Search results for: maxim infringement recognition
1077 Detection and Tracking Approach Using an Automotive Radar to Increase Active Pedestrian Safety
Authors: Michael Heuer, Ayoub Al-Hamadi, Alexander Rain, Marc-Michael Meinecke
Abstract:
Vulnerable road users, e.g. pedestrians, have a high impact on fatal accident numbers. To reduce these statistics, car manufactures are intensively developing suitable safety systems. Hereby, fast and reliable environment recognition is a major challenge. In this paper we describe a tracking approach that is only based on a 24 GHz radar sensor. While common radar signal processing loses much information, we make use of a track-before-detect filter to incorporate raw measurements. It is explained how the Range-Doppler spectrum can help to indicated pedestrians and stabilize tracking even in occultation scenarios compared to sensors in series.Keywords: radar, pedestrian detection, active safety, sensor
Procedia PDF Downloads 5311076 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method
Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang
Abstract:
This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method
Procedia PDF Downloads 1491075 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection
Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour
Abstract:
The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.Keywords: EEG, wavelet, epilepsy, detection
Procedia PDF Downloads 5381074 Evaluating Value of Users' Personal Information Based on Cost-Benefit Analysis
Authors: Jae Hyun Park, Sangmi Chai, Minkyun Kim
Abstract:
As users spend more time on the Internet, the probability of their personal information being exposed has been growing. This research has a main purpose of investigating factors and examining relationships when Internet users recognize their value of private information with a perspective of an economic asset. The study is targeted on Internet users, and the value of their private information will be converted into economic figures. Moreover, how economic value changes in relation with individual attributes, dealer’s traits, circumstantial properties will be studied. In this research, the changes in factors on private information value responding to different situations will be analyzed in an economic perspective. Additionally, this study examines the associations between users’ perceived risk and value of their personal information. By using the cost-benefit analysis framework, the hypothesis that the user’s sense in private information value can be influenced by individual attributes and situational properties will be tested. Therefore, this research will attempt to provide answers for three research objectives. First, this research will identify factors that affect value recognition of users’ personal information. Second, it provides evidences that there are differences on information system users’ economic value of information responding to personal, trade opponent, and situational attributes. Third, it investigates the impact of those attributes on individuals’ perceived risk. Based on the assumption that personal, trade opponent and situation attributes make an impact on the users’ value recognition on private information, this research will present the understandings on the different impacts of those attributes in recognizing the value of information with the economic perspective and prove the associative relationships between perceived risk and decision on the value of users’ personal information. In order to validate our research model, this research used the regression methodology. Our research results support that information breach experience and information security systems is associated with users’ perceived risk. Information control and uncertainty are also related to users’ perceived risk. Therefore, users’ perceived risk is considered as a significant factor on evaluating the value of personal information. It can be differentiated by trade opponent and situational attributes. This research presents new perspective on evaluating the value of users’ personal information in the context of perceived risk, personal, trade opponent and situational attributes. It fills the gap in the literature by providing how users’ perceived risk are associated with personal, trade opponent and situation attitudes in conducting business transactions with providing personal information. It adds to previous literature that the relationship exists between perceived risk and the value of users’ private information in the economic perspective. It also provides meaningful insights to the managers that in order to minimize the cost of information breach, managers need to recognize the value of individuals’ personal information and decide the proper amount of investments on protecting users’ online information privacy.Keywords: private information, value, users, perceived risk, online information privacy, attributes
Procedia PDF Downloads 2391073 Anthropomorphic Brand Mascot Serve as the Vehicle: To Quickly Remind Customers Who You Are and What You Stand for in Indian Cultural Context
Authors: Preeti Yadav, Dandeswar Bisoyi, Debkumar Chakrabati
Abstract:
For many years organization have been exercising a creative technique of applying brand mascots, which results in making a visual ‘ambassador’ of a brand. The goal of mascot’s is just not confined to strengthening the brand identity, improving customer perception, but also acting as a vehicle of anthropomorphic translation towards the consumer. Such that it helps in embracing the power of recognition and processing the experiences happening in our daily lives. The study examines the relationship between the specific mascot features and brand attitude. It eliminates that mascot trust is an important mediator of the mascot features on brand attitude. Anthropomorphic characters turn out to be the key players despite the application of brand mascots in today’s marketing.Keywords: advertising, mascot, branding, recall
Procedia PDF Downloads 3361072 Setting up a Prototype for the Artificial Interactive Reality Unified System to Transform Psychosocial Intervention in Occupational Therapy
Authors: Tsang K. L. V., Lewis L. A., Griffith S., Tucker P.
Abstract:
Background: Many children with high incidence disabilities, such as autism spectrum disorder (ASD), struggle to participate in the community in a socially acceptable manner. There are limitations for clinical settings to provide natural, real-life scenarios for them to practice the life skills needed to meet their real-life challenges. Virtual reality (VR) offers potential solutions to resolve the existing limitations faced by clinicians to create simulated natural environments for their clients to generalize the facilitated skills. Research design: The research aimed to develop a prototype of an interactive VR system to provide realistic and immersive environments for clients to practice skills. The descriptive qualitative methodology is employed to design and develop the Artificial Interactive Reality Unified System (AIRUS) prototype, which provided insights on how to use advanced VR technology to create simulated real-life social scenarios and enable users to interact with the objects and people inside the virtual environment using natural eye-gazes, hand and body movements. The eye tracking (e.g., selective or joint attention), hand- or body-tracking (e.g., repetitive stimming or fidgeting), and facial tracking (e.g., emotion recognition) functions allowed behavioral data to be captured and managed in the AIRUS architecture. Impact of project: Instead of using external controllers or sensors, hand tracking software enabled the users to interact naturally with the simulated environment using daily life behavior such as handshaking and waving to control and interact with the virtual objects and people. The AIRUS protocol offers opportunities for breakthroughs in future VR-based psychosocial assessment and intervention in occupational therapy. Implications for future projects: AI technology can allow more efficient data capturing and interpretation of object identification and human facial emotion recognition at any given moment. The data points captured can be used to pinpoint our users’ focus and where their interests lie. AI can further help advance the data interpretation system.Keywords: occupational therapy, psychosocial assessment and intervention, simulated interactive environment, virtual reality
Procedia PDF Downloads 391071 Peptide-Based Platform for Differentiation of Antigenic Variations within Influenza Virus Subtypes (Flutype)
Authors: Henry Memczak, Marc Hovestaedt, Bernhard Ay, Sandra Saenger, Thorsten Wolff, Frank F. Bier
Abstract:
The influenza viruses cause flu epidemics every year and serious pandemics in larger time intervals. The only cost-effective protection against influenza is vaccination. Due to rapid mutation continuously new subtypes appear, what requires annual reimmunization. For a correct vaccination recommendation, the circulating influenza strains had to be detected promptly and exactly and characterized due to their antigenic properties. During the flu season 2016/17, a wrong vaccination recommendation has been given because of the great time interval between identification of the relevant influenza vaccine strains and outbreak of the flu epidemic during the following winter. Due to such recurring incidents of vaccine mismatches, there is a great need to speed up the process chain from identifying the right vaccine strains to their administration. The monitoring of subtypes as part of this process chain is carried out by national reference laboratories within the WHO Global Influenza Surveillance and Response System (GISRS). To this end, thousands of viruses from patient samples (e.g., throat smears) are isolated and analyzed each year. Currently, this analysis involves complex and time-intensive (several weeks) animal experiments to produce specific hyperimmune sera in ferrets, which are necessary for the determination of the antigen profiles of circulating virus strains. These tests also bear difficulties in standardization and reproducibility, which restricts the significance of the results. To replace this test a peptide-based assay for influenza virus subtyping from corresponding virus samples was developed. The differentiation of the viruses takes place by a set of specifically designed peptidic recognition molecules which interact differently with the different influenza virus subtypes. The differentiation of influenza subtypes is performed by pattern recognition guided by machine learning algorithms, without any animal experiments. Synthetic peptides are immobilized in multiplex format on various platforms (e.g., 96-well microtiter plate, microarray). Afterwards, the viruses are incubated and analyzed comparing different signaling mechanisms and a variety of assay conditions. Differentiation of a range of influenza subtypes, including H1N1, H3N2, H5N1, as well as fine differentiation of single strains within these subtypes is possible using the peptide-based subtyping platform. Thereby, the platform could be capable of replacing the current antigenic characterization of influenza strains using ferret hyperimmune sera.Keywords: antigenic characterization, influenza-binding peptides, influenza subtyping, influenza surveillance
Procedia PDF Downloads 1581070 Factors Relating to Motivation to Change Behaviors in Individuals Who Are Overweight
Authors: Teresa Wills, Geraldine Mccarthy, Nicola Cornally
Abstract:
Background: Obesity is an emerging healthcare epidemic affecting virtually all age and socio-economic groups and is one of the most serious and prevalent diseases of the 21st century. It is a public health challenge because of its prevalence, associated costs and health effects. The increasing prevalence of obesity has created a social perception that overweight body sizes are healthy and normal. This normalization of obesity within our society and the acceptance of higher body weights have led to individuals being unaware of the reality of their weight status and gravity of this situation thus impeding recognition of obesity. Given the escalating global health problem of obesity and its co-morbidities, the need to re-appraise its management is more compelling than ever. It is widely accepted that the causes of obesity are complex and multi-factorial. Engagement of individuals in weight management programmes is difficult if they do not perceive they have a problem with their weight. Recognition of the problem is a key component of obesity management and identifying the main predictors of behaviour is key to designing health behaviour interventions. Aim: The aim of the research was to determine factors relating to motivation to change behaviours in individuals who perceive themselves to be overweight. Method: The research design was quantitative, correlational and cross-sectional. The design was guided by the Health Belief Model. Data were collected online using a multi-section and multi-item questionnaire, developed from a review of the theoretical and empirical research. A sample of 202 men and women who perceived themselves to be overweight participated in the research. Descriptive and inferential statistical analyses were employed to describe relationships between variables. Findings: Following multivariate regression analysis, perceived barriers to weight loss and perceived benefits of weight loss were significant predictors of motivation to change behaviour. The perceived barriers to weight loss which were significant were psychological barriers to weight loss (p = < 0.019) and environmental barriers to physical activity (p= < 0.032).The greatest predictor of motivation to change behaviour was the perceived benefits of weight loss (p < 0.001). Perceived susceptibility to obesity and perceived severity of obesity did not emerge as significant predictors in this model. Total variance explained by the model was 33.5%. Conclusion: Perceived barriers to weight loss and perceived benefits of weight loss are important determinants of motivation to change behaviour. These findings have important implications for health professionals to help inform their practice and for the development of intervention programmes to prevent and control obesity.Keywords: motivation to change behaviours, obesity, predictors of behavior, interventions, overweight
Procedia PDF Downloads 4151069 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 5371068 Thoughts on the Informatization Technology Innovation of Cores and Samples in China
Authors: Honggang Qu, Rongmei Liu, Bin Wang, Yong Xu, Zhenji Gao
Abstract:
There is a big gap in the ability and level of the informatization technology innovation of cores and samples compared with developed countries. Under the current background of promoting the technology innovation, how to strengthen the informatization technology innovation of cores and samples for National Cores and Samples Archives, which is a national innovation research center, is an important research topic. The paper summarizes the development status of cores and samples informatization technology, and finds the gaps and deficiencies, and proposes the innovation research directions and content, including data extraction, recognition, processing, integration, application and so on, so as to provide some reference and guidance for the future innovation research of the archives and support better the geological technology innovation in China.Keywords: cores and samples;, informatization technology;, innovation;, suggestion
Procedia PDF Downloads 1271067 Using of Bimolecular Fluorescence Complementation (BiFC) Assays to Study Homo and/ or Heterodimerization of Laminin Receptor 37 LRP/ 67 LR with Galectin-3
Authors: Fulwah Alqahtani, Jafar Mahdavi, Lee Weldon, Nick Holliday, Dlawer Ala'Aldeen
Abstract:
There are two isoforms of laminin receptor; monomeric 37 kDa laminin receptor precursor (37 LRP) and mature 67 kDa laminin receptor (67 LR). The relationship between the 67 LR and its precursor 37 LRP is not completely understood, but previous observations have suggested that 37 LRP can undergo homo- and/or hetero- dimerization with Galectin-3 (Gal-3) to form mature 67 LR. Gal-3 is the only member of the chimera-type group of galectins, and has one C-terminal carbohydrate recognition domain (CRD) that is responsible for binding the ß-galactoside moieties of mono- or oligosaccharides on several host and microbial molecules. The aim of this work was to investigate homo- and hetero-dimerization among the 37 LRP and Gal-3 to form mature 67 LR in mammalian cells using bimolecular fluorescence complementation (BiFC).Keywords: 37 LRP, 67 LR, Gal-3, BiFC
Procedia PDF Downloads 5061066 Human Resource Management Practices and Employee Retention in Public Higher Learning Institutions in the Maldives
Authors: Shaheeb Abdul Azeez, Siong-Choy Chong
Abstract:
Background: Talent retention is increasingly becoming a major challenge for many industries due to the high turnover rate. Public higher learning institutions in the Maldives have a similar situation with the turnover of their employees'. This paper is to identify whether Human Resource Management (HRM) practices have any impact on employee retention in public higher learning institutions in the Maldives. Purpose: This paper aims to identify the influence of HRM practices on employee retention in public higher learning institutions in the Maldives. A total of 15 variables used in this study; 11 HRM practices as independent variables (leadership, rewards, salary, employee participation, compensation, training and development, career development, recognition, appraisal system and supervisor support); job satisfaction and motivation as mediating variables; demographic profile as moderating variable and employee retention as dependent variable. Design/Methodology/Approach: A structured self-administered questionnaire was used for data collection. A total of 300 respondents were selected as the study sample, representing the academic and administrative from public higher learning institutions using a stratified random sampling method. AMOS was used to test the hypotheses constructed. Findings: The results suggest that there is no direct effect between the independent variable and dependent variable. Also, the study concludes that no moderate effects of demographic profile between independent and dependent variables. However, the mediating effects of job satisfaction and motivation in the relationship between HRM practices and employee retention were significant. Salary had a significant influence on job satisfaction, whilst both compensation and recognition have significant influence on motivation. Job satisfaction and motivation were also found to significantly influence employee retention. Research Limitations: The study consists of many variables more time consuming for the respondents to answer the questionnaire. The study is focussed only on public higher learning institutions in the Maldives due to no participation from the private sector higher learning institutions. Therefore, the researcher is unable to identify the actual situation of the higher learning industry in the Maldives. Originality/Value: To our best knowledge, no study has been conducted using the same framework throughout the world. This study is the initial study conducted in the Maldives in this study area and can be used as a baseline for future researches. But there are few types of research conducted on the same subject throughout the world. Some of them concluded with positive findings while others with negative findings. Also, they have used 4 to 7 HRM practices as their study framework.Keywords: human resource management practices, employee retention, motivation, job satisfaction
Procedia PDF Downloads 1571065 Gender and Science: Is the Association Universal?
Authors: Neelam Kumar
Abstract:
Science is stratified, with an unequal distribution of research facilities and rewards among scientists. Gender stratification is one of the most prevalent phenomena in the world of science. In most countries gender segregation, horizontal as well as vertical, stands out in the field of science and engineering. India is no exception. This paper aims to examine: (1) gender and science associations, historical as well as contemporary, (2) women’s enrolment and gender differences in selection of academic fields, (2) women as professional researchers, (3) career path and recognition/trajectories. The paper reveals that in recent years the gender–science relationship has changed, but is not totally free from biases. Women’s enrolment into various science disciplines has shown remarkable and steady increase in most parts of the world, including India, yet they remain underrepresented in the S&T workforce, although to a lesser degree than in the past.Keywords: gender, science, universal, women
Procedia PDF Downloads 3091064 Current Environmental Accounting Disclosure Requirements and Compliance by Nigerian Oil Companies
Authors: Amina Jibrin Ahmed
Abstract:
The environment is mankind's natural habitat. Industrial activities over time have taken their toll on it in the form of deterioration and degradation. The petroleum industry is particularly notorious for its negative impact on its host environments. The realization that this poses a threat to sustainability led to the increased awareness and subsequent recognition of the importance of environmental disclosure in financial statements. This paper examines the laws and regulations put in place by the Nigerian Government to mitigate this impact, and the level of compliance by Shell Nigeria, the pioneer and largest oil company in the country. Based on the disclosure made, this paper finds there is indeed a high level of compliance by that company, and voluntary disclosure moreover.Keywords: environmental accounting, legitimacy theory, environmental impact assessment, environmental disclosure, host communities
Procedia PDF Downloads 5191063 Visual Aid and Imagery Ramification on Decision Making: An Exploratory Study Applicable in Emergency Situations
Authors: Priyanka Bharti
Abstract:
Decades ago designs were based on common sense and tradition, but after an enhancement in visualization technology and research, we are now able to comprehend the cognitive ability involved in the decoding of the visual information. However, many fields in visuals need intense research to deliver an efficient explanation for the events. Visuals are an information representation mode through images, symbols and graphics. It plays an impactful role in decision making by facilitating quick recognition, comprehension, and analysis of a situation. They enhance problem-solving capabilities by enabling the processing of more data without overloading the decision maker. As research proves that, visuals offer an improved learning environment by a factor of 400 compared to textual information. Visual information engages learners at a cognitive level and triggers the imagination, which enables the user to process the information faster (visuals are processed 60,000 times faster in the brain than text). Appropriate information, visualization, and its presentation are known to aid and intensify the decision-making process for the users. However, most literature discusses the role of visual aids in comprehension and decision making during normal conditions alone. Unlike emergencies, in a normal situation (e.g. our day to day life) users are neither exposed to stringent time constraints nor face the anxiety of survival and have sufficient time to evaluate various alternatives before making any decision. An emergency is an unexpected probably fatal real-life situation which may inflict serious ramifications on both human life and material possessions unless corrective measures are taken instantly. The situation demands the exposed user to negotiate in a dynamic and unstable scenario in the absence or lack of any preparation, but still, take swift and appropriate decisions to save life/lives or possessions. But the resulting stress and anxiety restricts cue sampling, decreases vigilance, reduces the capacity of working memory, causes premature closure in evaluating alternative options, and results in task shedding. Limited time, uncertainty, high stakes and vague goals negatively affect cognitive abilities to take appropriate decisions. More so, theory of natural decision making by experts has been understood with far more depth than that of an ordinary user. Therefore, in this study, the author aims to understand the role of visual aids in supporting rapid comprehension to take appropriate decisions during an emergency situation.Keywords: cognition, visual, decision making, graphics, recognition
Procedia PDF Downloads 2691062 Use of Indian Food Mascot Design as an Advertising Tool in Maintaining and Growing the Brand Name
Authors: Preeti Yadav, Dandeswar Bisoyi, Debkumar Chakrabarti
Abstract:
Mascots provide memories to viewers, and numerous promotional campaigns with different appearances, continue to trigger viewers and capture their interest. This study investigates the effect of Indian food mascot designs and influence on enhancing communication; thereby, building long-term brand recognition by the consumers. This paper presents a descriptive approach to Indian food mascot design as an advertising tool, and its research adopts a quantitative methodology. The study confirms that mascots have an ability to communicate a message in an effective manner; all though they are simple in terms of design and fashion trend, they have the capability to build positive reactions.Keywords: food mascot, brand recognitions, advertising, humour
Procedia PDF Downloads 1791061 Neo-Liberal Challenge - Apple in China
Authors: Mark McKeown
Abstract:
Press articles opining on how China has become the West’s biggest threat have become so common as to feel like old news. Since the United States shifted diplomatic recognition from Taiwan to the People’s Republic of China in 1979 the relationship between the world’s two largest economies has been at best a brittle one. This coiled tension has grown as trade between the two countries snaked ever upwards. As a byproduct of globalization Apple have focused much of their production and assembly in China. This has left the U.S. Big Tech company with several challenges. This paper focusses on the tightrope Apple now has to traverse. The majority of the data and analysis within this paper is sourced from my current ongoing PhD research on the influence of Big Tech lobbying on U.S. foreign policy. One of the main conclusions from this analysis is Apple has to adopt a carefully nuanced strategy of appeasement to avoid friction, with both the governments of China and the United States.Keywords: apple, China, Taiwan, war
Procedia PDF Downloads 671060 Kohonen Self-Organizing Maps as a New Method for Determination of Salt Composition of Multi-Component Solutions
Authors: Sergey A. Burikov, Tatiana A. Dolenko, Kirill A. Gushchin, Sergey A. Dolenko
Abstract:
The paper presents the results of clusterization by Kohonen self-organizing maps (SOM) applied for analysis of array of Raman spectra of multi-component solutions of inorganic salts, for determination of types of salts present in the solution. It is demonstrated that use of SOM is a promising method for solution of clusterization and classification problems in spectroscopy of multi-component objects, as attributing a pattern to some cluster may be used for recognition of component composition of the object.Keywords: Kohonen self-organizing maps, clusterization, multi-component solutions, Raman spectroscopy
Procedia PDF Downloads 4431059 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms
Authors: Julio Vega
Abstract:
Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node
Procedia PDF Downloads 1301058 Obstacle Detection and Path Tracking Application for Disables
Authors: Aliya Ashraf, Mehreen Sirshar, Fatima Akhtar, Farwa Kazmi, Jawaria Wazir
Abstract:
Vision, the basis for performing navigational tasks, is absent or greatly reduced in visually impaired people due to which they face many hurdles. For increasing the navigational capabilities of visually impaired people a desktop application ODAPTA is presented in this paper. The application uses camera to capture video from surroundings, apply various image processing algorithms to get information about path and obstacles, tracks them and delivers that information to user through voice commands. Experimental results show that the application works effectively for straight paths in daylight.Keywords: visually impaired, ODAPTA, Region of Interest (ROI), driver fatigue, face detection, expression recognition, CCD camera, artificial intelligence
Procedia PDF Downloads 5521057 Shocks and Flows - Employing a Difference-In-Difference Setup to Assess How Conflicts and Other Grievances Affect the Gender and Age Composition of Refugee Flows towards Europe
Authors: Christian Bruss, Simona Gamba, Davide Azzolini, Federico Podestà
Abstract:
In this paper, the authors assess the impact of different political and environmental shocks on the size and on the age and gender composition of asylum-related migration flows to Europe. With this paper, the authors contribute to the literature by looking at the impact of different political and environmental shocks on the gender and age composition of migration flows in addition to the size of these flows. Conflicting theories predict different outcomes concerning the relationship between political and environmental shocks and the migration flows composition. Analyzing the relationship between the causes of migration and the composition of migration flows could yield more insights into the mechanisms behind migration decisions. In addition, this research may contribute to better informing national authorities in charge of receiving these migrant, as women and children/the elderly require different assistance than young men. To be prepared to offer the correct services, the relevant institutions have to be aware of changes in composition based on the shock in question. The authors analyze the effect of different types of shocks on the number, the gender and age composition of first time asylum seekers originating from 154 sending countries. Among the political shocks, the authors consider: violence between combatants, violence against civilians, infringement of political rights and civil liberties, and state terror. Concerning environmental shocks, natural disasters (such as droughts, floods, epidemics, etc.) have been included. The data on asylum seekers applying to any of the 32 Schengen Area countries between 2008 and 2015 is on a monthly basis. Data on asylum applications come from Eurostat, data on shocks are retrieved from various sources: georeferenced conflict data come from the Uppsala Conflict Data Program (UCDP), data on natural disasters from the Centre for Research on the Epidemiology of Disasters (CRED), data on civil liberties and political rights from Freedom House, data on state terror from the Political Terror Scale (PTS), GDP and population data from the World Bank, and georeferenced population data from the Socioeconomic Data and Applications Center (SEDAC). The authors adopt a Difference-in-Differences identification strategy, exploiting the different timing of several kinds of shocks across countries. The highly skewed distribution of the dependent variable is taken into account by using count data models. In particular, a Zero Inflated Negative Binomial model is adopted. Preliminary results show that different shocks - such as armed conflict and epidemics - exert weak immediate effects on asylum-related migration flows and almost non-existent effects on the gender and age composition. However, this result is certainly affected by the fact that no time lags have been introduced so far. Finding the correct time lags depends on a great many variables not limited to distance alone. Therefore, finding the appropriate time lags is still a work in progress. Considering the ongoing refugee crisis, this topic is more important than ever. The authors hope that this research contributes to a less emotionally led debate.Keywords: age, asylum, Europe, forced migration, gender
Procedia PDF Downloads 2621056 Evaluation of Cognitive Benefits among Differently Abled Subjects with Video Game as Intervention
Authors: H. Nagendra, Vinod Kumar, S. Mukherjee
Abstract:
In this study, the potential benefits of playing action video game among congenitally deaf and dumb subjects is reported in terms of EEG ratio indices. The frontal and occipital lobes are associated with development of motor skills, cognition, and visual information processing and color recognition. The sixteen hours of First-Person shooter action video game play resulted in the increase of the ratios β/(α+θ) and β/θ in frontal and occipital lobes. This can be attributed to the enhancement of certain aspect of cognition among deaf and dumb subjects.Keywords: cognitive enhancement, video games, EEG band powers, deaf and dumb subjects
Procedia PDF Downloads 4361055 AI Applications in Accounting: Transforming Finance with Technology
Authors: Alireza Karimi
Abstract:
Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance
Procedia PDF Downloads 631054 Psychotherapeutic Narratives and the Importance of Truth
Authors: Spencer Jay Knafelc
Abstract:
Some mental health practitioners and theorists have suggested that we approach remedying psychological problems by centering and intervening upon patients’ narrations. Such theorists and their corresponding therapeutic approaches see persons as narrators of their lives, where the stories they tell constitute and reflect their sense-making of the world. Psychological problems, according to these approaches to therapy, are often the result of problematic narratives. The solution is the construction of more salubrious narratives through therapy. There is trouble lurking within the history of these narrative approaches. These thinkers tend to denigrate the importance of truth, insisting that narratives are not to be thought of as aiming at truth, and thus the truth of our self-narratives is not important. There are multiple motivations for the tendency to eschew truth’s importance within the tradition of narrative approaches to therapy. The most plausible and interesting motivation comes from the observation that, in general, all dominant approaches to therapy are equally effective. The theoretical commitments of each approach are quite different and are often ostensibly incompatible (psychodynamic therapists see psychological problems as resulting from unconscious conflict and repressed desires, Cognitive-Behavioral approaches see them as resulting from distorted cognitions). This strongly suggests that there must be some cases in which therapeutic efficacy does not depend on truth and that insisting that patient’s therapeutic narratives be true in all instances is a mistake. Lewis’ solution is to suggest that narratives are metaphors. Lewis’ account appreciates that there are many ways to tell a story and that many different approaches to mental health treatment can be appropriate without committing us to any contradictions, providing us with an ostensibly coherent way to treat narratives as non-literal, instead of seeing them as tools that can be more or less apt. Here, it is argued that Lewis’ metaphor approach fails. Narratives do not have the right kind of structure to be metaphors. Still, another way to understand Lewis’ view might be that self-narratives, especially when articulated in the language of any specific approach, should not be taken literally. This is an idea at the core of the narrative theorists’ tendency to eschew the importance of the ordinary understanding of truth. This very tendency will be critiqued. The view defended in this paper more accurately captures the nature of self-narratives. The truth of one’s self-narrative is important. Not only do people care about having the right conception of their abilities, who they are, and the way the world is, but self-narratives are composed of beliefs, and the nature of belief is to aim at truth. This view also allows the recognition of the importance of developing accurate representations of oneself and reality for one’s psychological well-being. It is also argued that in many cases, truth factors in as a mechanism of change over the course of therapy. Therapeutic benefit can be achieved by coming to have a better understanding of the nature of oneself and the world. Finally, the view defended here allows for the recognition of the nature of the tension between values: truth and efficacy. It is better to recognize this tension and develop strategies to navigate it as opposed to insisting that it doesn’t exist.Keywords: philosophy, narrative, psychotherapy, truth
Procedia PDF Downloads 1051053 Evaluating the Performance of Color Constancy Algorithm
Authors: Damanjit Kaur, Avani Bhatia
Abstract:
Color constancy is significant for human vision since color is a pictorial cue that helps in solving different visions tasks such as tracking, object recognition, or categorization. Therefore, several computational methods have tried to simulate human color constancy abilities to stabilize machine color representations. Two different kinds of methods have been used, i.e., normalization and constancy. While color normalization creates a new representation of the image by canceling illuminant effects, color constancy directly estimates the color of the illuminant in order to map the image colors to a canonical version. Color constancy is the capability to determine colors of objects independent of the color of the light source. This research work studies the most of the well-known color constancy algorithms like white point and gray world.Keywords: color constancy, gray world, white patch, modified white patch
Procedia PDF Downloads 3211052 Proposal for a Web System for the Control of Fungal Diseases in Grapes in Fruits Markets
Authors: Carlos Tarmeño Noriega, Igor Aguilar Alonso
Abstract:
Fungal diseases are common in vineyards; they cause a decrease in the quality of the products that can be sold, generating distrust of the customer towards the seller when buying fruit. Currently, technology allows the classification of fruits according to their characteristics thanks to artificial intelligence. This study proposes the implementation of a control system that allows the identification of the main fungal diseases present in the Italia grape, making use of a convolutional neural network (CNN), OpenCV, and TensorFlow. The methodology used was based on a collection of 20 articles referring to the proposed research on quality control, classification, and recognition of fruits through artificial vision techniques.Keywords: computer vision, convolutional neural networks, quality control, fruit market, OpenCV, TensorFlow
Procedia PDF Downloads 841051 On Musical Information Geometry with Applications to Sonified Image Analysis
Authors: Shannon Steinmetz, Ellen Gethner
Abstract:
In this paper, a theoretical foundation is developed for patterned segmentation of audio using the geometry of music and statistical manifold. We demonstrate image content clustering using conic space sonification. The algorithm takes a geodesic curve as a model estimator of the three-parameter Gamma distribution. The random variable is parameterized by musical centricity and centric velocity. Model parameters predict audio segmentation in the form of duration and frame count based on the likelihood of musical geometry transition. We provide an example using a database of randomly selected images, resulting in statistically significant clusters of similar image content.Keywords: sonification, musical information geometry, image, content extraction, automated quantification, audio segmentation, pattern recognition
Procedia PDF Downloads 2401050 Prototyping a Portable, Affordable Sign Language Glove
Authors: Vidhi Jain
Abstract:
Communication between speakers and non-speakers of American Sign Language (ASL) can be problematic, inconvenient, and expensive. This project attempts to bridge the communication gap by designing a portable glove that captures the user’s ASL gestures and outputs the translated text on a smartphone. The glove is equipped with flex sensors, contact sensors, and a gyroscope to measure the flexion of the fingers, the contact between fingers, and the rotation of the hand. The glove’s Arduino UNO microcontroller analyzes the sensor readings to identify the gesture from a library of learned gestures. The Bluetooth module transmits the gesture to a smartphone. Using this device, one day speakers of ASL may be able to communicate with others in an affordable and convenient way.Keywords: sign language, morse code, convolutional neural network, American sign language, gesture recognition
Procedia PDF Downloads 631049 Uncertainty in Risk Modeling
Authors: Mueller Jann, Hoffmann Christian Hugo
Abstract:
Conventional quantitative risk management in banking is a risk factor of its own, because it rests on assumptions such as independence and availability of data which do not hold when rare events of extreme consequences are involved. There is a growing recognition of the need for alternative risk measures that do not make these assumptions. We propose a novel method for modeling the risk associated with investment products, in particular derivatives, by using a formal language for specifying financial contracts. Expressions in this language are interpreted in the category of values annotated with (a formal representation of) uncertainty. The choice of uncertainty formalism thus becomes a parameter of the model, so it can be adapted to the particular application and it is not constrained to classical probabilities. We demonstrate our approach using a simple logic-based uncertainty model and a case study in which we assess the risk of counter party default in a portfolio of collateralized loans.Keywords: risk model, uncertainty monad, derivatives, contract algebra
Procedia PDF Downloads 5771048 Improved Particle Swarm Optimization with Cellular Automata and Fuzzy Cellular Automata
Authors: Ramin Javadzadeh
Abstract:
The particle swarm optimization are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Particle swarm optimization is introduced for the first time to overcome its problems. The fuzzy cellular automata is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the Particle swarm optimization algorithms.Keywords: cellular automata, cellular learning automata, local search, optimization, particle swarm optimization
Procedia PDF Downloads 609