Search results for: hand-held devices
1793 Binarized-Weight Bilateral Filter for Low Computational Cost Image Smoothing
Authors: Yu Zhang, Kohei Inoue, Kiichi Urahama
Abstract:
We propose a simplified bilateral filter with binarized coefficients for accelerating it. Its computational cost is further decreased by sampling pixels. This computationally low cost filter is useful for smoothing or denoising images by using mobile devices with limited computational power.Keywords: bilateral filter, binarized-weight bilateral filter, image smoothing, image denoising, pixel sampling
Procedia PDF Downloads 4671792 Pathology of Explanted Transvaginal Meshes
Authors: Vladimir V. Iakovlev, Erin T. Carey, John Steege
Abstract:
The use of polypropylene mesh devices for Pelvic Organ Prolapse (POP) spread rapidly during the last decade, yet our knowledge of the mesh-tissue interaction is far from complete. We aimed to perform a thorough pathological examination of explanted POP meshes and describe findings that may explain mechanisms of complications resulting in product excision. We report a spectrum of important findings, including nerve ingrowth, mesh deformation, involvement of detrusor muscle with neural ganglia, and polypropylene degradation. Analysis of these findings may improve and guide future treatment strategies.Keywords: transvaginal, mesh, nerves, polypropylene degradation
Procedia PDF Downloads 3991791 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 631790 Media in Architecture-Intervention and Visual Experience in Religious Space
Authors: Jorge Duarte de Sá
Abstract:
The appearance of the new media technologies has opened new fields of intervention in architecture creating a new dynamic communication in the relationship between public and space, where are present technological devices that enable a new sensory experience, aesthetic and even spiritual. This connection makes relevant the idea of rehabilitate architectonic spaces with new media technologies such as sacred spaces. This research aims to create a media project integrated in sacred spaces that combine Architecture, Art and New Technologies, exploring new perspectives and different dynamics in space.Keywords: media, architecture, religious spaces, projections, contemplation
Procedia PDF Downloads 3491789 Corpus Stylistics and Multidimensional Analysis for English for Specific Purposes Teaching and Assessment
Authors: Svetlana Strinyuk, Viacheslav Lanin
Abstract:
Academic English has become lingua franca for international scientific community which stimulates universities to introduce English for Specific Purposes (EAP) courses into curriculum. Teaching L2 EAP students might be fulfilled with corpus technologies and digital stylistics. A special software developed to reach the manifold task of teaching, assessing and researching academic writing of L2 students on basis of digital stylistics and multidimensional analysis was created. A set of annotations (style markers) – grammar, lexical and syntactic features most significant of academic writing was built. Contrastive comparison of two corpora “model corpus”, subject domain limited papers published by competent writers in leading academic journals, and “students’ corpus”, subject domain limited papers written by last year students allows to receive data about the features of academic writing underused or overused by L2 EAP student. Both corpora are tagged with a special software created in GATE Developer. Style markers within the framework of research might be replaced depending on the relevance and validity of the result which is achieved from research corpora. Thus, selecting relevant (high frequency) style markers and excluding less relevant, i.e. less frequent annotations, high validity of the model is achieved. Software allows to compare the data received from processing model corpus to students’ corpus and get reports which can be used in teaching and assessment. The less deviation from the model corpus students demonstrates in their writing the higher is academic writing skill acquisition. The research showed that several style markers (hedging devices) were underused by L2 EAP students whereas lexical linking devices were used excessively. A special software implemented into teaching of EAP courses serves as a successful visual aid, makes assessment more valid; it is indicative of the degree of writing skill acquisition, and provides data for further research.Keywords: corpus technologies in EAP teaching, multidimensional analysis, GATE Developer, corpus stylistics
Procedia PDF Downloads 1961788 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems
Procedia PDF Downloads 861787 Type of Dam Construction and It’s Challengings
Authors: Mokhtar Nikgoo
Abstract:
Definition of dam: A dam is one of the most important and widely used engineering structures, which means stopping or changing the course of water on a river. A lake is formed behind the dam, which is called (reservoir). Water is stored in the tank to be used when needed. The dam building industry is a great service to mankind in the use of water and land resources. If they build the dam in a suitable place, they will prevent floods. The water that collects behind the dam and in the dam's lake and reservoir is a valuable reserve for drinking by people and animals. Dry agricultural lands are also irrigated with this water. In addition, in many dams, the pressure caused by the water fall is directed by turbines, and the turbines move the power generation devices and provide power from electricityKeywords: dam, shaft, gallery, spillway, power plant
Procedia PDF Downloads 611786 Quo Vadis, European Football: An Analysis of the Impact of Over-The-Top Services in the Sports Rights Market
Authors: Farangiz Davranbekova
Abstract:
Subject: The study explores the impact of Over-the-Top services in the sports rights market, focusing on football games. This impact is analysed in the big five European football markets. The research entails how the pay-TV market is combating the disruptors' entry, how the fans are adjusting to these changes and how leagues and football clubs are orienting in the transitional period of more choice. Aims and methods: The research aims to offer a general overview of the impact of OTT players in the football rights market. A theoretical framework of Jenkins’ five layers of convergence is implemented to analyse the transition the sports rights market is witnessing from various angles. The empirical analysis consists of secondary research data as and seven expert interviews from three different clusters. The findings are bound by the combination of the two methods offering general statements. Findings: The combined secondary data as well as expert interviews, conducted on five layers of convergence found: 1. Technological convergence presents that football content is accessible through various devices with innovative digital features, unlike the traditional TV set box. 2. Social convergence demonstrates that football fans multitask using various devices on social media when watching the games. These activities are complementary to traditional TV viewing. 3. Cultural convergence points that football fans have a new layer of fan engagement with leagues, clubs and other fans using social media. Additionally, production and consumption lines are blurred. 4. Economic convergence finds that content distribution is diversifying and/or eroding. Consumers now have more choices, albeit this can be harmful to them. Entry barriers are decreased, and bigger clubs feel more powerful. 5. Global convergence shows that football fans are engaging with not only local fans but with fans around the world that social media sites enable. Recommendation: A study on smaller markets such as Belgium or the Netherlands would benefit the study on the impact of OTT. Additionally, examination of other sports will shed light on this matter. Lastly, once the direct-to-consumer model is fully taken off in Europe, it will be of importance to examine the impact of such transformation in the market.Keywords: sports rights, OTT, pay TV, football
Procedia PDF Downloads 1551785 Use of Magnesium as a Renewable Energy Source
Authors: Rafayel K. Kostanyan
Abstract:
The opportunities of use of metallic magnesium as a generator of hydrogen gas, as well as thermal and electric energy is presented in the paper. Various schemes of magnesium application are discussed and power characteristics of corresponding devices are presented. Economic estimation of hydrogen price obtained by different methods is made, including the use of magnesium as a source of hydrogen for transportation in comparison with gasoline. Details and prospects of our new inexpensive technology of magnesium production from magnesium hydroxide and magnesium bearing rocks (which are available worldwide and in Armenia) are analyzed. It is estimated the threshold cost of Mg production at which application of this metal in power engineering is economically justified.Keywords: energy, electrodialysis, magnesium, new technology
Procedia PDF Downloads 2701784 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment
Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo
Abstract:
Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature
Procedia PDF Downloads 2831783 Surgical Treatment of Glaucoma – Literature and Video Review of Blebs, Tubes, and Micro-Invasive Glaucoma Surgeries (MIGS)
Authors: Ana Miguel
Abstract:
Purpose: Glaucoma is the second cause of worldwide blindness and the first cause of irreversible blindness. Trabeculectomy, the standard glaucoma surgery, has a success rate between 36.0% and 98.0% at three years and a high complication rate, leading to the development of different surgeries, micro-invasive glaucoma surgeries (MIGS). MIGS devices are diverse and have various indications, risks, and effectiveness. We intended to review MIGS’ surgical techniques, indications, contra-indications, and IOP effect. Methods: We performed a literature review of MIGS to differentiate the devices and their reported effectiveness compared to traditional surgery (tubes and blebs). We also conducted a video review of the last 1000 glaucoma surgeries of the author (including MIGS, but also trabeculectomy, deep sclerectomy, and tubes of Ahmed and Baerveldt) performed at glaucoma and advanced anterior segment fellowship in Canada and France, to describe preferred surgical techniques for each. Results: We present the videos with surgical techniques and pearls for each surgery. Glaucoma surgeries included: 1- bleb surgery (namely trabeculectomy, with releasable sutures or with slip knots, deep sclerectomy, Ahmed valve, Baerveldt tube), 2- MIGS with bleb, also known as MIBS (including XEN 45, XEN 63, and Preserflo), 3- MIGS increasing supra-choroidal flow (iStar), 4-MIGS increasing trabecular flow (iStent, gonioscopy-assisted transluminal trabeculotomy - GATT, goniotomy, excimer laser trabeculostomy -ELT), and 5-MIGS decreasing aqueous humor production (endocyclophotocoagulation, ECP). There was also needling (ab interno and ab externo) performed at the operating room and irido-zonulo-hyaloïdectomy (IZHV). Each technique had different indications and contra-indications. Conclusion: MIGS are valuable in glaucoma surgery, such as traditional surgery with trabeculectomy and tubes. All glaucoma surgery can be combined with phacoemulsification (there may be a synergistic effect on MIGS + cataract surgery). In addition, some MIGS may be combined for further intraocular pressure lowering effect (for example, iStents with goniotomy and ECP). A good surgical technique and postoperative management are fundamental to increasing success and good practice in all glaucoma surgery.Keywords: glaucoma, migs, surgery, video, review
Procedia PDF Downloads 821782 Radiation Protection and Licensing for an Experimental Fusion Facility: The Italian and European Approaches
Authors: S. Sandri, G. M. Contessa, C. Poggi
Abstract:
An experimental nuclear fusion device could be seen as a step toward the development of the future nuclear fusion power plant. If compared with other possible solutions to the energy problem, nuclear fusion has advantages that ensure sustainability and security. In particular considering the radioactivity and the radioactive waste produced, in a nuclear fusion plant the component materials could be selected in order to limit the decay period, making it possible the recycling in a new reactor after about 100 years from the beginning of the decommissioning. To achieve this and other pertinent goals many experimental machines have been developed and operated worldwide in the last decades, underlining that radiation protection and workers exposure are critical aspects of these facilities due to the high flux, high energy neutrons produced in the fusion reactions. Direct radiation, material activation, tritium diffusion and other related issues pose a real challenge to the demonstration that these devices are safer than the nuclear fission facilities. In Italy, a limited number of fusion facilities have been constructed and operated since 30 years ago, mainly at the ENEA Frascati Center, and the radiation protection approach, addressed by the national licensing requirements, shows that it is not always easy to respect the constraints for the workers' exposure to ionizing radiation. In the current analysis, the main radiation protection issues encountered in the Italian Fusion facilities are considered and discussed, and the technical and legal requirements are described. The licensing process for these kinds of devices is outlined and compared with that of other European countries. The following aspects are considered throughout the current study: i) description of the installation, plant and systems, ii) suitability of the area, buildings, and structures, iii) radioprotection structures and organization, iv) exposure of personnel, v) accident analysis and relevant radiological consequences, vi) radioactive wastes assessment and management. In conclusion, the analysis points out the needing of a special attention to the radiological exposure of the workers in order to demonstrate at least the same level of safety as that reached at the nuclear fission facilities.Keywords: fusion facilities, high energy neutrons, licensing process, radiation protection
Procedia PDF Downloads 3501781 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate
Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon
Abstract:
The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.Keywords: encapsulation, flexible, low melting point alloy, OLED
Procedia PDF Downloads 5961780 Simulation and Characterization of Organic Light Emitting Diodes and Organic Photovoltaics Using Physics Based Tool
Authors: T. A. Shahul Hameed, P. Predeep, Anju Iqbal, M. R. Baiju
Abstract:
Research and development in organic photovoltaic cells and Organic Light Emitting Diodes have gained wider acceptance due to the advent of many advanced techniques to enhance the efficiency and operational hours. Here we report our work on design, simulation and characterizationracterize the bulk heterojunction organic photo cell and polymer light emitting diodes in different layer configurations using ATLAS, a licensed device simulation tool. Bulk heterojuction and multilayer devices were simulated for comparing their performance parameters.Keywords: HOMO, LUMO, PLED, OPV
Procedia PDF Downloads 5841779 On the Volume of Ganglion Cell Stimulation in Visual Prostheses by Finite Element Discretization
Authors: Diego Luján Villarreal
Abstract:
Visual prostheses are designed to repair some eyesight in patients blinded by photoreceptor diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Electrode-to-cell proximity has drawn attention due to its implications on secure single-localized stimulation. Yet, few techniques are available for understanding the relationship between the number of cells activated and the current injection. We propose an answering technique by solving the governing equation for time-dependent electrical currents using finite element discretization to obtain the volume of stimulation.Keywords: visual prosthetic devices, volume for stimulation, FEM discretization, 3D simulation
Procedia PDF Downloads 711778 A Simulation-Based Study of Dust Ingression into Microphone of Indoor Consumer Electronic Devices
Authors: Zhichao Song, Swanand Vaidya
Abstract:
Nowadays, most portable (e.g., smartphones) and wearable (e.g., smartwatches and earphones) consumer hardware are designed to be dustproof following IP5 or IP6 ratings to ensure the product is able to handle potentially dusty outdoor environments. On the other hand, the design guideline is relatively vague for indoor devices (e.g., smart displays and speakers). While it is generally believed that the indoor environment is much less dusty, in certain circumstances, dust ingression is still able to cause functional failures, such as microphone frequency response shift and camera black spot, or cosmetic dissatisfaction, mainly the dust build up in visible pockets and gaps which is hard to clean. In this paper, we developed a simulation methodology to analyze dust settlement and ingression into known ports of a device. A closed system is initialized with dust particles whose sizes follow Weibull distribution based on data collected in a user study, and dust particle movement was approximated as a settlement in stationary fluid, which is governed by Stokes’ law. Following this method, we simulated dust ingression into MEMS microphone through the acoustic port and protective mesh. Various design and environmental parameters are evaluated including mesh pore size, acoustic port depth-to-diameter ratio, mass density of dust material and inclined angle of microphone port. Although the dependencies of dust resistance on these parameters are all monotonic, smaller mesh pore size, larger acoustic depth-to-opening ratio and more inclined microphone placement (towards horizontal direction) are preferred for dust resistance; these preferences may represent certain trade-offs in audio performance and compromise in industrial design. The simulation results suggest the quantitative ranges of these parameters, with more pronounced effects in the improvement of dust resistance. Based on the simulation results, we proposed several design guidelines that intend to achieve an overall balanced design from audio performance, dust resistance, and flexibility in industrial design.Keywords: dust settlement, numerical simulation, microphone design, Weibull distribution, Stoke's equation
Procedia PDF Downloads 1061777 The Relationship between Mobile Phone Usage and Secondary School Students’ Academic Performance: Work Experience at an International School
Authors: L. N. P. Wedikandage, Mohamed Razmi Zahir
Abstract:
Technology is a global imperative because of its contributions to human existence and because it has improved global socioeconomic relations. As a result, the mobile phone has become the most important mode of communication today. Smartphones, Internet-enabled devices with built-in computer software and applications, are one of the most significant inventions of the twenty-first century. Technology is advantageous to many people, especially those involved in education. It is an important learning tool for today's schoolchildren. It enables students to access online learning platforms and course resources and interact digitally. Senior secondary students, in particular, have some of the most expensive and sophisticated mobile phones, tablets, and iPads capable of connecting to the internet and various social media platforms, other websites, and so on. At present, the use of mobile phones' potential for effective teaching and learning is growing. This is due to the benefits of mobile learning, including the ability to share knowledge without any limits in space or Time and the capacity to facilitate the development of critical thinking, participatory learning, problem-solving, and the development of lifelong communication skills. However, it is yet unclear how mobile devices may affect education and how they may affect opportunities for learning. As a result, the purpose of this research was to ascertain the relationship between mobile phone usage and the academic Performance of secondary-level students at an international school in Sri Lanka. The study's sample consisted of 523 secondary-level students from an international school, ranging from Form 1 to Upper 6. For the study, a survey research design and questionnaires were used. Google Forms was used to create the students' survey. There were three hypotheses tested to find out the relationship between mobile phone usage and academic preference. The findings show that there is a positive relationship between mobile phone usage and academic performance among secondary school students (the number of students obtaining simple passes is significantly higher when mobile phones are being used for more than 7 hours), no relationship between mobile phone usage and academic performance among secondary school students of different parents' occupations, and a relationship between the frequency of mobile phone usage and academic performance among secondary school students.Keywords: mobile phone, academic performance, secondary level, international schools
Procedia PDF Downloads 841776 Flicker Detection with Motion Tolerance for Embedded Camera
Authors: Jianrong Wu, Xuan Fu, Akihiro Higashi, Zhiming Tan
Abstract:
CMOS image sensors with a rolling shutter are used broadly in the digital cameras embedded in mobile devices. The rolling shutter suffers the flicker artifacts from the fluorescent lamp, and it could be observed easily. In this paper, the characteristics of illumination flicker in motion case were analyzed, and two efficient detection methods based on matching fragment selection were proposed. According to the experimental results, our methods could achieve as high as 100% accuracy in static scene, and at least 97% in motion scene.Keywords: illumination flicker, embedded camera, rolling shutter, detection
Procedia PDF Downloads 4181775 Fault Location Detection in Active Distribution System
Authors: R. Rezaeipour, A. R. Mehrabi
Abstract:
Recent increase of the DGs and microgrids in distribution systems, disturbs the tradition structure of the system. Coordination between protection devices in such a system becomes the concern of the network operators. This paper presents a new method for fault location detection in the active distribution networks, independent of the fault type or its resistance. The method uses synchronized voltage and current measurements at the interconnection of DG units and is able to adapt to changes in the topology of the system. The method has been tested on a 38-bus distribution system, with very encouraging results.Keywords: fault location detection, active distribution system, micro grids, network operators
Procedia PDF Downloads 7841774 An Empirical Investigation of the Challenges of Secure Edge Computing Adoption in Organizations
Authors: Hailye Tekleselassie
Abstract:
Edge computing is a spread computing outline that transports initiative applications closer to data sources such as IoT devices or local edge servers, and possible happenstances would skull the action of new technologies. However, this investigation was attained to investigation the consciousness of technology and communications organization workers and computer users who support the service cloud. Surveys were used to achieve these objectives. Surveys were intended to attain these aims, and it is the functional using survey. Enquiries about confidence are also a key question. Problems like data privacy, integrity, and availability are the factors affecting the company’s acceptance of the service cloud.Keywords: IoT, data, security, edge computing
Procedia PDF Downloads 821773 Music, Politics and Modernisation in China: An Analysis of 'Red Detachment of Women'
Authors: Lei Ping
Abstract:
The Western discourse of ‘modernity’ along with its objects, ideologies, and culture are brought to Imperial China by force of arms which confronted Chinese traditions. The struggle and conflicts between ‘Zhong’ (Chinese) and ‘Wai' (foreign), ‘Jiu’(Old) and ‘Xin’(New) are continuous during the turbulent times of 19th Century China. Since the foundation of the People’s Republic in 1949, China has gone through radical social, economic and cultural reform under the Communist Party’s highly centralised and autocratic political regime. The regime and Chairman Mao’s eagerness to identify the new China and establish a revolutionary mono-culture have increased political influence on the modernisation process. The ten years of Cultural Revolution (1966-76) have commonly been neglected and separated from China’s modern history due to its political, emotional and various other associations. Its cultural productions which dictated the Chinese stages during this period, namely the yangbanxi (Model Works), are largely viewed as political propaganda material with little or no artistic value in the nation’s cultural development. This paper argues that far from being anti modernisation of culture, the yangbanxi carry continuities that originate from before the cultural revolution and influence later cultural productions up till today. The focus of the paper is on Hongse Niangzijun (The Red Detachment of Women), a ballet yangbanxi (Model Works) which was performed to President Nixon during his visit to China in 1972. It depicts the female soldier Wu Qionghua’s life story: a transformation from a peasant girl to a mature communist soldier. The first part of the paper begins with an introduction to the cultural, social and political contexts under which the ballet was created and made a yangbanxi (Model work). The second part examines the application of musical devices (e.g. instrumentation, leitmotif), ranging from typical Western techniques to Chinese musical and theatrical traditions. By analysing, connecting and comparing these musical devices of various origins, the paper illustrates that the yangbanxi (Model Works) largely contributes to the ever-present, continuing and evolving modernisation of contemporary Chinese culture.Keywords: cultural revolution, Hongse Niangzijun (Red Detachment of Women), modern China, music, Yangbanxi (model works)
Procedia PDF Downloads 2431772 Novel Routes to the Synthesis and Functionalization of Metallic and Semiconductor Thin Film and Nanoparticles
Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien
Abstract:
The process of assembling metal nanoparticles at the interface of two liquids has received a great deal of attention over the past few years due to a wide range of important applications and their unusual properties as compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: Firstly, to describe the achievement of a closed loop recycling for producing cadmium sulfide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulfides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferrofluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Coinage metals like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.Keywords: metal nanoparticles, core/shell structures and semiconductors, ferromagnetic properties, closed loop recycling, liquid/liquid interface
Procedia PDF Downloads 4581771 The Experience with SiC MOSFET and Buck Converter Snubber Design
Authors: Petr Vaculik
Abstract:
The newest semiconductor devices on the market are MOSFET transistors based on the silicon carbide – SiC. This material has exclusive features thanks to which it becomes a better switch than Si – silicon semiconductor switch. There are some special features that need to be understood to enable the device’s use to its full potential. The advantages and differences of SiC MOSFETs in comparison with Si IGBT transistors have been described in first part of this article. Second part describes driver for SiC MOSFET transistor and last part of article represents SiC MOSFET in the application of buck converter (step-down) and design of simple RC snubber.Keywords: SiC, Si, MOSFET, IGBT, SBD, RC snubber
Procedia PDF Downloads 4811770 Electrodermal Activity Measurement Using Constant Current AC Source
Authors: Cristian Chacha, David Asiain, Jesús Ponce de León, José Ramón Beltrán
Abstract:
This work explores and characterizes the behavior of the AFE AD5941 in impedance measurement using an embedded algorithm with a constant current AC source. The main aim of this research is to improve the exact measurement of impedance values for their application in EDA-focused wearable devices. Through comprehensive study and characterization, it has been observed that employing a measurement sequence with a constant current source produces results with increased dispersion but higher accuracy. As a result, this approach leads to a more accurate system for impedance measurement.Keywords: EDA, constant current AC source, wearable, precision, accuracy, impedance
Procedia PDF Downloads 1051769 DNA Nano Wires: A Charge Transfer Approach
Authors: S. Behnia, S. Fathizadeh, A. Akhshani
Abstract:
In the recent decades, DNA has increasingly interested in the potential technological applications that not directly related to the coding for functional proteins that is the expressed in form of genetic information. One of the most interesting applications of DNA is related to the construction of nanostructures of high complexity, design of functional nanostructures in nanoelectronical devices, nanosensors and nanocercuits. In this field, DNA is of fundamental interest to the development of DNA-based molecular technologies, as it possesses ideal structural and molecular recognition properties for use in self-assembling nanodevices with a definite molecular architecture. Also, the robust, one-dimensional flexible structure of DNA can be used to design electronic devices, serving as a wire, transistor switch, or rectifier depending on its electronic properties. In order to understand the mechanism of the charge transport along DNA sequences, numerous studies have been carried out. In this regard, conductivity properties of DNA molecule could be investigated in a simple, but chemically specific approach that is intimately related to the Su-Schrieffer-Heeger (SSH) model. In SSH model, the non-diagonal matrix element dependence on intersite displacements is considered. In this approach, the coupling between the charge and lattice deformation is along the helix. This model is a tight-binding linear nanoscale chain established to describe conductivity phenomena in doped polyethylene. It is based on the assumption of a classical harmonic interaction between sites, which is linearly coupled to a tight-binding Hamiltonian. In this work, the Hamiltonian and corresponding motion equations are nonlinear and have high sensitivity to initial conditions. Then, we have tried to move toward the nonlinear dynamics and phase space analysis. Nonlinear dynamics and chaos theory, regardless of any approximation, could open new horizons to understand the conductivity mechanism in DNA. For a detailed study, we have tried to study the current flowing in DNA and investigated the characteristic I-V diagram. As a result, It is shown that there are the (quasi-) ohmic areas in I-V diagram. On the other hand, the regions with a negative differential resistance (NDR) are detectable in diagram.Keywords: DNA conductivity, Landauer resistance, negative dierential resistance, Chaos theory, mean Lyapunov exponent
Procedia PDF Downloads 4251768 The Response of LCC to DC System Faults and HVDC Re-Establishment
Authors: Mesbah Tarek, Kelaiaia Samia, Chiheb Sofien, Kelaiaia Mounia Samira, Labar Hocine
Abstract:
As every power systems short circuit failure can occur for HVDC at the DC link. So, the power devices should be protected against over heath produced by this over-current. This can be achieved through the power switchers or fast breaker. After short circuit the system is unable to restart, only after a time delay, because of the potential distribution along the DC link line. An appropriate fast and safety control is proposed and tested successfully. The detailed development and discussion of these faults is presented in this paper.Keywords: HVDC, DC link, switchers, short circuit, faults
Procedia PDF Downloads 5721767 Immobilizing Quorum Sensing Inhibitors on Biomaterial Surfaces
Authors: Aditi Taunk, George Iskander, Kitty Ka Kit Ho, Mark Willcox, Naresh Kumar
Abstract:
Bacterial infections on biomaterial implants and medical devices accounts for 60-70% of all hospital acquired infections (HAIs). Treatment or removal of these infected devices results in high patient mortality and morbidity along with increased hospital expenses. In addition, with no effective strategies currently available and rapid development of antibacterial resistance has made device-related infections extremely difficult to treat. Therefore, in this project we have developed biomaterial surfaces using antibacterial compounds that inhibit biofilm formation by interfering with the bacterial communication mechanism known as quorum sensing (QS). This study focuses on covalent attachment of potent quorum sensing (QS) inhibiting compounds, halogenated furanones (FUs) and dihydropyrrol-2-ones (DHPs), onto glass surfaces. The FUs were attached by photoactivating the azide groups on the surface, and the acid functionalized DHPs were immobilized on amine surface via EDC/NHS coupling. The modified surfaces were tested in vitro against pathogenic organisms such as Staphylococcus aureus and Pseudomonas aeruginosa using confocal laser scanning microscopy (CLSM). Successful attachment of compounds on the substrates was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antibacterial efficacy was assessed, and significant reduction in bacterial adhesion and biofilm formation was observed on the FU and DHP coated surfaces. The activity of the coating was dependent upon the type of substituent present on the phenyl group of the DHP compound. For example, the ortho-fluorophenyl DHP (DHP-2) exhibited 79% reduction in bacterial adhesion against S. aureus and para-fluorophenyl DHP (DHP-3) exhibited 70% reduction against P. aeruginosa. The results were found to be comparable to DHP coated surfaces prepared in earlier study via Michael addition reaction. FUs and DHPs were able to retain their in vitro antibacterial efficacy after covalent attachment via azide chemistry. This approach is a promising strategy to develop efficient antibacterial biomaterials to reduce device related infections.Keywords: antibacterial biomaterials, biomedical device-related infections, quorum sensing, surface functionalization
Procedia PDF Downloads 2671766 Interactive Teaching and Learning Resources for Bilingual Education
Authors: Sarolta Lipóczi, Ildikó Szabó
Abstract:
The use of ICT in European Schools has increased over the last decade but there is still room for improvement. Also interactive technology is often used below its technical and pedagogical potentials. The pedagogical potential of interactive technology in classrooms has not yet reached classrooms in different countries and in a substantial way. To develop these materials cooperation between educational researchers and teachers from different backgrounds is necessary. INTACT project brings together experts from science education, mathematics education, social science education and foreign language education – with a focus on bilingual education – and teachers in secondary and primary schools to develop a variety of pedagogically qualitative interactive teaching and learning resources. Because of the backgrounds of the consortium members INTACT project focuses on the areas of science, mathematics and social sciences. To combine these two features (science/math and foreign language) the project focuses on bilingual education. A big issue supported by ‘interactiveness’ is social and collaborative learning. The easy way to communicate and collaborate offered by web 2.0 tools, mobile devices connected to the learning material allows students to work and learn together. There will be a wide range of possibilities for school co-operations at regional, national and also international level that allows students to communicate and cooperate with other students beyond the classroom boarders while using these interactive teaching materials. Opening up the learning scenario enhance the social, civic and cultural competences of the students by advocating their social skills and improving their cultural appreciation for other nations in Europe. To enable teachers to use the materials in indented ways descriptions of successful learning scenarios (i.e. using design patterns) will be provided as well. These materials and description will be made available to teachers by teacher trainings, teacher journals, booklets and online materials. The resources can also be used in different settings including the use of a projector and a touchpad or other technical interactive devices for the input i.e. mobile phones. Kecskemét College as a partner of INTACT project has developed two teaching and learning resources in the area of foreign language teaching. This article introduces these resources as well.Keywords: bilingual educational settings, international cooperation, interactive teaching and learning resources, work across culture
Procedia PDF Downloads 3951765 Development of All-in-One Solar Kit
Authors: Azhan Azhar, Mohammed Sakib, Zaurez Ahmad
Abstract:
The energy we receive from the sun is known as solar energy, and it is a reliable, long-lasting, eco-friendly and the most widely used energy source in the 21st century. It is. There are several techniques for harnessing solar energy, and we are all seeing large utility-scale projects to collect maximum amperes from the sun using current technologies. Solar PV is now on the rise as a means of harvesting energy from the sun. Moving a step further, our project is focused on designing an All-in-one portable Solar Energy based solution. We considered the minimum load conditions and evaluated the requirements of various devices utilized in this study to resolve the power requirements of small stores, hawkers, or travelers.Keywords: DOD-depth of discharge, pulse width modulation charge controller, renewable energy, solar PV- solar photovoltaic
Procedia PDF Downloads 3671764 Strong Microcapsules with Macroporous Polymer Shells
Authors: Eve S. A. Loiseau, Marion Frey, Yves Blickenstorfer, Fabian Niedermair, André R. Studart
Abstract:
Porous microcapsules have a broad range of applications that require a robust shell. We propose a new method to produce macroporous polymer capsules with controlled size, shell thickness, porosity and mechanical properties using co-flow flow-focusing glass capillary devices. The porous structure was investigated through SEM and the permeability through confocal microscopy. Compression tests on single capsules were performed. We obtained microcapsules with tailored permeability from open to close pores structures and able to withstand loads up to 150 g.Keywords: microcapsules, micromechanics, porosity, polymer shells
Procedia PDF Downloads 446