Search results for: metal oxide nanoparticles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4603

Search results for: metal oxide nanoparticles

3913 La0.80Ag0.15MnO3 Magnetic Nanoparticles for Self-Controlled Magnetic Fluid Hyperthermia

Authors: Marian Mihalik, Kornel Csach, Martin Kovalik, Matúš Mihalik, Martina Kubovčíková, Maria Zentková, Martin Vavra, Vladimír Girman, Jaroslav Briančin, Marija Perovic, Marija Boškovic, Magdalena Fitta, Robert Pelka

Abstract:

Current nanomaterials for use in biomedicine are based mainly on iron oxides and on present knowledge on magnetic nanostructures. Manganites can represent another material which can be used optionally. Manganites and their unique electronic properties have been extensively studied in the last decades not only due to fundamental interest but to possible applications of colossal magnetoresistance, magnetocaloric effect, and ferroelectric properties. It was found that the oxygen-reduction reaction on perovskite oxide is intimately connected with metal ion e.g., orbital occupation. The effect of oxygen deviation from the stoichiometric composition on crystal structure was studied very carefully by many authors on LaMnO₃. Depending on oxygen content, the crystal structure changes from orthorhombic one to rhombohedric for oxygen content 3.1. In the case of hole-doped manganites, the change from the orthorhombic crystal structure, which is typical for La1-xCaxMnO3 based manganites, to the rhombohedric crystal structure (La1-xMxMnO₃ where M = K, Ag, and Sr based materials) results in an enormous increase of the Curie temperature. In our paper, we study the effect of oxygen content on crystal structure, thermal, and magnetic properties (including magnetocaloric effect) of La1-xAgxMnO₃nano particle system. The content of oxygen in samples was tuned by heat treatment in different thermal regimes and in various environment (air, oxygen, argon). Water nanosuspensions based on La0.80Ag0.15MnO₃ magnetic particles with the Curie temperature of about 43oC were prepared by two different approaches. First, by using a laboratory circulation mill for milling of powder in the presence of sodium dodecyl sulphate (SDS) and subsequent centrifugation. Second nanosuspension was prepared using an agate bowl, etching in citric acid and HNO3, ultrasound homogeniser, centrifugation, and dextran 40 kDA or 15 kDA as surfactant. Electrostatic stabilisation obtained by the first approach did not offer long term kinetic and aggregation colloidal stability and was unable to compensate for attractive forces between particles under a magnetic field. By the second approach, we prepared suspension oversaturated by dextran 40 kDA for steric stabilisation, with evidence of the presence of superparamagnetic behaviour. Low concentration of nanoparticles and not ideal coverage of nanoparticles impacting the stability of ferrofluids was the disadvantage of this approach. Strong steric stabilisation was observable at alcaic conditions under pH = ~10. Application of dextran 15 kDA leads to relatively stable ferrofluid with pH around physiological conditions, but desegregation of powder by HNO₃ was not effective enough, and the average size of fragments was to large of about 150 nm, and we did not see any signature of superparamagnetic behaviour. The prepared ferrofluids were characterised by scanning and transition microscope method, thermogravimetry, magnetization, and AC susceptibility measurements. Specific Absorption Rate measurements were undertaken on powder as well on ferrofluids in order to estimate the potential application of La₀.₈₀Ag₀.₁₅MnO₃ magnetic particles based ferrofluid for hyperthermia. Our complex study contains an investigation of biocompatibility and potential biohazard of this material.

Keywords: manganites, magnetic nanoparticles, oxygen content, magnetic phase transition, magnetocaloric effect, ferrofluid, hyperthermia

Procedia PDF Downloads 95
3912 Design of RF Generator and Its Testing in Heating of Nickel Ferrite Nanoparticles

Authors: D. Suman, M. Venkateshwara Rao

Abstract:

Cancer is a disease caused by an uncontrolled division of abnormal cells in a part of the body, which is affecting millions of people leading to death. Even though there have been tremendous developments taken place over the last few decades the effective therapy for cancer is still not a reality. The existing techniques of cancer therapy are chemotherapy and radio therapy which are having their limitations in terms of the side effects, patient discomfort, radiation hazards and the localization of treatment. This paper describes a novel method for cancer therapy by using RF-hyperthermia application of nanoparticles. We have synthesized ferromagnetic nanoparticles and characterized by using XRD and TEM. These nanoparticles after the biocompatibility studies will be injected in to the body with a suitable tracer element having affinity to the specific tumor site. When RF energy is applied to the nanoparticles at the tumor site it produces heat of excess room temperature and nearly 41-45°C is sufficient to kill the tumor cells. We have designed a RF source generator provided with a temperature feedback controller to control the radiation induced temperature of the tumor site. The temperature control is achieved through a negative feedback mechanism of the thermocouple and a relay connected to the power source of the RF generator. This method has advantages in terms of its effect like localized therapy, less radiation, and no side effects. It has several challenges in designing the RF source provided with coils suitable for the tumour site, biocompatibility of the nanomaterials, cooling system design for the RF coil. If we can overcome these challenges this method will be a huge benefit for the society.

Keywords: hyperthermia, cancer therapy, RF source generator, nanoparticles

Procedia PDF Downloads 465
3911 Unconfined Laminar Nanofluid Flow and Heat Transfer around a Square Cylinder with an Angle of Incidence

Authors: Rafik Bouakkaz

Abstract:

A finite-volume method simulation is used to investigate two dimensional unsteady flow of nanofluids and heat transfer characteristics past a square cylinder inclined with respect to the main flow in the laminar regime. The computations are carried out of nanoparticle volume fractions varying from 0 ≤ ∅ ≤ 5% for an inclination angle in the range 0° ≤ δ ≤ 45° at a Reynolds number of 100. The variation of stream line and isotherm patterns are presented for the above range of conditions. Also, it is noticed that the addition of nanoparticles enhances the heat transfer. Hence, the local Nusselt number is found to increase with increasing value of the concentration of nanoparticles for the fixed value of the inclination angle.

Keywords: copper nanoparticles, heat transfer, square cylinder, inclination angle

Procedia PDF Downloads 193
3910 Vitamin C Status and Nitric Oxide in Buffalo Ovarian Follicular Fluid in Relation to Seasonal Heat Stress and Phase of Estrous Cycle

Authors: H. F. Hozyen, A. M. Abo-El Maaty

Abstract:

Heat stress is a recognized problem causing huge economic losses to the buffalo breeders as well as dairy industry. The aim of the present work was to study the pattern of vitamin C and nitric oxide in follicular fluid of buffalo during different seasons of the year considering phase of estrous cycle. This study was conducted on 208 cyclic buffaloes slaughtered at Al-Qaliobia governorate, Egypt, over one year. The obtained results revealed that vitamin C in follicular fluid was significantly lower in summer than winter and spring. On the other hand, nitric oxide (NO) was significantly higher in summer and autumn than winter and spring. Both vitamin C and NO did not differ significantly between follicular and luteal phases. In conclusion, the present study revealed that alterations in concentrations of follicular fluid vitamin C and NO that occur in summer could be related to low summer fertility in buffalo.

Keywords: Buffalo, follicular fluid, vitamin C, nitric oxide, heat stress

Procedia PDF Downloads 334
3909 Carbon Nanotubes Based Porous Framework for Filtration Applications Using Industrial Grinding Waste

Authors: V. J. Pillewan, D. N. Raut, K. N. Patil, D. K. Shinde

Abstract:

Forging, milling, turning, grinding and shaping etc. are the various industrial manufacturing processes which generate the metal waste. Grinding is extensively used in the finishing operation. The waste generated contains significant impurities apart from the metal particles. Due to these significant impurities, it becomes difficult to process and gets usually dumped in the landfills which create environmental problems. Therefore, it becomes essential to reuse metal waste to create value added products. Powder injection molding process is used for producing the porous metal matrix framework. This paper discusses the presented design of the porous framework to be used for the liquid filter application. Different parameters are optimized to obtain the better strength framework with variable porosity. Carbon nanotubes are used as reinforcing materials to enhance the strength of the metal matrix framework.

Keywords: grinding waste, powder injection molding (PIM), carbon nanotubes (CNTs), matrix composites (MMCs)

Procedia PDF Downloads 309
3908 Substrate Coupling in Millimeter Wave Frequencies

Authors: Vasileios Gerakis, Fontounasios Christos, Alkis Hatzopoulos

Abstract:

A study of the impact of metal guard rings on the coupling between two square metal pads is presented. The structure is designed over a bulk silicon substrate with epitaxial layer, so the coupling through the substrate is also involved. A lightly doped profile is adopted and is simulated by means of an electromagnetic simulator for various pad distances and different metal layers, assuming a 65 nm bulk CMOS technology. The impact of various guard ring design (geometrical) parameters is examined. Furthermore, the increase of isolation (resulting in reduction of the noise coupling) between the pads by cutting the ring, or by using multiple rings, is also analyzed. S parameters are used to compare the various structures.

Keywords: guard rings, metal pad coupling, millimeter wave frequencies, substrate noise,

Procedia PDF Downloads 544
3907 Theoretical Investigation of Gas Adsorption on Metal- Graphene Surface

Authors: Fatemeh Safdari, Amirnaser Shamkhali, Gholamabbas Parsafar

Abstract:

Carbon nanostructures are of great importance in academic research and industry, which can be mentioned to chemical sensors, catalytic processes, pharmaceutical and environmental issues. Common point in all of these applications is the occurrence of adsorption of molecules on these structures. Important carbon nanostructures in this case are mainly nanotubes and graphene. To modify pure graphene, recently, many experimental and theoretical studies have carried out to investigate of metal adsorption on graphene. In this work, the adsorption of CO molecules on pure graphene and on metal adatom on graphene surface has been simulated based on density functional theory (DFT). All calculations were performed by PBE functional and Troullier-Martins pseudopotentials. Density of states (DOS) for graphene-CO, graphen and CO around the Fermi energy has been moved and very small mixing occured which implies the physisorption of CO on the bare graphen surface. While, the results have showed that CO adsorption on transition-metal adatom on graphene surface is chemisorption.

Keywords: adsorption, density functional theory, graphene, metal adatom

Procedia PDF Downloads 351
3906 Electromagnetic Interface Shielding of Graphene Oxide–Carbon Nanotube Hybrid ABS Composites

Authors: Jeevan Jyoti, Bhanu Pratap Singh, S. R. Dhakate

Abstract:

In the present study, multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) were synthesized by chemical vapor deposition and Improved Hummer’s method, respectively and their composite with acrylonitrile butadiene styrene (ABS) were prepared by twin screw co rotating extrusion technique. The electromagnetic interference (EMI) shielding effectiveness of graphene oxide carbon nanotube (GCNTs) hybrid composites was investigated and the results were compared with EMI shielding of carbon nanotube (CNTs) and reduced graphene oxide (RGO) in the frequency range of 12.4-18 GHz (Ku-band). The experimental results indicate that the EMI shielding effectiveness of these composites is achieved up to –21 dB for 10 wt. % loading of GCNT loading. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. The main reason for such a high improved shielding effectiveness has been attributed to the significant improvement in the electrical conductivity of the composites. The electrical conductivity of these GCNT/ABS composites was increased from 10-13 S/cm to 10-7 S/cm showing the improvement of the 6 order of the magnitude. Scanning electron microscopic (SEM) and high resolution transmission electron microscopic (HRTEM) studies showed that the GCNTs were uniformly dispersed in the ABS polymer matrix. GCNTs form a network throughout the polymer matrix and promote the reinforcement.

Keywords: ABS, EMI shielding, multiwalled carbon nanotubes, reduced graphene oxide, graphene, oxide-carbon nanotube (GCNTs), twin screw extruder, multiwall carbon nanotube, electrical conductivity

Procedia PDF Downloads 364
3905 Synthesis of Green Silver Nanoparticles with Aqueous Extract of Glycyrrhiza glabra and Its Characterization

Authors: Mandeep Kataria, Ankita Thakur

Abstract:

Glycyrrhiza glabra grows in the sub- tropical and warm temperate regions of the world, in Mediterranean countries and China, America, Europe, Asia and Australia. It grows in areas with sunny, dry and hot climates. It has numerous medicinal properties like it is used to cure Peptic Ulcers, Canker sores, Eczema, Indigestion and Upper Respiratory Infections. Biosynthetic methods such as plant extract have emerged as a simple and viable alternative to more complex chemical synthetic procedures to obtain nanomaterials. Extract from plant may act both as reducing and capping agents in silver nanoparticles synthesis. In the present work, Green Silver nanoparticles were successfully formulated from bioreduction of silver nitrate solutions using Glycyrrhiza glabra root extract. These Green Silver nanoparticles have been appropriately characterized using Visible spectroscopy, colour change. The Antimicrobial activity was done by Agar disc diffusion assay. AgNPs were developed by using aqueous root extract of Glycyrrhiza glabra, which acts as a reducing as well as stabilizing agent. The green synthetic method is a fast, low cost and eco-friendly process in the field of nanotechnology. The study revealed that the green-synthesized silver nanoparticle provides a promising approach for antimicrobial activity.

Keywords: Glycyrrhiza glabra, nanoparticles, antimicrobial activity, aqueous extract

Procedia PDF Downloads 136
3904 Characterization of CuO Incorporated CMOS Dielectric for Fast Switching System

Authors: Nissar Mohammad Karim, Norhayati Soin

Abstract:

To ensure fast switching in high-K incorporated Complementary Metal Oxide Semiconductor (CMOS) transistors, the results on the basis of d (NBTI) by incorporating SiO2 dielectric with aged samples of CuO sol-gels have been reported. Precursor ageing has been carried out for 4 days. The minimum obtained refractive index is 1.0099 which was found after 3 hours of adhesive UV curing. Obtaining a low refractive index exhibits a low dielectric constant and hence a faster system.

Keywords: refractive index, Sol-Gel, precursor aging, aging

Procedia PDF Downloads 479
3903 Lipid Nanoparticles for Spironolactone Delivery: Physicochemical Characteristics, Stability and Invitro Release

Authors: H. R. Kelidari, M. Saeedi, J. Akbari, K. Morteza-Semnani, H. Valizadeh

Abstract:

Spironolactoe (SP) a synthetic steroid diuretic is a poorly water-soluble drug with a low and variable oral bioavailability. Regarding to the good solubility of SP in lipid materials, SP loaded Solid lipid nanoparticles (SP-SLNs) and nanostructured lipid carrier (SP-SLNs) were thus prepared in this work for accelerating dissolution of this drug. The SP loaded NLC with stearic acid (SA) as solid lipid and different Oleic Acid (OA) as liquid lipid content and SLN without OA were prepared by probe ultrasonication method. With increasing the percentage of OA from 0 to 30 wt% in SLN/NLC, the average size and zeta potential of nanoparticles felled down and entrapment efficiency (EE %) rose dramatically. The obtained micrograph particles showed pronounced spherical shape. Differential Scanning Calorimeter (DSC) measurements indicated that the presence of OA reduced the melting temperature and melting enthalpy of solid lipid in NLC structure. The results reflected good long-term stability of the nanoparticles and the measurements show that the particle size remains lower in NLC compare to SLN formulations, 6 months after production. Dissolution of SP-SLN and SP-NLC was about 5.1 and 7.2 times faster than raw drugs in 120 min respectively. These results indicated that the SP loaded NLC containing 70:30 solid lipid to liquid lipid ratio is a suitable carrier of SP with improved drug EE and steady drug release properties.

Keywords: drug release, lipid nanoparticles, spironolactone, stability

Procedia PDF Downloads 336
3902 Increased Retention of Nanoparticle by Small Molecule Inhibitor in Cancer Cells

Authors: Neha Singh

Abstract:

Background: Nowadays, the nanoparticle is gaining unexceptional attention in targeted drug delivery. But before proceeding to this episode of accomplishment, the journey and closure of these nanoparticles inside the cells should be disentangle. Being foreign for the cells, nanoparticles will easily getcleared off without any effective outcome. As the cancer cells withhold these nanoparticles for a longer period of time, more will be the drug’s effect. Chlorpromazine is a cationic amphiphilic drug which is believed to inhibit clathrin-coated pit formation by a reversible translocation of clathrin and its adapter proteins from the plasma membrane to intracellular vesicles. Chlorpromazine has a role in increasing the retention of nanoparticles in cancer cells. The mechanism of action how this small molecule increases the retention of nanoparticles is still uncovered. Method: Polymeric nanoparticle (PLGA) with Cyanine3.5 dye were synthesized by solvent evaporation method and characterized for size and zeta potential. FTIR was also done. Pulse and chase studies with and without inhibitor were done to check the retention of nanoparticle using fluorescence microscopy. Mean fluorescence intensity was measured by ImageJ software. Results: Increased retention of nanoparticle with inhibitor was observed in both pulse and chase studies. Conclusion: Our results demonstrate that by repurposing these small molecule inhibitor, we can increase the retention of nanoparticle at the targeted site.

Keywords: nanoparticle, endocytosis, clathrin inhibitor, cancer cell

Procedia PDF Downloads 110
3901 Effect of Nano-Copper Oxide Synthesized by Solution-Based Chemical Precipitation Method on Antibacterial Polyester Nanocopper Oxide Composite

Authors: Jordy Herfandi, Faris Naufal, Anne Zulfia Syahrial

Abstract:

Antibacterial materials have become future textile materials due to the escalation of people’s awareness regarding the importance of maintaining health. Textile materials with antibacterial properties are examples in application which has positive results in various aspects. In this research polyester nano-copper oxide composite with nanoparticle is synthesized by solution-based chemical precipitation method from Cu(NO3)2 solution. Parameters such as precursor concentration is varied to determine which composition would result in effective properties of antibacterial composite. The antibacterial property is observed using disk diffusion method and SEM observation is conducted on each specimen. The composites produced are able to inhibit the growth of both positive gram bacteria (i.e. S. aureus) and negative gram bacteria (i.e. E. coli), thus, highly capable of helping to prevent the spread of disease.

Keywords: copper oxide nanoparticle, antibacterial, solution-based chemical precipitation, polyester composite

Procedia PDF Downloads 395
3900 Magnetite Nanoparticles Immobilized Pectinase: Preparation, Characterization and Application for the Fruit Juices Clarification

Authors: Leila Mosafa, Majid Moghadam, Mohammad Shahedi

Abstract:

In this work, pectinase was immobilized on the surface of silica-coated magnetite nanoparticles via covalent attachment. The magnetite-immobilized enzyme was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and vibrating sample magnetometry techniques. Response surface methodology using Minitab Software was applied for statistical designing of operating conditions in order to immobilize pectinase on magnetic nanoparticles. The optimal conditions were obtained at 30°C and pH 5.5 with 42.97 µl pectinase for 2 h. The immobilization yield was 50.6% at optimized conditions. Compared to the free pectinase, the immobilized pectinase was found to exhibit enhanced enzyme activity, better tolerance to the variation of pH and temperature, and improved storage stability. Both free and immobilized samples reduced the viscosity of apple juice from 1.12 to 0.88 and 0.92 mm2s-1, respectively, after 30 min at their optimum temperature. Furthermore, the immobilized enzyme could be reused six consecutive cycles and the efficiency loss in viscosity reduction was found to be only 8.16%.

Keywords: magnetite nanoparticles, pectinase enzyme, immobilization, juice clarification, enzyme activity

Procedia PDF Downloads 411
3899 Toxicity Analysis of Metal Coating Industry Wastewaters by Phytotoxicity Method

Authors: Sukru Dursun, Zeynep Cansu Ayturan, Mostafa Maroof

Abstract:

Metal coating which is important method used for protecting metals against oxidation and corrosion, decreasing friction, protecting metals from chemicals, easing cleaning of the metals. There are several methods used for metal coating such as hot-dip galvanizing, thermal spraying, electroplating and sherardizing. Method which will be used for metal coating depends on the type of metal. The materials mostly used for coating are zinc, nickel, brass, chrome, gold, cadmium, copper, brass, and silver. Within these materials, chrome ion has significant negative impacts on human, other living organisms and environment. Moreover, especially on human chrome may cause lung cancer, stomach ulcer, kidney and liver function disorders and death. Therefore, wastewaters of metal coating industry including chrome should be treated very carefully. In this study, wastewater containing chrome produced by metal coating industry was analysed with phytotoxicity method that is based on measuring the reaction of some plant species against different concentrations of chrome solution. Main plants used for phytotoxicity tests are Lepidium sativum and Lemna minor. Owing to phytotoxicity test, assessing the negative effects of chrome which may harm plants and offering more accurate wastewater treatment techniques against chromium wastewater is possible. Furthermore, the results taken from phytotoxicity tests were analysed with respect to their variance and their importance against different concentrations of chrome solution were determined.

Keywords: metal coating wastewater, chrome, phytotoxicity, Lepidium sativum, Lemna minor

Procedia PDF Downloads 327
3898 Equilibrium, Kinetics, and Thermodynamic Studies on Heavy Metal Biosorption by Trichoderma Species

Authors: Sobia Mushtaq, Firdaus E. Bareen, Asma Tayyeb

Abstract:

This study conducted to investigate the metal biosorption potential of indigenous Trichoderma species (T. harzianum KS05T01, T. longibrachiatum KS09T03, Trichoderma sp KS17T09., T. viridi KS17T011, T. atrobruneo KS21T014, and T. citrinoviride) that have been isolated from contaminated soil of Kasur Tannery Waste Management Agency. The effect of different biosorption parameters as initial metal ion concentration, pH, contact time , and temperature of incubation was investigated on the biosorption potential of these species. The metal removal efficiency and (E%) and metal uptake capacity (mg/g) increased along with the increase of initial metal concentration in media. The Trichoderma species can tolerate and survive under heavy metal stress up to 800mg/L. Among the two isotherm models were applied on the biosorption data, Langmuir isotherm model and Freundlich isotherm model, maximum correlation coefficients values (R 2 ) of 1was found for Langmuir model, which showed the better fitted model for the Trichoderma biosorption. The metal biosorption was increased with the increase of temperature and pH of the media. The maximum biosorption was observed between 25-30 o C and at pH 6.-7.5, while the biosorption rate was increased from 3-6 days of incubation, and then the rate of biosorption was slowed down. The biosorption data was better fitted for Pseudo kinetic first order during the initial days of biosorption. Thermodynamic parameters as standard Gibbs free energy (G), standard enthalpy change (H), and standard entropy (S) were calculated. The results confirmed the heavy metal biosorption by Trichoderma species was endothermic and spontaneous reaction in nature. The FTIR spectral analysis and SEM-EDX analysis of the treated and controlled mycelium revealed the changes in the active functional sites and morphological variations of the outer surface. The data analysis envisaged that high metal tolerance exhibited by Trichoderma species indicates its potential as efficacious and successful mediator for bioremediation of the heavy metal polluted environments.

Keywords: heavy metal, fungal biomass, biosorption, kinetics

Procedia PDF Downloads 125
3897 Harnessing Sunlight for Clean Water: Scalable Approach for Silver-Loaded Titanium Dioxide Nanoparticles

Authors: Satam Alotibi, Muhammad J. Al-Zahrani, Fahd K. Al-Naqidan, Turki S. Hussein, Moteb Alotaibi, Mohammed Alyami, Mahdy M. Elmahdy, Abdellah Kaiba, Fatehia S. Alhakami, Talal F. Qahtan

Abstract:

Water pollution is a critical global challenge that demands scalable and effective solutions for water decontamination. In this captivating research, we unveil a groundbreaking strategy for harnessing solar energy to synthesize silver (Ag) clusters on stable titanium dioxide (TiO₂) nanoparticles dispersed in water, without the need for traditional stabilization agents. These Ag-loaded TiO₂ nanoparticles exhibit exceptional photocatalytic activity, surpassing that of pristine TiO₂ nanoparticles, offering a promising solution for highly efficient water decontamination under sunlight irradiation. To the best knowledge, we have developed a unique method to stabilize TiO₂ P25 nanoparticles in water without the use of stabilization agents. This breakthrough allows us to create an ideal platform for the solar-driven synthesis of Ag clusters. Under sunlight irradiation, the stable dispersion of TiO₂ P25 nanoparticles acts as a highly efficient photocatalyst, generating electron-hole pairs. The photogenerated electrons effectively reduce silver ions derived from a silver precursor, resulting in the formation of Ag clusters. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit remarkable photocatalytic activity for water decontamination under sunlight irradiation. Acting as active sites, these Ag clusters facilitate the generation of reactive oxygen species (ROS) upon exposure to sunlight. These ROS play a pivotal role in rapidly degrading organic pollutants, enabling efficient water decontamination. To confirm the success of our approach, we characterized the synthesized Ag-loaded TiO₂ P25 nanoparticles using cutting-edge analytical techniques, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and spectroscopic methods. These characterizations unequivocally confirm the successful synthesis of Ag clusters on stable TiO₂ P25 nanoparticles without traditional stabilization agents. Comparative studies were conducted to evaluate the superior photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles compared to pristine TiO₂ P25 nanoparticles. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit significantly enhanced photocatalytic activity, benefiting from the synergistic effect between the Ag clusters and TiO₂ nanoparticles, which promotes ROS generation for efficient water decontamination. Our scalable strategy for synthesizing Ag clusters on stable TiO₂ P25 nanoparticles without stabilization agents presents a game-changing solution for highly efficient water decontamination under sunlight irradiation. The use of commercially available TiO₂ P25 nanoparticles streamlines the synthesis process and enables practical scalability. The outstanding photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles opens up new avenues for their application in large-scale water treatment and remediation processes, addressing the urgent need for sustainable water decontamination solutions.

Keywords: water pollution, solar energy, silver clusters, TiO₂ nanoparticles, photocatalytic activity

Procedia PDF Downloads 75
3896 Study on Status of Child Labour in Metal Fabrication Industries of Kathmandu Valley

Authors: Bikas Chandra Bhattarai

Abstract:

Child labour is the serious issue all over the world. In Nepal, many children are working in different structured and unstructured sector. Metal fabrication is one of the sectors where many children are involved. The present study is carried out to focus on the overall socio-economic condition, psychological aspect, working environment condition and welfare of the child labour. Metal fabrication factories from Kirtipur, Chovar Area, Gongabu, Sitapaila and Sankhamul area of Kathmandu municipality were selected for the study. The structured questionnaire was prepared, and overall 55 children under age 16 were interviewed. Working in metal fabrication factory is risky job for children. The main reason behind child labour is poverty. The working environment in the metal fabrication factory was not found satisfactory. Children are exposed to various types of physical and chemical hazards. Factories are not paying proper attention to safety condition at the workplace. Large number of children is attracted towards smoking and drinking alcohol leading to unnecessary expense of their income. There should be the provision of regular health check up and insurance to the working children. Monitoring from the government level should be implemented for the betterment of working children.

Keywords: child labour, Kathmandu, Nepal, metal fabrication

Procedia PDF Downloads 336
3895 Spectrofluorimetric Investigation of Copper (II), Cobalt (II), Calcium (II), and Ferric (III) Influence on the Ciprofloxacin Binding to Bovine Serum Albumin

Authors: Ahmed K. Youssef, Shawkat M. B. Aly

Abstract:

The interaction between ciprofloxacin and bovine serum albumin (BSA) was investigated by UV-Visible absorption and fluorescence spectroscopy. The influence of Cu²⁺ Ca²⁺, Co²⁺, and Fe³⁺ on the Cip-BSA interaction was investigated. The quenching of the BSA fluorescence emission in presence of ciprofloxacin as well as the influence of metal ions on the interaction was analyzed using the Stern-Volmer equation. The Stern-Volmer quenching constant, Kₛᵥ was calculated in presence and absence of the metal ions at the physiological pH of 7.4 using phosphate buffer. The experimental results showed that interaction mainly static in nature and quenching rate constant is decreased in presence of the studied metal ions with exception of Cu²⁺ ions. The decrease observed in the Kₛᵥ values in presence of Co²⁺, Ca²⁺, and Fe³⁺ can be understood on basis of competition between these metal and Cip when both of them existed in the BSA solution. Cu²⁺ induces interaction between Cip and BSA at faster quenching rates as inferred from the observed increase in the Kₛᵥ value. This allowed us to propose that copper (II) ions are directly involved in the process of Cip binding to BSA. The binding constant for Cip on BSA was determined and the metal ions effect on it was examined as well and their values were in line with the Kₛᵥ values.

Keywords: bovine serum albumin, ciprofloxacin, fluorescence, metal ions effect

Procedia PDF Downloads 395
3894 First-Principles Modeling of Nanoparticle Magnetization, Chaining, and Motion

Authors: Pierce Radecki, Pulkit Malik, Bharath Ramaswamy, Ben Shapiro

Abstract:

The ability to effectively design and test magnetic nanoparticles for controlled movement has been an elusive goal in the design of these particles. Magnetic nanoparticles of various characteristics have been created for use towards therapeutic effects, however the challenge of designing for controlled movement remains unmet. A step towards design in this aspect is a first principles model that captures and predicts the behaviors of particles in a magnetic field. The model is governed by four forces acting on the particles, the magnetic gradient, the dipole-dipole forces, the steric forces, and the viscous drag force. The particles are multi-core or single core, and incorporate a preferred magnetization axis. Particles exhibit behaviors, such as chaining, in simulations that are similar to those witnessed through experimentation. Currently, experimental results are being compared to the modeling results for verification of the model, through the analysis of chaining behaviors. This modeling system will be used in designing magnetic nanoparticles for specific chaining and movement behaviors.

Keywords: controlled movement, modeling, magnetic nanoparticles, nanoparticle design

Procedia PDF Downloads 309
3893 Flexible Laser Reduced Graphene Oxide/MnO2 Electrode for Supercapacitor Applications

Authors: Ingy N. Bkrey, Ahmed A. Moniem

Abstract:

We succeeded to produce a high performance and flexible graphene/Manganese dioxide (G/MnO2) electrode coated on flexible polyethylene terephthalate (PET) substrate. The graphene film is initially synthesized by drop-casting the graphene oxide (GO) solution on the PET substrate, followed by simultaneous reduction and patterning of the dried film using carbon dioxide (CO2) laser beam with power of 1.8 W. Potentiostatic Anodic Deposition method was used to deposit thin film of MnO2 with different loading mass 10 – 50 and 100 μg.cm-2 on the pre-prepared graphene film. The electrodes were fully characterized in terms of structure, morphology, and electrochemical performance. A maximum specific capacitance of 973 F.g-1 was attributed when depositing 50 μg.cm-2 MnO2 on the laser reduced graphene oxide rGO (or G/50MnO2) and over 92% of its initial capacitance was retained after 1000 cycles. The good electrochemical performance and long-term cycling stability make our proposed approach a promising candidate in the supercapacitor applications.

Keywords: electrode deposition, flexible, graphene oxide, graphene, high power CO2 Laser, MnO2

Procedia PDF Downloads 322
3892 Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids

Authors: N. Targui, H. Kahalerras

Abstract:

The present work is a numerical simulation of nanofluids flow in a double pipe heat exchanger provided with porous baffles. The hot nanofluid flows in the inner cylinder, whereas the cold nanofluid circulates in the annular gap. The Darcy-Brinkman-Forchheimer model is adopted to describe the flow in the porous regions, and the governing equations with the appropriate boundary conditions are solved by the finite volume method. The results reveal that the addition of metallic nanoparticles enhances the rate of heat transfer in comparison to conventional fluids but this augmentation is accompanied by an increase in pressure drop. The highest heat exchanger performances are obtained when nanoparticles are added only to the cold fluid.

Keywords: double pipe heat exchanger, nanofluids, nanoparticles, porous baffles

Procedia PDF Downloads 248
3891 In-Situ Reactive Growth of Silver Nanoparticles on Cotton Textile for Antiviral and Electromagnetic Shielding Applications

Authors: Hamed Mohammadi Mofarah, Mutalifu Abulikemu, Ghassan E. Jabbour

Abstract:

Personal protective equipment (PPE) is finding increasing interest in incorporating silver nanoparticles (NPs) for various applications including microbial disinfection and shielding against electromagnetic waves. In this venue, we present an in situ reactive coating approach where silver nanoparticles are self-assembled on the surface of cotton yarn. The impacts of a variety of experimental parameters on the average size of the synthesized silver NPs were investigated. These include vacuum conditions, the concentration of the silver salt solution and reducer, temperature, and curing time. Silver NPs with an average size ranging from 10 to 50 nanometers were self-assembled as a result of careful regulation of such reaction conditions. The disinfection efficacy against the COVID surrogate virus of the functional textile reached a rate of 99.99%. On the other hand, the silver NPs decorated textile demonstrated an electromagnetic shielding ranging from 31 dB to 45 dB were achieved for the frequency range 8.2-12.4 GHz.

Keywords: antiviral, COVID, electromagnetic shielding, in-situ reactive coating, SARS CoV 2, silver nanoparticles, smart textile

Procedia PDF Downloads 103
3890 Fabrication of Periodic Graphene-Like Structure of Zinc Oxide Piezoelectric Device

Authors: Zi-Gui Huang, Shen-Hsien Hu

Abstract:

This study proposes a fabrication of phononic-crystal acoustic wave device. A graphene-like atomic structure was adopted as the main research subject, and a graphene-like structure was designed using piezoelectric material zinc oxide and its periodic boundary conditions were defined using the finite element method. The effects of a hexagonal honeycomb structure were investigated regarding the band gap phenomenon. The use of micro-electromechanical systems process technology to make the film etched micron graphics, designed to produce four kinds of different piezoelectric structure (plat, periodic, single defect and double defects). Frequency response signals and phase change were also measured in this paper.

Keywords: MEMS, phononic crystal, piezoelectric material, Zinc oxide

Procedia PDF Downloads 543
3889 Formulation and Evaluation of Silibilin Loaded PLGA Nanoparticles for Cancer Therapy

Authors: Priya Patel, Paresh Patel, Mihir Raval

Abstract:

Silibinin, a flavanone as an antimicrotubular agent used in the treatment of cancer, was encapsulated in nanoparticles (NPs) of poly (lactide-co-glycolide) (PLGA) polymer using the spray-drying technique. The effects of various experimental parameters were optimized by box-behnken experimental design. Production yield, encapsulation efficiency and dissolution study along with characterization by scanning electron microscopy, DSC, FTIR followed by bioavailability study. Particle size and zeta potential were evaluated by using zetatrac particle size analyzer. Experimental design it was evaluated that inlet temperature and polymer concentration influence on the drug release. Feed flow rate impact on particle size. Results showed that spray drying technique yield 149 nm indicate nanosize range. The small size of the nanoparticle resulted in an enhanced cellular entry and greater bioavailability. Entrapment efficiency was found between 89.35% and 98.36%. Zeta potential shows good stability index of nanoparticle formulation. The in vitro release studies indicated the silibinin loaded PLGA nanoparticles provide controlled drug release over a period of 32 h. Pharmacokinetic studies demonstrated that after oral administration of silibinin-loaded PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 8.85-fold, compared to silibinin suspension as control hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of silibinin loaded PLGA nanoparticles. These results describe an effective strategy of silibinin loaded PLGA nanoparticles and might provide a promising approach against the cancer.

Keywords: silibinin, cancer, nanoparticles, PLGA, bioavailability

Procedia PDF Downloads 432
3888 Characterizing of CuO Incorporated CMOS Dielectric for Fast Switching System

Authors: Nissar Mohammad Karim, Norhayati Soin

Abstract:

To ensure fast switching in high-K incorporated Complementary Metal Oxide Semiconductor (CMOS) transistors, the results on the basis of d (NBTI) by incorporating SiO2 dielectric with aged samples of CuO sol-gels have been reported. Precursor ageing has been carried out for 4 days. The minimum obtained refractive index is 1.0099 which was found after 3 hours of adhesive UV curing. Obtaining a low refractive index exhibits a low dielectric constant and hence a faster system.

Keywords: refractive index, sol-gel, precursor ageing, metallurgical and materials engineering

Procedia PDF Downloads 391
3887 Comparative Evaluation of High Pure Mn3O4 Preparation Technique between the Conventional Process from Electrolytic Manganese and a Sustainable Approach Directly from Low-Grade Rhodochrosite

Authors: Fang Lian, Zefang Chenli, Laijun Ma, Lei Mao

Abstract:

Up to now, electrolytic process is a popular way to prepare Mn and MnO2 (EMD) with high purity. However, the conventional preparation process of manganese oxide such as Mn3O4 with high purity from electrolytic manganese metal is characterized by long production-cycle, high-pollution discharge and high energy consumption especially initially from low-grade rhodochrosite, the main resources for exploitation and applications in China. Moreover, Mn3O4 prepared from electrolytic manganese shows large particles, single morphology beyond the control and weak chemical activity. On the other hand, hydrometallurgical method combined with thermal decomposition, hydrothermal synthesis and sol-gel processes has been widely studied because of its high efficiency, low consumption and low cost. But the key problem in direct preparation of manganese oxide series from low-grade rhodochrosite is to remove completely the multiple impurities such as iron, silicon, calcium and magnesium. It is urgent to develop a sustainable approach to high pure manganese oxide series with character of short process, high efficiency, environmentally friendly and economical benefit. In our work, the preparation technique of high pure Mn3O4 directly from low-grade rhodochrosite ore (13.86%) was studied and improved intensively, including the effective leaching process and the short purifying process. Based on the same ion effect, the repeated leaching of rhodochrosite with sulfuric acid is proposed to improve the solubility of Mn2+ and inhibit the dissolution of the impurities Ca2+ and Mg2+. Moreover, the repeated leaching process could make full use of sulfuric acid and lower the cost of the raw material. With the aid of theoretical calculation, Ba(OH)2 was chosen to adjust the pH value of manganese sulfate solution and BaF2 to remove Ca2+ and Mg2+ completely in the process of purifying. Herein, the recovery ratio of manganese and removal ratio of the impurity were evaluated via chemical titration and ICP analysis, respectively. Comparison between conventional preparation technique from electrolytic manganese and a sustainable approach directly from low-grade rhodochrosite have also been done herein. The results demonstrate that the extraction ratio and the recovery ratio of manganese reached 94.3% and 92.7%, respectively. The heavy metal impurities has been decreased to less than 1ppm, and the content of calcium, magnesium and sodium has been decreased to less than 20ppm, which meet standards of high pure reagent for energy and electronic materials. In compare with conventional technique from electrolytic manganese, the power consumption has been reduced to ≤2000 kWh/t(product) in our short-process approach. Moreover, comprehensive recovery rate of manganese increases significantly, and the wastewater generated from our short-process approach contains low content of ammonia/ nitrogen about 500 mg/t(product) and no toxic emissions. Our study contributes to the sustainable application of low-grade manganese ore. Acknowledgements: The authors are grateful to the National Science and Technology Support Program of China (No.2015BAB01B02) for financial support to the work.

Keywords: leaching, high purity, low-grade rhodochrosite, manganese oxide, purifying process, recovery ratio

Procedia PDF Downloads 250
3886 Graphene-reinforced Metal-organic Framework Derived Cobalt Sulfide/Carbon Nanocomposites as Efficient Multifunctional Electrocatalysts

Authors: Yongde Xia, Laicong Deng, Zhuxian Yang

Abstract:

Developing cost-effective electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital in energy conversion and storage applications. Herein, we report a simple method for the synthesis of graphene-reinforced cobalt sulfide/carbon nanocomposites and the evaluation of their electrocatalytic performance for typical electrocatalytic reactions. Nanocomposites of cobalt sulfide embedded in N, S co-doped porous carbon and graphene (CoS@C/Graphene) were generated via simultaneous sulfurization and carbonization of one-pot synthesized graphite oxide-ZIF-67 precursors. The obtained CoS@C/Graphene nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Thermogravimetric analysis-Mass spectroscopy, Scanning electronic microscopy, Transmission electronic microscopy, X-ray photoelectron spectroscopy and gas sorption. It was found that cobalt sulfide nanoparticles were homogenously dispersed in the in-situ formed N, S co-doped porous carbon/Graphene matrix. The CoS@C/10Graphene composite not only shows excellent electrocatalytic activity toward ORR with high onset potential of 0.89 V, four-electron pathway and superior durability of maintaining 98% current after continuously running for around 5 hours, but also exhibits good performance for OER and HER, due to the improved electrical conductivity, increased catalytic active sites and connectivity between the electrocatalytic active cobalt sulfide and the carbon matrix. This work offers a new approach for the development of novel multifunctional nanocomposites for the next generation of energy conversion and storage applications.

Keywords: MOF derivative, graphene, electrocatalyst, oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction

Procedia PDF Downloads 58
3885 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides

Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami

Abstract:

Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.

Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane

Procedia PDF Downloads 439
3884 Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution

Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria

Abstract:

We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.

Keywords: continuous production, magnetic nanoparticles, microfluidics, nanomaterials

Procedia PDF Downloads 596