies on large reservoirs, storage ponds, and groundwater extraction for water resource allocation. It is necessary to construct water treatment facilities at suitable locations to provide the population with a stable and reliable water supply. In general, the construction of a new water treatment plant requires careful planning and evaluation. The process involves acquiring land and issuing contracts for construction in a sequential manner. With the increasing severity of global warming and climate change, there is a heightened risk of extreme hydrological events and severe water situations in the future. In cases of urgent water supply needs in a region, relying on traditional lengthy processes for constructing water treatment plants might not be sufficient to meet the urgent demand. Therefore, this study aims to explore the use of simplified water treatment procedures and the construction of rapid "temporary water treatment plants" to tackle the challenges posed by extreme climate conditions (such as a century-long drought) and situations where water treatment plant construction cannot keep up with the pace of water source development.

Keywords: temporary water treatment plant, emergency water supply, construction site groundwater, drought

Procedia PDF Downloads 74
12391 An Innovative Approach to Solve Thermal Comfort Problem Related to the 100m2 Houses in Erbil

Authors: Haval Sami Ali, Hassan Majeed Hassoon Aldelfi

Abstract:

Due to the rapid growth of Erbil population and the resulting shortage of residential buildings, individuals actively utilized 5x20 m plots for two bedroom residential houses. Consequently, poor and unhealthy ventilation comes about. In this paper, the authors developed an old Barajeel (Wind Catchers) approach for natural ventilation. Two Barajeels (Wind Catchers) are designed and located at both extreme ends of the built unit. The two wind catchers are made as inlet and outlet for the air movement where the rate of air changes at its best. To validate the usage of the wind catchers a CFD Software was used to simulate the operation of the wind catchers for natural ventilations for average wind speed of 2 m/s. The results show a positive solution to solve the problem of the cramped such built units. It can be concluded that such solutions can be deployed by the local Kurdistan authorities.

Keywords: wind catcher, ventilation, natural, air changes, Barajeel, Erbil

Procedia PDF Downloads 276
12390 Botulinum Toxin a in the Treatment of Late Facial Nerve Palsy Complications

Authors: Akulov M. A., Orlova O. R., Zaharov V. O., Tomskij A. A.

Abstract:

Introduction: One of the common postoperative complications of posterior cranial fossa (PCF) and cerebello-pontine angle tumor treatment is a facial nerve palsy, which leads to multiple and resistant to treatment impairments of mimic muscles structure and functions. After 4-6 months after facial nerve palsy with insufficient therapeutic intervention patients develop a postparalythic syndrome, which includes such symptoms as mimic muscle insufficiency, mimic muscle contractures, synkinesis and spontaneous muscular twitching. A novel method of treatment is the use of a recent local neuromuscular blocking agent– botulinum toxin A (BTA). Experience of BTA treatment enables an assumption that it can be successfully used in late facial nerve palsy complications to significantly increase quality of life of patients. Study aim. To evaluate the efficacy of botulinum toxin A (BTA) (Xeomin) treatment in patients with late facial nerve palsy complications. Patients and Methods: 31 patients aged 27-59 years 6 months after facial nerve palsy development were evaluated. All patients received conventional treatment, including massage, movement therapy etc. Facial nerve palsy developed after acoustic nerve tumor resection in 23 (74,2%) patients, petroclival meningioma resection – in 8 (25,8%) patients. The first group included 17 (54,8%) patients, receiving BT-therapy; the second group – 14 (45,2%) patients continuing conventional treatment. BT-injections were performed in synkinesis or contracture points 1-2 U on injured site and 2-4 U on healthy side (for symmetry). Facial nerve function was evaluated on 2 and 4 months of therapy according to House-Brackman scale. Pain syndrome alleviation was assessed on VAS. Results: At baseline all patients in the first and second groups demonstrated аpostparalytic syndrome. We observed a significant improvement in patients receiving BTA after only one month of treatment. Mean VAS score at baseline was 80,4±18,7 and 77,9±18,2 in the first and second group, respectively. In the first group after one month of treatment we observed a significant decrease of pain syndrome – mean VAS score was 44,7±10,2 (р<0,01), whereas in the second group VAS score was as high as 61,8±9,4 points (p>0,05). By the 3d month of treatment pain syndrome intensity continued to decrease in both groups, but, the first group demonstrated significantly better results; mean score was 8,2±3,1 and 31,8±4,6 in the first and second group, respectively (р<0,01). Total House-Brackman score at baseline was 3,67±0,16 in the first group and 3,74±0,19 in the second group. Treatment resulted in a significant symptom improvement in the first group, with no improvement in the second group. After 4 months of treatment House-Brockman score in the first group was 3,1-fold lower, than in the second group (р<0,05). Conclusion: Botulinum toxin injections decrease postparalytic syndrome symptoms in patients with facial nerve palsy.

Keywords: botulinum toxin, facial nerve palsy, postparalytic syndrome, synkinesis

Procedia PDF Downloads 288
12389 Preliminary Study on Using of Thermal Energy from Effluent Water for the SBR Process of RO

Authors: Gyeong-Sung Kim, In-soo Ahn, Yong Cho

Abstract:

SBR (Sequencing Batch Reactor) process is usually applied to membrane water treatment plants to treat its concentrated wastewater. The role of SBR process is to remove COD (Chemical Oxygen Demand) and NH3 from wastewater before discharging it outside of the water treatment plant using microorganism. Microorganism’s nitrification capability is influenced by water temperature because the nitrification rate of the concentrated wastewater becomes ‘zero’ as water temperature approach 0℃. Heating system is necessary to operate SBR in winter season even though the operating cost increase sharply. The operating cost of SBR at ‘D’ RO water treatment plant in Korea was 51.8 times higher in winter (October to March) compare to summer (April to September) season in 2014. Otherwise the effluent water temperature maintained around 8℃ constantly in winter. This study focuses on application heat pump system to recover the thermal energy from the effluent water of ‘D’ RO plant so that the operating cost will be reduced.

Keywords: water treatment, water thermal energy, energy saving, RO, SBR

Procedia PDF Downloads 507
12388 Treatment of Psoriasis through Thai Traditional Medicine

Authors: Boonsri Lertviriyachit

Abstract:

The objective of this research is to investigate the treatment of psoriasis through Thai traditional medicine in the selected areas of 2 east coast provinces; Samudprakarn Province and Chantaburi Province. The informants in this study were two famous and accepted Thai traditional doctors, who have more than 20 year experiences. Data were collected by in depth interviews and participant-observation method. The research instrument included unstructured interviews, camera, and cassette tape to collect data analyzed by descriptive statistics. The results revealed that the 2 Thai traditional doctors were 54 and 85 years old with 25 and 45 years of treatment experiences. The knowledge of Thai traditional medicine was transferred from generations to generations in the family. The learning process was through close observation as an apprentice with the experience ones and assisted them in collecting herbs and learning by handling real case in individual situations. Before being doctors, they had to take exam to get the Thai traditional medical certificate. Knowledge of being Thai traditional doctors included diagnosis and find to the suitable way of treatment. They have to look into disorder physical fundamental factors such as blood circulation, lymph, emotion, and food consumption habit. It is important that the treatment needs to focus on balancing the fundamental factors and to observe contraindication.

Keywords: Thai traditional medicine, psoriasis, Samudprakarn Province, Chantaburi Province

Procedia PDF Downloads 355
12387 A General Assessment of Varagavank Monastery in Van City

Authors: Muhammet Kurucu, Sahabettin Ozturk, Soner Guler

Abstract:

Varagavank monastery is one of the most important symbols of Van city. In time, because of it hosted sacred memories, Varagavank monastery has become a great place with additional churches and chapels. A large part of contemporary spaces in the main building of the Varagavank monastery are now under ground. In addition to this, many parts of this structure have been destroyed by humanity and natural disasters. In this study, present condition of the Varagavank monastery are observed and debated in detail.

Keywords: Van city, seven churches, chapel, natural disasters

Procedia PDF Downloads 278
12386 Sewage Sludge Management: A Case Study of Monrovia, Montserrado County, Liberia

Authors: Victor Emery David Jr, Md S. Hossain

Abstract:

Sewage sludge management has been a problem faced by most developing cities as in the case of Monrovia. The management of sewage sludge in Monrovia is still in its infant stage. The city is still struggling with poor sanitation, clogged pipes, shortage of septic tanks, lack of resources/human capacity, inadequate treatment facilities, open defecation, the absence of clear guidelines, etc. The rapid urban population growth of Monrovia has severely stressed Monrovia’s marginally functional urban WSS system caused by the civil conflict which led to break down in many sectors as well as infrastructure. The sewerage system which originally covered 17% of the population of Monrovia was down to serving about 7% because of bursts and blockages causing backflows in other areas. Prior to the Civil War, the average water production for Monrovia was about 68,000 m3/day but has now dropped to about 10,000 m3/day. Only small parts of Monrovia currently have direct access to the piped water supply while most areas depend on trucked water delivered to community collection points or household tanks, and/or on water from unprotected dug wells or hand pumps. There are only two functional treatment plants; The Fiamah Treatment plant and the White Plains Treatment Plant.

Keywords: Fiamah Treatment plant, management, Monrovia/Montserrado County, sewage, sludge

Procedia PDF Downloads 281
12385 The Effects of Therapy on Oxidative Stress, Ghrelin and Nesfatin-1 Levels in Iron Deficiency Anemia

Authors: Emrah Caylak

Abstract:

The aim of this study is to investigate the effect of iron therapy on oxidative stress, ghrelin, and nesfatin-1 levels in patients with iron deficiency anemia (IDA). Thirty patients who applied to Internal Medicine Clinic and were diagnosed with IDA and also 30 healthy individuals as a control were included in the study. The samples were collected from IDA patients before and after treatment. Differences in serum MDA, TAC, and plasma ghrelin, nesfatin-1 were analyzed among the three groups. Serum MDA and TAC levels were found higher and lower in IDA patients before the treatment group compared to the controls (p < 0.05). After the iron therapy, plasma acylated ghrelin and nesfatin-1 levels in IDA patients were found higher in IDA patients before the treatment group and controls (p < 0.05). Plasma ghrelin and nesfatin-1 levels increase with iron treatment in IDA patients. The iron therapy induces the synthesis of ghrelin and nesfatin-1 in human body, thus causes increased appetite and food intake.

Keywords: anemia, oxidative stress, ghrelin, nesfatin-1

Procedia PDF Downloads 138
12384 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment

Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan

Abstract:

MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.

Keywords: bio-electrochemical, nanowires, novel, wastewater

Procedia PDF Downloads 374
12383 Bacterio-Algal Microbial Fuel Cells for Sustainable Power Production, Wastewater Treatment, and Desalination

Authors: Ann D. Christy, Beenish Saba

Abstract:

The Microbial fuel Cell (MFC) is a successful integrated technology for power production and wastewater treatment. MFCs are recognized for their dual function, but research in this field is still ongoing to increase efficiency and power output. One such effort is successful integration of phototrophic and autotrophic microorganisms to create bacterio-algal MFCs for sustainable electricity production along with wastewater treatment and algal biomass production. An MFC is typically configured with an anaerobic anodic chamber containing exoelectrogenic microorganisms separated by a cation exchange membrane from an adjacent aerobic cathodic chamber. The two electrodes are connected by an external circuit. This conventional MFC can be converted into a phototrophic MFC by introducing photosynthetic microorganisms into the cathode chamber. This study examines adding a third desalination chamber to a two-chamber bacterio-algal MFC. Successful results have been observed from these three-chamber MFCs demonstrating wastewater treatment in the anodic chamber, phototrophic algal growth in the cathodic chamber, and desalination in the middle chamber. The present article will summarize successful results of the bacterio-algal fuel cells and offer insights about the mechanisms involved. Tables summarizing the input substrate along with optimized operational conditions and output performance in terms of power production and efficiencies of water and wastewater treatment will be presented. The negative impacts and challenges will be discussed, along with possible future research directions. Results suggest that the three chamber bacterio-algal desalination cell has potential as a feasible technology for power production, wastewater treatment and desalination, but it needs further investigation under optimized conditions.

Keywords: bacterio-algal MFC, three chamber, microbial fuel cell, wastewater treatment and desalination

Procedia PDF Downloads 353
12382 Statistical Analysis of Interferon-γ for the Effectiveness of an Anti-Tuberculous Treatment

Authors: Shishen Xie, Yingda L. Xie

Abstract:

Tuberculosis (TB) is a potentially serious infectious disease that remains a health concern. The Interferon Gamma Release Assay (IGRA) is a blood test to find out if an individual is tuberculous positive or negative. This study applies statistical analysis to the clinical data of interferon-gamma levels of seventy-three subjects who diagnosed pulmonary TB in an anti-tuberculous treatment. Data analysis is performed to determine if there is a significant decline in interferon-gamma levels for the subjects during a period of six months, and to infer if the anti-tuberculous treatment is effective.

Keywords: data analysis, interferon gamma release assay, statistical methods, tuberculosis infection

Procedia PDF Downloads 297
12381 Growing Evaluation Process in Chamaedorea Linearis with Humus from Biosolids of the Wastewater Treatment Plant, Nueva Granada Military University Cajica

Authors: J. Gonzalez, P. Jimenez, C. Isaza

Abstract:

Palms have different characteristics that make them vulnerable; that is the case of the Chamaedorea linearis, with the presence of solitary stems of small diameter and medium leaves, culturally harvested, and in religious festivities used. Additionally, they present a weak apical meristem as the only emergency point, slow development and growth, and an affectation due to the high rate of deforestation in Colombia. Propagation of this species can improve the pressure on wild populations and help their survival in the environment. In this study was used in 177 plants biosolids humus from the Wastewater Treatment Plant (WWTP), located at the UMNG Campus Cajica (Cundinamarca, Colombia). The experiment used a control and two treatments with 10% and 20% of humus. During the process, the variables evaluated were number of leaves, percentage of chlorophyll, stem length, and estimated leaf area. The data set were taking during 14 weeks before the reproductive maturity, evidencing that the most representative development of the palms was in the treatment of 20%, plants in this treatment presented major number of leaves, larger stems, a high quantity of chlorophyll, and was a first treatment that present pinnate leaves them represent an important point in maturity process. The research gives an opportunity to improve times of growth in another species of palms and plants (Product result from INV ING 2986 UMNG).

Keywords: biosolids, humus, growth, palms, wastewater treatment plant, WWTP

Procedia PDF Downloads 115
12380 Economic Cost of Malaria: A Threat to Household Income in Nigeria

Authors: Nsikan Affiah, Kayode Osungbade, Williams Uzoma

Abstract:

Malaria remains one of the major killers of humans worldwide, threatening the lives of more than one-third of the world’s population. Some people refers it to; a disease of poverty because it contributes towards national poverty through its impact on foreign direct investment, tourism, labour productivity, and trade. At the micro level, it may cause poverty through spending on health care, income losses, and premature deaths. Unfortunately, malaria is a disease that affects both low-income household and its high-income counterpart, but low-income households are still at greater risk because significant part of the available monthly income is dedicated to various preventive and treatment measures. The objective of this study is to estimate direct and indirect cost of malaria treatment in households in a section of South-South Region (Akwa Ibom State) of Nigeria. A cross-sectional study of Six Hundred and Forty (640) heads of households or any adult representative of households in three local government areas of Akwa Ibom State, Nigeria from May 1-31, 2015 were ascertained through interviewer-administered questionnaire adapted from Nigerian Malaria Indicator Survey Report. The clustering technique was used to select 640 households with the help of Primary Health Care (PHC) house numbering system. Using exchange rate of 197 Naira/USD, result shows that direct cost of malaria treatment was 8,894.44 USD while the indirect cost of malaria treatment was 11,012.81 USD. Total cost of treatment made up of 44.7% direct cost and 55.3% indirect cost, with average direct cost of malaria treatment per household estimated at 20.6 USD and the average indirect cost of treatment per household estimated at 25.1 USD. Average total cost for each episode (888) of malaria was estimated at 22.4 USD. While at household level, the average total cost was estimated at 45.5 USD. From the average total cost, low-income households would spend 36% of monthly household income on treating malaria and the impact could be said to be catastrophic, compared to high-income households where only 1.2% of monthly household income is spent on malaria treatment. It could be concluded that the cost of malaria treatment is well beyond the means of households and given the reality of repeated bouts of malaria and its contribution to the impoverishment of households, there is a need for urgent action.

Keywords: direct cost, indirect cost, low income households, malaria

Procedia PDF Downloads 246
12379 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy

Authors: Shiva Shakori Poshteh

Abstract:

Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.

Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery

Procedia PDF Downloads 64
12378 Suitability of Alternative Insulating Fluid for Power Transformer: A Laboratory Investigation

Authors: S. N. Deepa, A. D. Srinivasan, K. T. Veeramanju, R. Sandeep Kumar, Ashwini Mathapati

Abstract:

Power transformer is a vital element in a power system as it continuously regulates power flow, maintaining good voltage regulation. The working of transformer much depends on the oil insulation, the oil insulation also decides the aging of transformer and hence its reliability. The mineral oil based liquid insulation is globally accepted for power transformer insulation; however it is potentially hazardous due to its non-biodegradability. In this work efficient alternative biodegradable insulating fluid is presented as a replacement to conventional mineral oil. Dielectric tests are performed as distinct alternating fluid to evaluate the suitability for transformer insulation. The selection of the distinct natural esters for an insulation system is carried out by the laboratory investigation of Breakdown voltage, Oxidation stability, Dissipation factor, Permittivity, Viscosity, Flash and Fire point. It is proposed to study and characterize the properties of natural esters to be used in power transformer. Therefore for the investigation of the dielectric behavior rice bran oil, sesame oil, and sunflower oil are considered for the study. The investigated results have been compared with the mineral oil to validate the dielectric behavior of natural esters.

Keywords: alternative insulating fluid, dielectric properties, natural esters, power transformers

Procedia PDF Downloads 134
12377 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop

Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares

Abstract:

Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.

Keywords: agriculture, composting, soil, sugar beet lime, wastewater

Procedia PDF Downloads 316
12376 An Experimental Investigation on Banana and Pineapple Natural Fibers Reinforced with Polypropylene Composite by Impact Test and SEM Analysis

Authors: D. Karibasavaraja, Ramesh M.R., Sufiyan Ahmed, Noyonika M.R., Sameeksha A. V., Mamatha J., Samiksha S. Urs

Abstract:

This research paper gives an overview of the experimental analysis of natural fibers with polymer composite. The whole world is concerned about conserving the environment. Henceforth, the demand for natural and decomposable materials is increasing. The application of natural fibers is widely used in aerospace for manufacturing aircraft bodies, and ship construction in navy fields. Based on the literature review, researchers and scientists are replacing synthetic fibers with natural fibers. The selection of these fibers mainly depends on lightweight, easily available, and economical and has its own physical and chemical properties and many other properties that make them a fine quality fiber. The pineapple fiber has desirable properties of good mechanical strength, high cellulose content, and fiber length. Hybrid composite was prepared using different proportions of pineapple fiber and banana fiber, and their ratios were varied in 90% polypropylene mixed with 5% banana fiber and 5% pineapple fiber, 85% polypropylene mixed with 7.5% banana fiber and 7.5% pineapple fiber and 80% polypropylene mixed with 10% banana fiber and 10% pineapple fiber. By impact experimental analysis, we concluded that the combination of 90% polypropylene and 5% banana fiber and 5% pineapple fiber exhibits a higher toughness value with mechanical strength. We also conducted scanning electron microscopy (SEM) analysis which showed better fiber orientation bonding between the banana and pineapple fibers with polypropylene composites. The main aim of the present research is to evaluate the properties of pineapple fiber and banana fiber reinforced with hybrid polypropylene composites.

Keywords: toughness, fracture, impact strength, banana fibers, pineapple fibers, tensile strength, SEM analysis

Procedia PDF Downloads 138
12375 Enhance Biogas Production by Enzymatic Pre-Treatment from Palm Oil Mill Effluent (POME)

Authors: M. S. Tajul Islam, Md. Zahangir Alam

Abstract:

To enhance biogas production through anaerobic digestion, the application of various type of pre-treatment method has some limitations in terms of sustainable environmental management. Many studies on pretreatments especially chemical and physical processes are carried out to evaluate the anaerobic digestion for enhanced biogas production. Among the pretreatment methods acid and alkali pre-treatments gained the highest importance. Previous studies have showed that although acid and alkali pretreatment has significant effect on degradation of biomass, these methods have some negative impact on environment due to their hazard in nature while enzymatic pre-treatment is environmentally friendly. One of the constrains to use of enzyme in pretreatment process for biogas production is high cost which is currently focused to reduce cost through fermentation of waste-based media. As such palm oil mill effluent (POME) as an abundant resource generated during palm oil processing at mill is being used a potential fermentation media for enzyme production. This low cost of enzyme could be an alternative to biogas pretreatment process. This review is to focus direct application of enzyme as enzymatic pre-treatment on POME to enhanced production of biogas.

Keywords: POME, enzymatic pre-treatment, biogas, lignocellulosic biomass, anaerobic digestion

Procedia PDF Downloads 539
12374 Evaluation of Heat of Hydration and Strength Development in Natural Pozzolan-Incorporated Cement from the Gulf Region

Authors: S. Al-Fadala, J. Chakkamalayath, S. Al-Bahar, A. Al-Aibani, S. Ahmed

Abstract:

Globally, the use of pozzolan in blended cement is gaining great interest due to the desirable effect of pozzolan from the environmental and energy conservation standpoint and the technical benefits they provide to the performance of cement. The deterioration of concrete structures in the marine environment and extreme climates demand the use of pozzolana cement in concrete construction in the Gulf region. Also, natural sources of cement clinker materials are limited in the Gulf region, and cement industry imports the raw materials for the production of Portland cement, resulting in an increase in the greenhouse gas effect due to the CO₂ emissions generated from transportation. Even though the Gulf region has vast deposits of natural pozzolana, it is not explored properly for the production of high performance concrete. Hence, an optimum use of regionally available natural pozzolana for the production of blended cement can result in sustainable construction. This paper investigates the effect of incorporating natural pozzolan sourced from the Gulf region on the performance of blended cement in terms of heat evolution and strength development. For this purpose, a locally produced Ordinary Portland Cement (OPC) and pozzolan-incorporated blended cements containing different amounts of natural pozzolan (volcanic ash) were prepared on laboratory scale. The strength development and heat evolution were measured and quantified. Promising results of strength development were obtained for blends with the percentages of Volcanic Ash (VA) replacement varying from 10 to 30%. Results showed that the heat of hydration decreased with increase in percentage of replacement of OPC with VA, indicating increased retardation in hydration due to the addition of VA. This property could be used in mass concreting in which a reduction in heat of hydration is required to reduce cracking in concrete, especially in hot weather concreting.

Keywords: blended cement, hot weather, hydration, volcanic ash

Procedia PDF Downloads 317
12373 Influence of Natural Gum on Curcumin Supersaturationin Gastrointestinal Fluids

Authors: Patcharawalai Jaisamut, Kamonthip Wiwattanawongsa, Ruedeekorn Wiwattanapatapee

Abstract:

Supersaturation of drugs in the gastrointestinal tract is one approach to increase the absorption of poorly water-soluble drugs. The stabilization of a supersaturated state was achieved by adding precipitation inhibitors that may act through a variety of mechanisms.In this study, the effect of the natural gums, acacia, gelatin, pectin and tragacanth on curcumin supersaturation in simulated gastric fluid (SGF) (pH 1.2), fasted state simulated gastric fluid (FaSSGF) (pH 1.6), and simulated intestinal fluid (SIF) (pH 6.8)was investigated. The results indicated that all natural gums significantly increased the curcum insolubility (about 1.2-6-fold)when compared to the absence of gum, and assisted in maintaining the supersaturated drug solution. Among the tested gums, pectin at 3% w/w was the best precipitation inhibitor with a significant increase in the degree of supersaturation about 3-fold in SGF, 2.4-fold in FaSSGF and 2-fold in SIF.

Keywords: curcumin, solubility, supersaturation, precipitation inhibitor

Procedia PDF Downloads 342
12372 Statistical Analysis of Natural Images after Applying ICA and ISA

Authors: Peyman Sheikholharam Mashhadi

Abstract:

Difficulties in analyzing real world images in classical image processing and machine vision framework have motivated researchers towards considering the biology-based vision. It is a common belief that mammalian visual cortex has been adapted to the statistics of the real world images through the evolution process. There are two well-known successful models of mammalian visual cortical cells: Independent Component Analysis (ICA) and Independent Subspace Analysis (ISA). In this paper, we statistically analyze the dependencies which remain in the components after applying these models to the natural images. Also, we investigate the response of feature detectors to gratings with various parameters in order to find optimal parameters of the feature detectors. Finally, the selectiveness of feature detectors to phase, in both models is considered.

Keywords: statistics, independent component analysis, independent subspace analysis, phase, natural images

Procedia PDF Downloads 336
12371 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment

Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos

Abstract:

Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.

Keywords: acid pretreatment, alginate, brown seaweed, microwave-assisted extraction, response surface methodology

Procedia PDF Downloads 364