Search results for: current density distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16170

Search results for: current density distribution

15480 Polycaprolactone/Thermally Exfoliated Graphene Oxide Biocomposite Films: A Promising Moisture Absorption Behavior

Authors: Neetu Malik, Sharad Shrivastava, Subrata Bandhu Ghosh

Abstract:

Biocomposite materials were fabricated using mixing biodegradable polymer polycaprolactone (PCL) and Thermally Exfoliated Graphene Oxide (TEGO) through solution casting. Various samples of biocomposite films were prepared by varying the TEGO wt% composition by 0.1%, 0.5%, 1% and 1.5%. Thereafter, the density and water absorption of the composites were investigated with respect to immersion time in water. The moisture absorption results show that with an increase in weight percentage (from 0.1 to wt 1.5%) of TEGO within the biopolymer films, the absorption value of bio-nanocomposite films reduced rapidly from 27.4% to 14.3%. The density of hybrid composites also increased with increase in weight percentage of TEGO. These results indicate that the optimized composition of constituents in composite membrane could effectively reduce the anhydrous conditions of bio-composite film.

Keywords: thermally exfoliated graphene oxide, PCL, water absorption, density

Procedia PDF Downloads 313
15479 Preparation of Fe3Si/Ferrite Micro-and Nano-Powder Composite

Authors: Radovan Bures, Madgalena Streckova, Maria Faberova, Pavel Kurek

Abstract:

Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.

Keywords: micro- and nano-composite, soft magnetic materials, microwave sintering, mechanical and electric properties

Procedia PDF Downloads 364
15478 Dietary Magnesium, Lipids, and Hypertension: New Insights and Unsolved Mysteries

Authors: Elena Pello, Martin Bobak, Yuri Nikitin

Abstract:

In current issue we evaluated integration of magnesium with lipids; the attractive findings were obtained in men and women; the crucial ties of magnesium with total cholesterol in hypertensive men, with total cholesterol in concordance with low-density lipoprotein cholesterol in hypertensive women were disclosed; unanswered questions were trapped, difficulties were surmounted, and magnesium deficiency perseverance in pathogenesis of cardiovascular disease development was expressed; nutrients as well as risk factors may contribute to cardiovascular complications.

Keywords: dietary, magnesium, hypertension, lipids

Procedia PDF Downloads 537
15477 Bio-Based Polyethylene/Rice Starch Composite Prepared by Twin Screw Extruder

Authors: Waris Piyaphon, Sathaphorn O-Suwankul, Kittima Bootdee, Manit Nithitanakul

Abstract:

Starch from rice was used as a filler in low density polyethylene in preparation of low density polyethylene/rice starch composite. This study aims to prepare LDPE/rice starch composites. Glycerol (GC) was used as a plasticizer in order to increase dispersion and reduce agglomeration of rice starch in low density polyethylene (LDPE) matrix. Low density polyethylene grafted maleic anhydride (LDPE-g-MA) was used as a compatibilizer to increase the compatibility between LDPE and rice starch. The content of rice starch was varied between 10, 20, and 30 %wt. Results indicated that increase of rice starch content reduced tensile strength at break, elongation, and impact strength of composites. LDPE-g-MA showed positive effect on mechanical properties which increased in tensile strength and impact properties as well as compatibility between rice starch and LDPE matrix. Moreover, the addition of LDPE-g-MA significantly improved the impact strength by 50% compared to neat composite. The incorporation of GC enhanced the processability of composite. Introduction of GC affected the viscosity after blending by reducing the viscosity at all shear rate. The presence of plasticizer increased the impact strength but decreased the stiffness of composite. Water absorption of the composite was increased when plasticizer was added.

Keywords: composite material, plastic starch composite, polyethylene composite, PE grafted maleic anhydride

Procedia PDF Downloads 209
15476 Physical Property Characterization of Adult Dairy Nutritional Products for Powder Reconstitution

Authors: Wei Wang, Martin Chen

Abstract:

The reconstitution behaviours of nutritional products could impact user experience. Reconstitution issues such as lump formation and white flecks sticking to bottles surfaces could be very unappealing for the consumers in milk preparation. The controlling steps in dissolving instant milk powders include wetting, swelling, sinking, dispersing, and dissolution as in the literature. Each stage happens simultaneously with the others during milk preparation, and it is challenging to isolate and measure each step individually. This study characterized three adult nutritional products for different properties including particle size, density, dispersibility, stickiness, and capillary wetting to understand the relationship between powder physical properties and their reconstitution behaviours. From the results, the formation of clumps can be caused by different factors limiting the critical steps of powder reconstitution. It can be caused by small particle size distribution, light particle density limiting powder wetting, or the rapid swelling and dissolving of particle surface materials to impede water penetration in the capillary channels formed by powder agglomerates. For the grain or white flecks formation in milk preparation, it was believed to be controlled by dissolution speed of the particles after dispersion into water. By understanding those relationship between fundamental powder structure and their user experience in reconstitution, this information provides us new and multiple perspectives on how to improve the powder characteristics in the commercial manufacturing.

Keywords: characterization, dairy nutritional powder, physical property, reconstitution

Procedia PDF Downloads 103
15475 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)

Authors: T. Zergoug, S. E. H. Abaidia, A. Nedjar, M. Y. Mokeddem

Abstract:

Physical properties of uranium di-nitride (UN2) were investigated in detail using first principles calculations based on density functional theory. To treat the strong correlation effects caused by 5f Uranium valence electrons, on-site Coulomb interaction correction via the Hubbard-like term, U (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard U is strong like Young modulus but for others it is weakly noticeable such as the density of state (DOS) or bulk modulus. We noticed also that up from U=7.5 eV, elastic results become not conform to the cubic cell elastic criteria since the C44 values turn out to be negative.

Keywords: uranium diNitride, UN2, DFT+U, elastic properties

Procedia PDF Downloads 452
15474 Hounsfield-Based Automatic Evaluation of Volumetric Breast Density on Radiotherapy CT-Scans

Authors: E. M. D. Akuoko, Eliana Vasquez Osorio, Marcel Van Herk, Marianne Aznar

Abstract:

Radiotherapy is an integral part of treatment for many patients with breast cancer. However, side effects can occur, e.g., fibrosis or erythema. If patients at higher risks of radiation-induced side effects could be identified before treatment, they could be given more individual information about the risks and benefits of radiotherapy. We hypothesize that breast density is correlated with the risk of side effects and present a novel method for automatic evaluation based on radiotherapy planning CT scans. Methods: 799 supine CT scans of breast radiotherapy patients were available from the REQUITE dataset. The methodology was first established in a subset of 114 patients (cohort 1) before being applied to the whole dataset (cohort 2). All patients were scanned in the supine position, with arms up, and the treated breast (ipsilateral) was identified. Manual experts contour available in 96 patients for both the ipsilateral and contralateral breast in cohort 1. Breast tissue was segmented using atlas-based automatic contouring software, ADMIRE® v3.4 (Elekta AB, Sweden). Once validated, the automatic segmentation method was applied to cohort 2. Breast density was then investigated by thresholding voxels within the contours, using Otsu threshold and pixel intensity ranges based on Hounsfield units (-200 to -100 for fatty tissue, and -99 to +100 for fibro-glandular tissue). Volumetric breast density (VBD) was defined as the volume of fibro-glandular tissue / (volume of fibro-glandular tissue + volume of fatty tissue). A sensitivity analysis was performed to verify whether calculated VBD was affected by the choice of breast contour. In addition, we investigated the correlation between volumetric breast density (VBD) and patient age and breast size. VBD values were compared between ipsilateral and contralateral breast contours. Results: Estimated VBD values were 0.40 (range 0.17-0.91) in cohort 1, and 0.43 (0.096-0.99) in cohort 2. We observed ipsilateral breasts to be denser than contralateral breasts. Breast density was negatively associated with breast volume (Spearman: R=-0.5, p-value < 2.2e-16) and age (Spearman: R=-0.24, p-value = 4.6e-10). Conclusion: VBD estimates could be obtained automatically on a large CT dataset. Patients’ age or breast volume may not be the only variables that explain breast density. Future work will focus on assessing the usefulness of VBD as a predictive variable for radiation-induced side effects.

Keywords: breast cancer, automatic image segmentation, radiotherapy, big data, breast density, medical imaging

Procedia PDF Downloads 133
15473 Experimental and Theoretical Approach, Hirshfeld Surface, Reduced Density Gradient, Molecular Docking of a Thiourea Derivative

Authors: Noureddine Benharkat, Abdelkader Chouaih, Nourdine Boukabcha

Abstract:

A thiourea derivative compound was synthesized and subjected to structural analysis using single-crystal X-ray diffraction (XRD). The crystallographic data unveiled its crystallization in the P21/c space group within the monoclinic system. Examination of the dihedral angles indicated a notable non-planar structure. To support and interpret these resulats, density functional theory (DFT) calculations were conducted utilizing the B3LYP functional along with a 6–311 G (d, p) basis set. Additionally, to assess the contribution of intermolecular interactions, Hirshfeld surface analysis and 2D fingerprint plots were employed. Various types of interactions, whether weak intramolecular or intermolecular, within a molecule can significantly impact its stability. The distinctive signature of non-covalent interactions can be detected solely through electron density analysis. The NCI-RDG analysis was employed to investigate both repulsive and attractive van der Waals interactions while also calculating the energies associated with intermolecular interactions and their characteristics. Additionally, a molecular docking study was studied to explain the structure-activity relationship, revealing that the title compound exhibited an affinity energy of -6.8 kcal/mol when docked with B-DNA (1BNA).

Keywords: computational chemistry, density functional theory, crystallography, molecular docking, molecular structure, powder x-ray diffraction, single crystal x-ray diffraction

Procedia PDF Downloads 60
15472 Design and Control of a Knee Rehabilitation Device Using an MR-Fluid Brake

Authors: Mina Beheshti, Vida Shams, Mojtaba Esfandiari, Farzaneh Abdollahi, Abdolreza Ohadi

Abstract:

Most of the people who survive a stroke need rehabilitation tools to regain their mobility. The core function of these devices is a brake actuator. The goal of this study is to design and control a magnetorheological brake which can be used as a rehabilitation tool. In fact, the fluid used in this brake is called magnetorheological fluid or MR that properties can change by variation of the magnetic field. The braking properties can be set as control by using this feature of the fluid. In this research, different MR brake designs are first introduced in each design, and the dimensions of the brake have been determined based on the required torque for foot movement. To calculate the brake dimensions, it is assumed that the shear stress distribution in the fluid is uniform and the fluid is in its saturated state. After designing the rehabilitation brake, the mathematical model of the healthy movement of a healthy person is extracted. Due to the nonlinear nature of the system and its variability, various adaptive controllers, neural networks, and robust have been implemented to estimate the parameters and control the system. After calculating torque and control current, the best type of controller in terms of error and control current has been selected. Finally, this controller is implemented on the experimental data of the patient's movements, and the control current is calculated to achieve the desired torque and motion.

Keywords: rehabilitation, magnetorheological fluid, knee, brake, adaptive control, robust control, neural network control, torque control

Procedia PDF Downloads 154
15471 Parameters Estimation of Power Function Distribution Based on Selective Order Statistics

Authors: Moh'd Alodat

Abstract:

In this paper, we discuss the power function distribution and derive the maximum likelihood estimator of its parameter as well as the reliability parameter. We derive the large sample properties of the estimators based on the selective order statistic scheme. We conduct simulation studies to investigate the significance of the selective order statistic scheme in our setup and to compare the efficiency of the new proposed estimators.

Keywords: fisher information, maximum likelihood estimator, power function distribution, ranked set sampling, selective order statistics sampling

Procedia PDF Downloads 464
15470 Development and Characterization of Expandable TPEs Compounds for Footwear Applications

Authors: Ana Elisa Ribeiro Costa, Sónia Daniela Ferreira Miranda, João Pedro De Carvalho Pereira, João Carlos Simões Bernardo

Abstract:

Elastomeric thermoplastics (TPEs) have been widely used in the footwear industry over the years. Recently this industry has been requesting materials that can combine lightweight and high abrasion resistance. Although there are blowing agents on the market to improve the lightweight, when these are incorporated into molten polymers during the extrusion or injection molding, it is necessary to have some specific processing conditions (e.g. effect of temperature and hydrodynamic stresses) to obtain good properties and acceptable surface appearance on the final products. Therefore, it is a great advantage for the compounder industry to acquire compounds that already include the blowing agents. In this way, they can be handled and processed under the same conditions as a conventional raw material. In this work, the expandable TPEs compounds, namely a TPU and a SEBS, with the incorporation of blowing agents, have been developed through a co-rotating modular twin-screw parallel extruder. Different blowing agents such as thermo-expandable microspheres and an azodicarbonamide were selected and different screw configurations and temperature profiles were evaluated since these parameters have a particular influence on the expansion inhibition of the blowing agents. Furthermore, percentages of incorporation were varied in order to investigate their influence on the final product properties. After the extrusion of these compounds, expansion was tested by the injection process. The mechanical and physical properties were characterized by different analytical methods like tensile, flexural and abrasive tests, determination of hardness and density measurement. Also, scanning electron microscopy (SEM) was performed. It was observed that it is possible to incorporate the blowing agents on the TPEs without their expansion on the extrusion process. Only with reprocessing (injection molding) did the expansion of the agents occur. These results are corroborated by SEM micrographs, which show a good distribution of blowing agents in the polymeric matrices. The other experimental results showed a good mechanical performance and its density decrease (30% for SEBS and 35% for TPU). This study suggested that it is possible to develop optimized compounds for footwear applications (e.g., sole shoes), which only will be able to expand during the injection process.

Keywords: blowing agents, expandable thermoplastic elastomeric compounds, low density, footwear applications

Procedia PDF Downloads 209
15469 Theoretical Investigation of Gas Adsorption on Metal- Graphene Surface

Authors: Fatemeh Safdari, Amirnaser Shamkhali, Gholamabbas Parsafar

Abstract:

Carbon nanostructures are of great importance in academic research and industry, which can be mentioned to chemical sensors, catalytic processes, pharmaceutical and environmental issues. Common point in all of these applications is the occurrence of adsorption of molecules on these structures. Important carbon nanostructures in this case are mainly nanotubes and graphene. To modify pure graphene, recently, many experimental and theoretical studies have carried out to investigate of metal adsorption on graphene. In this work, the adsorption of CO molecules on pure graphene and on metal adatom on graphene surface has been simulated based on density functional theory (DFT). All calculations were performed by PBE functional and Troullier-Martins pseudopotentials. Density of states (DOS) for graphene-CO, graphen and CO around the Fermi energy has been moved and very small mixing occured which implies the physisorption of CO on the bare graphen surface. While, the results have showed that CO adsorption on transition-metal adatom on graphene surface is chemisorption.

Keywords: adsorption, density functional theory, graphene, metal adatom

Procedia PDF Downloads 348
15468 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation

Authors: Yaping Zhao

Abstract:

In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.

Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density

Procedia PDF Downloads 506
15467 MnO₂-Carbon Nanotubes Catalyst for Enhanced Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cell

Authors: Abidullah, Basharat Hussain, Jong Seok Kim

Abstract:

Polymer electrolyte membrane fuel cell (PEMFC) is an electrochemical cell, which undergoes an oxygen reduction reaction to produce electrical energy. Platinum (Pt) metal has been used as a catalyst since its inception, but expensiveness is the major obstacle in the commercialization of fuel cells. Herein a non-precious group metal (NPGM) is employed instead of Pt to reduce the cost of PEMFCs. Manganese dioxide impregnated carbon nanotubes (MnO₂-CNTs composite) is a catalyst having excellent electrochemical properties and offers a better alternative to the Platinum-based PEMFC. The catalyst is synthesized by impregnating the transition metal on large surface carbonaceous CNTs by hydrothermal synthesis techniques. To enhance the catalytic activity and increase the volumetric current density, the sample was pyrolyzed at 800ᵒC under a nitrogen atmosphere. During pyrolysis, the nitrogen was doped in the framework of CNTs. Then the material was treated with acid for removing the unreacted metals and adding oxygen functional group to the CNT framework. This process ameliorates the catalytic activity of the manganese-based catalyst. The catalyst has been characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and the catalyst activity has been examined by rotating disc electrode (RDE) experiment. The catalyst was strong enough to withstand an austere alkaline environment in experimental conditions and had a high electrocatalytic activity for oxygen reduction reaction (ORR). Linear Sweep Voltammetry (LSV) depicts an excellent current density of -4.0 mA/cm² and an overpotential of -0.3V vs. standard calomel electrode (SCE) in 0.1M KOH electrolyte. Rotating disk electrode (RDE) was conducted at 400, 800, 1200, and 1600 rpm. The catalyst exhibited a higher methanol tolerance and long term durability with respect to commercial Pt/C. The results for MnO₂-CNT show that the low-cost catalyst will supplant the expensive Pt/C catalyst in the fuel cell.

Keywords: carbon nanotubes, methanol fuel cell, oxygen reduction reaction, MnO₂-CNTs

Procedia PDF Downloads 125
15466 Molecular Electron Density Theory Study on the Mechanism and Selectivity of the 1,3 Dipolar Cycloaddition Reaction of N-Methyl-C-(2-Furyl) Nitrone with Activated Alkenes

Authors: Moulay Driss Mellaoui, Abdallah Imjjad, Rachid Boutiddar, Haydar Mohammad-Salim, Nivedita Acharjee, Hassan Bourzi, Souad El Issami, Khalid Abbiche, Hanane Zejli

Abstract:

We have investigated the underlying molecular processes involved in the [3+2] cycloaddition (32CA) reactions between N-methyl-C-(2-furyl) nitrone and three acetylene derivatives: 4b, 5b, and 6b. For this investigation, we utilized molecular electron density theory (MEDT) and density functional theory (DFT) methods at the B3LYP-D3/6 31G (d) computational level. These 32CA reactions, which exhibit a zwitterionic (zw-type) nature, proceed through a one-step mechanism with activation enthalpies ranging from 8.80 to 14.37 kcal mol−1 in acetonitrile and ethanol solvents. When the nitrone reacts with phenyl methyl propiolate (4b), two regioisomeric pathways lead to the formation of two products: P1,5-4b and P1,4-4b. On the other hand, when the nitrone reacts with dimethyl acetylene dicarboxylate (5b) and acetylene dicarboxylic acid (but-2-ynedioic acid) (6b), it results in the formation of a single product. Through topological analysis, we can categorize the nitrone as a zwitterionic three-atom component (TAC). Furthermore, the analysis of conceptual density functional theory (CDFT) indices classifies the 32CA reactions of the nitrone with 4b, 5b, and 6b as forward electron density flux (FEDF) reactions. The study of bond evolution theory (BET) reveals that the formation of new C-C and C-O covalent bonds does not initiate in the transition states, as the intermediate stages of these reactions display pseudoradical centers of the atoms already involved in bonding.

Keywords: 4-isoxazoline, DFT/B3LYP-D3, regioselectivity, cycloaddition reaction, MEDT, ELF

Procedia PDF Downloads 185
15465 Dislocation Density-Based Modeling of the Grain Refinement in Surface Mechanical Attrition Treatment

Authors: Reza Miresmaeili, Asghar Heydari Astaraee, Fereshteh Dolati

Abstract:

In the present study, an analytical model based on dislocation density model was developed to simulate grain refinement in surface mechanical attrition treatment (SMAT). The correlation between SMAT time and development in plastic strain on one hand, and dislocation density evolution, on the other hand, was established to simulate the grain refinement in SMAT. A dislocation density-based constitutive material law was implemented using VUHARD subroutine. A random sequence of shots is taken into consideration for multiple impacts model using Python programming language by utilizing a random function. The simulation technique was to model each impact in a separate run and then transferring the results of each run as initial conditions for the next run (impact). The developed Finite Element (FE) model of multiple impacts describes the coverage evolution in SMAT. Simulations were run to coverage levels as high as 4500%. It is shown that the coverage implemented in the FE model is equal to the experimental coverage. It is depicted that numerical SMAT coverage parameter is adequately conforming to the well-known Avrami model. Comparison between numerical results and experimental measurements for residual stresses and depth of deformation layers confirms the performance of the established FE model for surface engineering evaluations in SMA treatment. X-ray diffraction (XRD) studies of grain refinement, including resultant grain size and dislocation density, were conducted to validate the established model. The full width at half-maximum in XRD profiles can be used to measure the grain size. Numerical results and experimental measurements of grain refinement illustrate good agreement and show the capability of established FE model to predict the gradient microstructure in SMA treatment.

Keywords: dislocation density, grain refinement, severe plastic deformation, simulation, surface mechanical attrition treatment

Procedia PDF Downloads 138
15464 Powder Flow with Normalized Powder Particles Size Distribution and Temperature Analyses in Laser Melting Deposition: Analytical Modelling and Experimental Validation

Authors: Muhammad Arif Mahmood, Andrei C. Popescu, Mihai Oane, Diana Chioibascu, Carmen Ristoscu, Ion N. Mihailescu

Abstract:

Powder flow and temperature distributions are recognized as influencing factors during laser melting deposition (LMD) process, that not only affect the consolidation rate but also characteristics of the deposited layers. Herewith, two simplified analytical models will be presented to simulate the powder flow with the inclusion of powder particles size distribution in Gaussian form, under three powder jet nozzles, and temperature analyses during LMD process. The output of the 1st model will serve as the input in the 2nd model. The models will be validated with experimental data, i.e., weight measurement method for powder particles distribution and infrared imaging for temperature analyses. This study will increase the cost-efficiency of the LMD process by adjustment of the operating parameters for reaching optimal powder debit and energy. This research has received funds under the Marie Sklodowska-Curie grant agreement No. 764935, from the European Union’s Horizon 2020 research and innovation program.

Keywords: laser additive manufacturing, powder particles size distribution in Gaussian form, powder stream distribution, temperature analyses

Procedia PDF Downloads 136
15463 Particle Dust Layer Density and the Optical Wavelength Absorption Relationship in Photovoltaic Module

Authors: M. Mesrouk, A. Hadj Arab

Abstract:

This work allows highlight the effect of dust on the absorption of the optical spectrum on the photovoltaic module, the effect of the particles dust presence on the photovoltaic modules have been a microscopic scale studied with COMSOL Multi-physic software simulation. In this paper, we have supposed the dust layer as a diffraction network repetitive optical structure characterized by the spacing between particle which represented by 'd' and the simulated structure (air-dust particle-glass). In this study we can observe the relationship between the wavelength and the particle spacing, the simulation shows us that the maximum wavelength transmission value corresponding, λ0 = 400nm, which represent the spacing value between the particles dust, d = 400 nm. In fact, we can observe that while increase dust layer density the wavelength transmission value decrease, there is a relationship between the density and wavelength value which can be absorbed in a dusty photovoltaic panel.

Keywords: dust effect, photovoltaic module, spectral absorption, wavelength transmission

Procedia PDF Downloads 463
15462 Reliability Analysis of Construction Schedule Plan Based on Building Information Modelling

Authors: Lu Ren, You-Liang Fang, Yan-Gang Zhao

Abstract:

In recent years, the application of BIM (Building Information Modelling) to construction schedule plan has been the focus of more and more researchers. In order to assess the reasonable level of the BIM-based construction schedule plan, that is whether the schedule can be completed on time, some researchers have introduced reliability theory to evaluate. In the process of evaluation, the uncertain factors affecting the construction schedule plan are regarded as random variables, and probability distributions of the random variables are assumed to be normal distribution, which is determined using two parameters evaluated from the mean and standard deviation of statistical data. However, in practical engineering, most of the uncertain influence factors are not normal random variables. So the evaluation results of the construction schedule plan will be unreasonable under the assumption that probability distributions of random variables submitted to the normal distribution. Therefore, in order to get a more reasonable evaluation result, it is necessary to describe the distribution of random variables more comprehensively. For this purpose, cubic normal distribution is introduced in this paper to describe the distribution of arbitrary random variables, which is determined by the first four moments (mean, standard deviation, skewness and kurtosis). In this paper, building the BIM model firstly according to the design messages of the structure and making the construction schedule plan based on BIM, then the cubic normal distribution is used to describe the distribution of the random variables due to the collecting statistical data of the random factors influencing construction schedule plan. Next the reliability analysis of the construction schedule plan based on BIM can be carried out more reasonably. Finally, the more accurate evaluation results can be given providing reference for the implementation of the actual construction schedule plan. In the last part of this paper, the more efficiency and accuracy of the proposed methodology for the reliability analysis of the construction schedule plan based on BIM are conducted through practical engineering case.

Keywords: BIM, construction schedule plan, cubic normal distribution, reliability analysis

Procedia PDF Downloads 149
15461 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3

Authors: Mouna Mesbahi, M. Loutfi Benkhedir

Abstract:

In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.

Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K

Procedia PDF Downloads 561
15460 Data Quality Enhancement with String Length Distribution

Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda

Abstract:

Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.

Keywords: string classification, data quality, feature selection, probability distribution, string length

Procedia PDF Downloads 319
15459 SPPO-Based Cation Exchange Membranes with a Positively Charged Layer for Cation Fractionation

Authors: Noor Ul Afsar, Wengen Ji, Bin Wu, Muhammad A. Shehzad, Liang Ge, Tongwen Xu

Abstract:

The synthesis of monovalent cation perm-selective membranes (MCPMs) to efficiently discriminate amongst cations from seawater is of great importance for several industrial applications. However, a technical approach is highly desired to construct MCPMs to obtain a high ionic flux and sustain perm-selectivity simultaneously. In the present work, the thickness of the quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) (QPPO) layer on the surface of the SPPO-PVA (SPVA) composite membrane was adjusted using a facile procedure to achieve high permselectivity without scarifying the ionic flux. The thickness of the selective layer was precisely controlled using various concentrations of the QPPO solution. By the introduction of the cationic layer on the SPVA membrane, the monovalent cation can be separated from the divalent cation by their difference in charge density. The influence of the selective barrier (thickness) endows MCPMs with high perm-selectivity up to 12.7 for 0.1 mol L⁻¹ Li⁺/Mg²⁺ system, which is very satisfactory for polymeric membranes. The fabricated membranes have low electrical resistance and high limiting current density (iₗᵢₘ). Keeping in view the ED results, the prepared membranes with selective surface layers could be a viable candidate for Li⁺ selective separation from divalent cation Mg²⁺.

Keywords: monovalent cation perm-selective membranes, cation fractionation, perm-selectivity, ionic flux, electrodialysis

Procedia PDF Downloads 72
15458 Use of Dendrochronology in Estimation of Creep Velocity and Its Dependence on the Bulk Density of Soils

Authors: Mohammad Amjad Sabir, Ishtiaq Khan, Shahid Ali, Umar Shabbir, Aneel Ahmad

Abstract:

Creep, being the main silt contributor to the rivers, is a slow, downhill flow of soils. The creep velocity is measured in millimeters to a couple of centimeters per year and is determined with the help of tilt caused by creep in the vertical objects and needs at least ten years to get a reliable creep velocity. This project was devised to calculate creep velocity using dendrochronology and looking for the difference of creep velocity registered by different trees on the same slope. It was concluded that dendrochronology provides a very reliable procedure of creep velocity estimation if ‘J’ shaped trees are studied for their horizontal movement and age. The age of these trees was measured using tree coring, and the horizontal movement was measured with a conventional tape. Using this procedure it does not require decades and additionally the data reveals the creep velocity for up to 150 years and even more instead of just a decade. It was also concluded that the creep velocity does not only depend on bulk density of soil hence no pronounced effect of bulk density was detected.

Keywords: creep velocity, Galiyat, Pakistan, dendrochronology, Nagri Bala

Procedia PDF Downloads 316
15457 Data-Driven Simulations Tools for Der and Battery Rich Power Grids

Authors: Ali Moradiamani, Samaneh Sadat Sajjadi, Mahdi Jalili

Abstract:

Power system analysis has been a major research topic in the generation and distribution sections, in both industry and academia, for a long time. Several load flow and fault analysis scenarios have been normally performed to study the performance of different parts of the grid in the context of, for example, voltage and frequency control. Software tools, such as PSCAD, PSSE, and PowerFactory DIgSILENT, have been developed to perform these analyses accurately. Distribution grid had been the passive part of the grid and had been known as the grid of consumers. However, a significant paradigm shift has happened with the emergence of Distributed Energy Resources (DERs) in the distribution level. It means that the concept of power system analysis needs to be extended to the distribution grid, especially considering self sufficient technologies such as microgrids. Compared to the generation and transmission levels, the distribution level includes significantly more generation/consumption nodes thanks to PV rooftop solar generation and battery energy storage systems. In addition, different consumption profile is expected from household residents resulting in a diverse set of scenarios. Emergence of electric vehicles will absolutely make the environment more complicated considering their charging (and possibly discharging) requirements. These complexities, as well as the large size of distribution grids, create challenges for the available power system analysis software. In this paper, we study the requirements of simulation tools in the distribution grid and how data-driven algorithms are required to increase the accuracy of the simulation results.

Keywords: smart grids, distributed energy resources, electric vehicles, battery storage systsms, simulation tools

Procedia PDF Downloads 105
15456 The Effect of Irgafos 168 in the Thermostabilization of High Density Polyethylene

Authors: Mahdi Almaky

Abstract:

The thermostabilization of High Density Polyethylene (HDPE) is realized through the action of primary antioxidant such as phenolic antioxidants and secondary antioxidants as aryl phosphates. The efficiency of two secondary antioxidants, commercially named Irgafos 168 and Weston 399, was investigated using different physical, mechanical, spectroscopic, and calorimetric methods. The effect of both antioxidants on the processing stability and long term stability of HDPE produced in Ras Lanuf oil and gas processing Company were measured and compared. The combination of Irgafos 168 with Irganox 1010, as used in smaller concentration, results in a synergetic effect against thermo-oxidation and protect better than the combination of Weston 399 with Irganox 1010 against the colour change at processing temperature and during long term oxidation process.

Keywords: thermostabilization, high density polyethylene, primary antioxidant, phenolic antioxidant, Irgafos 168, Irganox 1010, Weston 399

Procedia PDF Downloads 356
15455 Composite Distributed Generation and Transmission Expansion Planning Considering Security

Authors: Amir Lotfi, Seyed Hamid Hosseini

Abstract:

During the recent past, due to the increase of electrical energy demand and governmental resources constraints in creating additional capacity in the generation, transmission, and distribution, privatization, and restructuring in electrical industry have been considered. So, in most of the countries, different parts of electrical industry like generation, transmission, and distribution have been separated in order to create competition. Considering these changes, environmental issues, energy growth, investment of private equity in energy generation units and difficulties of transmission lines expansion, distributed generation (DG) units have been used in power systems. Moreover, reduction in the need for transmission and distribution, the increase of reliability, improvement of power quality, and reduction of power loss have caused DG to be placed in power systems. On the other hand, considering low liquidity need, private investors tend to spend their money for DGs. In this project, the main goal is to offer an algorithm for planning and placing DGs in order to reduce the need for transmission and distribution network.

Keywords: planning, transmission, distributed generation, power security, power systems

Procedia PDF Downloads 481
15454 Nanostructured Transition Metal Oxides Doped Graphene for High Performance Solid-State Supercapacitor Electrodes

Authors: G. Nyongombe, Guy L. Kabongo, B. M. Mothudi, M. S. Dhlamini

Abstract:

A series of Transition Metals Oxides (TMOs) doped graphene were synthesized and successfully used as supercapacitor electrode materials. The as-synthesized materials exhibited exceptional electrochemical properties owing to the combined properties of its constituents; high surface area and good conductivity were achieved. Several analytical characterization techniques were employed to investigate the morphology, crystal structure atomic arrangement and elemental chemical state in the materials for which scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted, respectively. Moreover, the electrochemical properties of the as-synthesized materials were examined by performing cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements. Furthermore, the effect of doping concentration on the interlayer distance of the graphene materials and the charge transfer resistance are investigated and correlated to the exceptional current density which was multiplied by a factor of ~80 after TMOs doping in graphene. Finally, the resulting high capacitance obtained confirms the contribution of grapheme exceptional electronic conductivity and large surface area on the electrode materials. Such good-performing electrode materials are highly promising for supercapacitors and other energy storage devices.

Keywords: energy density, graphene, supercapacitors, TMOs

Procedia PDF Downloads 258
15453 The Extended Skew Gaussian Process for Regression

Authors: M. T. Alodat

Abstract:

In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model.

Keywords: extended skew normal distribution, Gaussian process for regression, predictive distribution, ESGPr model

Procedia PDF Downloads 554
15452 Sustainable Urban Growth of Neighborhoods: A Case Study of Alryad-Khartoum

Authors: Zuhal Eltayeb Awad

Abstract:

Alryad neighborhood is located in Khartoum town– the administrative center of the Capital of Sudan. The neighborhood is one of the high-income residential areas with villa type development of low-density. It was planned and developed in 1972 with large plots (600-875m²), wide crossing roads and balanced environment. Recently the area transformed into more compact urban form of high density, mixed-use integrated development with more intensive use of land; multi-storied apartments. The most important socio-economic process in the neighborhood has been the commercialization and deinitialization of the area in connect with the displacement of the residential function. This transformation affected the quality of the neighborhood and the inter-related features of the built environment. A case study approach was chosen to gather the necessary qualitative and quantitative data. A detailed survey on existing development pattern was carried out over the whole area of Alryad. Data on the built and social environment of the neighborhoods were collected through observations, interviews and secondary data sources. The paper reflected a theoretical and empirical interest in the particular characteristics of compact neighborhood with high density, and mixed land uses and their effect on social wellbeing of the residents all in the context of the sustainable development. The research problem is focused on the challenges of transformation that associated with compact neighborhood that created multiple urban problems, e.g., stress of essential services (water supply, electricity, and drainage), congestion of streets and demand for parking. The main objective of the study is to analyze the transformation of this area from residential use to commercial and administrative use. The study analyzed the current situation of the neighborhood compared to the five principles of sustainable neighborhood prepared by UN Habitat. The study found that the neighborhood is experienced changes that occur to inner-city residential areas and the process of change of the neighborhood was originated by external forces due to the declining economic situation of the whole country. It is evident that non-residential uses have taken place uncontrolled, unregulated and haphazardly that led to damage the residential environment and deficiency in infrastructure. The quality of urban life and in particular on levels of privacy was reduced, the neighborhood changed gradually to be a central business district that provides services to the whole Khartoum town. The change of house type may be attributed to a demand-led housing market and absence of policy. The results showed that Alryad is not fully sustainable and self-contained, street network characteristics and mixed land-uses development are compatible with the principles of sustainability. The area of streets represents 27.4% of the total area of the neighborhood. Residential density is 4,620 people/ km², that is lower than the recommendations, and the limited block land-use specialization is higher than 10% of the blocks. Most inhabitants have a high income so that there is no social mix in the neighborhood. The study recommended revision of the current zoning regulations in order to control and regulate undesirable development in the neighborhood and provide new solutions which allow promoting the neighborhood sustainable development.

Keywords: compact neighborhood, land uses, mixed use, residential area, transformation

Procedia PDF Downloads 130
15451 Enhanced Modification Effect of CeO2 on Pt-Pd Binary Catalysts for Formic Acid Oxidation

Authors: Azeem Ur Rehman, Asma Tayyaba

Abstract:

This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electro catalysts. The synthesized catalysts are characterized using different physico chemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects.

Keywords: CeO2, ordered mesoporous carbon (OMC), electro catalyst, formic acid fuel cell

Procedia PDF Downloads 493