Search results for: compressive strength
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3815

Search results for: compressive strength

3125 Effectiveness of the Use of Polycarboxylic Ether Superplasticizers in High Performance Concrete Containing Silica Fume

Authors: Alya Harichane, Badreddine Harichane

Abstract:

The incorporation of polycarboxylate ether superplasticizer (PCE) and silica fume (SF) in high-performance concretes (HPC) leads to the achievement of remarkable rheological and mechanical improvements. In the fresh state, PCEs are adsorbed on cement particles and dispersants, in turn promoting the workability of the concrete. Silica fume enables a very well compacted concrete to be obtained, which is characterized by high mechanical parameters in its hardened state. Some PCEs are incompatible with silica fume, which can result in the loss of slump and in poor rheological behavior. The main objective of the research is the study of the influence of three types of PCEs, which all have a different molecular architecture, on the rheological and mechanical behavior of high-performance concretes containing 10% of SF as a partial replacement of cement. The results show that the carboxylic density of PCE has an influence on its compatibility with SF.

Keywords: polycarboxylate-ether superplasticizer, rheology, compressive strength, high-performance concrete, silica fume

Procedia PDF Downloads 61
3124 Effect of Elastic Modulus Varieties on Helical Pile Behavior in Sand

Authors: Javad Shamsi Soosahab, Reza Ziaie Moayed

Abstract:

The compressive and tensile bearing capacity of helical piles in sand is investigated by means of numerical modeling. The analyses are carried out using two-dimensional finite-element software, Optum G2. The load–displacement behavior under compression and tension is compared in different relative densities for constant and various elastic modulus. The criterion used to find the ultimate axial load is the load corresponding to 5% of the helical diameter. The results show that relative density of sand plays an essential role in the response of ultimate capacities towards various condition. Increase in elastic modulus with depth is found to play a relatively more significant role to the increase in ultimate compressive load capacities, however tension bearing capacity decreases.

Keywords: helical piles, Optum G2, relative density, constant and various elastic modulus

Procedia PDF Downloads 134
3123 Free Vibration Analysis of Pinned-Pinned and Clamped-Clamped Equal Strength Columns under Self-Weight and Tip Force Using Differential Quadrature Method

Authors: F. Waffo Tchuimmo, G. S. Kwandio Dongoua, C. U. Yves Mbono Samba, O. Dafounansou, L. Nana

Abstract:

The strength criterion is an important condition of great interest to guarantee the stability of the structural elements. The present work is based on the study of the free vibration of Euler’s Bernoulli column of equal strength in compression while considering its own weight and the axial load in compression and tension subjected to symmetrical boundary conditions. We use the differential quadrature method to investigate the first fifth naturals frequencies parameters of the column according to the different forms of geometrical sections. The results of this work give help in making a judicious choice of type of cross-section and a better boundary condition to guarantee good stability of this type of column in civil constructions.

Keywords: free vibration, equal strength, self-weight, tip force, differential quadrature method

Procedia PDF Downloads 107
3122 Experimental Investigation on the Behavior of Steel Fibers Reinforced Concrete under Impact Loading

Authors: Feng Fu, Ahmad Bazgir

Abstract:

This study aimed to investigate and examine the structural behaviour of steel fibre reinforced concrete slabs when subjected to impact loading using drop weight method. A number of compressive tests, tensile splitting tests, as well as impact tests were conducted. The experimental work consists of testing both conventional reinforced slabs and SFRC slabs. Parameters to be considered for carrying out the test will consist of the volume fraction of steel fibre, type of steel fibres, drop weight height and number of blows. Energy absorption of slabs under impact loading and failure modes were examined in-depth and compared with conventional reinforced concrete slab are investigated.

Keywords: steel fibre reinforce concrete, compressive test, tensile splitting test, impact test

Procedia PDF Downloads 408
3121 Estimation of Stress-Strength Parameter for Burr Type XII Distribution Based on Progressive Type-II Censoring

Authors: A. M. Abd-Elfattah, M. H. Abu-Moussa

Abstract:

In this paper, the estimation of stress-strength parameter R = P(Y < X) is considered when X; Y the strength and stress respectively are two independent random variables of Burr Type XII distribution. The samples taken for X and Y are progressively censoring of type II. The maximum likelihood estimator (MLE) of R is obtained when the common parameter is unknown. But when the common parameter is known the MLE, uniformly minimum variance unbiased estimator (UMVUE) and the Bayes estimator of R = P(Y < X) are obtained. The exact con dence interval of R based on MLE is obtained. The performance of the proposed estimators is compared using the computer simulation.

Keywords: Burr Type XII distribution, progressive type-II censoring, stress-strength model, unbiased estimator, maximum-likelihood estimator, uniformly minimum variance unbiased estimator, confidence intervals, Bayes estimator

Procedia PDF Downloads 442
3120 Superhydrophobic, Heteroporous Flexible Ceramic for Micro-Emulsion Separation, Oil Sorption, and Recovery of Fats, Oils, and Grease from Restaurant Wastewater

Authors: Jhoanne Pedres Boñgol, Zhang Liu, Yuyin Qiu, King Lun Yeung

Abstract:

Flexible ceramic sorbent material can be a viable technology to capture and recover emulsified fats, oils, and grease (FOG) that often cause sanitary sewer overflows. This study investigates the sorption capacity and recovery rate of ceramic material in surfactant-stabilized oil-water emulsion by synthesizing silica aerogel: SiO₂–X via acid-base sol-gel method followed by ambient pressure drying. The SiO₂–X is amorphous, microstructured, lightweight, flexible, and highly oleophilic. It displays spring-back behavior apparent at 80% compression with compressive strength of 0.20 MPa and can stand a weight of 1000 times its own. The contact angles measured at 0° and 177° in oil and water, respectively, confirm its oleophilicity and hydrophobicity while its thermal stability even at 450 °C is confirmed via TGA. In pure oil phase, the qe,AV. of 1x1 mm SiO₂–X is 7.5 g g⁻¹ at tqe= 10 min, and a qe,AV. of 6.05 to 6.76 g g⁻¹ at tqe= 24 hrs in O/W emulsion. The filter ceramic can be reused 50 x with 75-80 % FOG recovery by manual compression.

Keywords: adsorption, aerogel, emulsion, FOG

Procedia PDF Downloads 143
3119 Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems

Authors: Mohamed Omar

Abstract:

Steel bracing members are widely used in steel structures to reduce lateral displacement and dissipate energy during earthquake motions. Concentric steel bracing provide an excellent approach for strengthening and stiffening steel buildings. Using these braces the designer can hardly adjust the stiffness together with ductility as needed because of buckling of braces in compression. In this study the use of SMA bracing and steel bracing (Mega) utilized in steel frames are investigated. The effectiveness of these two systems in rehabilitating a mid-rise eight-storey steel frames were examined using time-history nonlinear analysis utilizing Seismo-Struct software. Results show that both systems improve the strength and stiffness of the original structure but due to excellent behavior of SMA in nonlinear phase and under compressive forces this system shows much better performance than the rehabilitation system of Mega bracing.

Keywords: finite element analysis, seismic response, shapes memory alloy, steel frame, mega bracing

Procedia PDF Downloads 307
3118 Stress Concentration and Strength Prediction of Carbon/Epoxy Composites

Authors: Emre Ozaslan, Bulent Acar, Mehmet Ali Guler

Abstract:

Unidirectional composites are very popular structural materials used in aerospace, marine, energy and automotive industries thanks to their superior material properties. However, the mechanical behavior of composite materials is more complicated than isotropic materials because of their anisotropic nature. Also, a stress concentration availability on the structure, like a hole, makes the problem further complicated. Therefore, enormous number of tests require to understand the mechanical behavior and strength of composites which contain stress concentration. Accurate finite element analysis and analytical models enable to understand mechanical behavior and predict the strength of composites without enormous number of tests which cost serious time and money. In this study, unidirectional Carbon/Epoxy composite specimens with central circular hole were investigated in terms of stress concentration factor and strength prediction. The composite specimens which had different specimen wide (W) to hole diameter (D) ratio were tested to investigate the effect of hole size on the stress concentration and strength. Also, specimens which had same specimen wide to hole diameter ratio, but varied sizes were tested to investigate the size effect. Finite element analysis was performed to determine stress concentration factor for all specimen configurations. For quasi-isotropic laminate, it was found that the stress concentration factor increased approximately %15 with decreasing of W/D ratio from 6 to 3. Point stress criteria (PSC), inherent flaw method and progressive failure analysis were compared in terms of predicting the strength of specimens. All methods could predict the strength of specimens with maximum %8 error. PSC was better than other methods for high values of W/D ratio, however, inherent flaw method was successful for low values of W/D. Also, it is seen that increasing by 4 times of the W/D ratio rises the failure strength of composite specimen as %62.4. For constant W/D ratio specimens, all the strength prediction methods were more successful for smaller size specimens than larger ones. Increasing the specimen width and hole diameter together by 2 times reduces the specimen failure strength as %13.2.

Keywords: failure, strength, stress concentration, unidirectional composites

Procedia PDF Downloads 140
3117 Received Signal Strength Indicator Based Localization of Bluetooth Devices Using Trilateration: An Improved Method for the Visually Impaired People

Authors: Muhammad Irfan Aziz, Thomas Owens, Uzair Khaleeq uz Zaman

Abstract:

The instantaneous and spatial localization for visually impaired people in dynamically changing environments with unexpected hazards and obstacles, is the most demanding and challenging issue faced by the navigation systems today. Since Bluetooth cannot utilize techniques like Time Difference of Arrival (TDOA) and Time of Arrival (TOA), it uses received signal strength indicator (RSSI) to measure Receive Signal Strength (RSS). The measurements using RSSI can be improved significantly by improving the existing methodologies related to RSSI. Therefore, the current paper focuses on proposing an improved method using trilateration for localization of Bluetooth devices for visually impaired people. To validate the method, class 2 Bluetooth devices were used along with the development of a software. Experiments were then conducted to obtain surface plots that showed the signal interferences and other environmental effects. Finally, the results obtained show the surface plots for all Bluetooth modules used along with the strong and weak points depicted as per the color codes in red, yellow and blue. It was concluded that the suggested improved method of measuring RSS using trilateration helped to not only measure signal strength affectively but also highlighted how the signal strength can be influenced by atmospheric conditions such as noise, reflections, etc.

Keywords: Bluetooth, indoor/outdoor localization, received signal strength indicator, visually impaired

Procedia PDF Downloads 121
3116 Strength & Density of an Autoclaved Aerated Concrete Using Various Air Entraining Agent

Authors: Shashank Gupta, Shiva Garg

Abstract:

The purpose of the present paper is to study the changes in the strength characteristics of autoclaved aerated concrete (AAC) and also the density when different expansion agents are used. The expansion agent so used releases air in the concrete thereby making it lighter by reducing its density. It also increases the workability of the concrete. The various air entraining agents used for this study are hydrogen peroxide, oleic acid, and olive oil. The addition of these agents causes the concrete to rise like cake but it reduces the strength of concrete due to the formation of air voids. The amount of agents chosen for concrete production are 0.5%, 1%, 1.5% by weight of cement.

Keywords: AAC, olive oil, hydrogen peroxide, oleic acid, steam curing

Procedia PDF Downloads 341
3115 Acetylation of Peruvian Wood Species

Authors: A. Loayza

Abstract:

Wood acetilationhapens when woody cell wall is saturated with acetic anhydride, the free hydroxyl groups present on cellulosic structures are replaced. Thus, the capillary spaces are filled with acetyl groups, and this replacement avoids further reactions with water. But, there is no information about wood acetilation in peruvianamzonic Wood species (SchizolobiumExcelsumVoge and CalycophyllumSpruceanum). So, in this research, we test acetylation of this two peruvian species in order to assess its ability as a protection estrategy, like the artificially cultivated species common for this type of treatment. A know experimental methodology was applied, using a laboratory reactor, evaluating the time as a principal variable. In this research, we were able to evaluate weight gains. The acetylation was carriet out considering one immersion time of 3 and 6 hours on acetic anhydride, were could it be observed weight gains ranged between 14 and 20% and the improvement of mention properties such as: a) Dimensional stability and water absorption capacity improved as well as its compressive strength.

Keywords: acetylation, calycophyllum spruceanum benth. Hook. F., cedrelinga cateniformis, copaifera langsdorffii, dimensional stability, schizolobium parahybum

Procedia PDF Downloads 81
3114 Implementation of the Recursive Formula for Evaluation of the Strength of Daniels' Bundle

Authors: Vaclav Sadilek, Miroslav Vorechovsky

Abstract:

The paper deals with the classical fiber bundle model of equal load sharing, sometimes referred to as the Daniels' bundle or the democratic bundle. Daniels formulated a multidimensional integral and also a recursive formula for evaluation of the strength cumulative distribution function. This paper describes three algorithms for evaluation of the recursive formula and also their implementations with source codes in high-level programming language Python. A comparison of the algorithms are provided with respect to execution time. Analysis of orders of magnitudes of addends in the recursion is also provided.

Keywords: equal load sharing, mpmath, python, strength of Daniels' bundle

Procedia PDF Downloads 393
3113 Analysis of High-Velocity Impacts on Concrete

Authors: Conceição, J. F. M., Rebelo H., Corneliu C., Pereira L.

Abstract:

This research analyses the response of two distinct types of concrete blocks, each possessing an approximate unconfined compressive strength of 30MPa, when exposed to high-velocity impacts produced by an Explosively Formed Penetrator (EFP) traveling at an initial velocity of 1200 m/s. Given the scarcity of studies exploring high-velocity impacts on concrete, the primary aim of this research is to scrutinize how concrete behaves under high-speed impacts, ultimately contributing valuable insights to the development of protective structures. To achieve this objective, a comprehensive numerical analysis was carried out in LS-DYNA to delve into the fracture mechanisms inherent in concrete under such extreme conditions. Subsequently, the obtained numerical outcomes were compared and validated through eight experimental field tests. The methodology employed involved a robust combination of numerical simulations and real-world experiments, ensuring a comprehensive understanding of concrete behavior in scenarios involving rapid, high-energy impacts.

Keywords: high-velocity, impact, numerical analysis, experimental tests, concrete

Procedia PDF Downloads 59
3112 Laboratory Investigation of Fly Ash Based Geopolymer Stabilized Recycled Asphalt Pavement as a Base Material

Authors: Menglim Hoy, Suksun Horpibulsuk, Arul Arulrajah

Abstract:

The results of laboratory investigation of recycled asphalt pavement (RAP) – fly ash (FA) based geopolymer as a base material is presented in this paper. An alkaline activator, the mixture of NaOH and Na₂SiO₃, is used to synthesis RAP-FA based geopolymer. RAP-FA with water (RAP-FA blend) prepared as a control material. The strength develops and the strength against wet-dry was determined by the unconfined compression strength (UCS) test, then the microstructural properties were examined by scanning electron microscopy (SEM) and X-ray Diffraction (XRD) analysis. The toxicity characteristic leaching procedure (TCLP) test is conducted to measure its leachability of heavy metal. The results show both the RAP-FA blend and geopolymer can be used as a base course as its UCS values meet the minimum strength requirement specified by the Department of Highway, Thailand. The durability test results show the UCS of these materials increases with increasing the number of wet-dry cycles, reaching its peak at six wet-dry cycles. The XRD and SEM analyses indicate strength development of the RAP-FA blend occurs due to chemical reaction between a high Calcium in RAP with a high Silica and Alumina in FA led to producing calcium aluminate hydrate formation. The strength development of the RAP-FA geopolymer occurred resulted from the polymerization reaction. The TCLP results demonstrate there is no environmental risk of these stabilized materials. Furthermore, FA based geopolymer can reduce the leachability of heavy metal in the RAP-FA blend.

Keywords: recycled asphalt pavement, geopolymer, heavy metal, microstructure

Procedia PDF Downloads 85
3111 Semi Empirical Equations for Peak Shear Strength of Rectangular Reinforced Concrete Walls

Authors: Ali Kezmane, Said Boukais, Mohand Hamizi

Abstract:

This paper presents an analytical study on the behavior of reinforced concrete walls with rectangular cross section. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal shear wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood and Barda equations. Subsequently, nominal shear wall strengths from the formulas were compared with the ultimate shear wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate shear strength. Two new semi empirical equations are developed using data from tests of 57 walls for transitions walls and 27 for slender walls with the objective of improving the prediction of peak strength of walls with the most possible accurate.

Keywords: shear strength, reinforced concrete walls, rectangular walls, shear walls, models

Procedia PDF Downloads 325
3110 Effects of Variation of Centers in the Torsional Analysis of Asymmetrical Buildings by Performing Non Linear Static Analysis

Authors: Md Masihuddin Siddiqui, Abdul Haakim Mohammed

Abstract:

Earthquakes are the most unpredictable and devastating of all natural disasters. The behaviour of a building during an earthquake depends on several factors such as stiffness, adequate lateral strength, ductility, and configurations. The experience from the performance of buildings during past earthquakes has shown that the buildings with regular geometry, uniformly distributed mass and stiffness in plan as well as in elevation suffer much less damage compared to irregular configurations. The three centers namely- centre of mass, centre of strength, centre of stiffness are the torsional parameters which contribute to the strength of the building in case of an earthquake. Inertial forces and resistive forces in a structural system act through the center of mass and center of rigidity respectively which together oppose the forces that are produced during seismic excitation. So these centers of a structural system should be positioned where the structural system is the strongest so that the effects produced due to the earthquake may have a minimal effect on the structure. In this paper, the effects of variation of strength eccentricity and stiffness eccentricity in reducing the torsional responses of the asymmetrical buildings by using pushover analysis are studied. The maximum reduction of base torsion was observed in the case of minimum strength eccentricity, and the least reduction was observed in the case of minimum stiffness eccentricity.

Keywords: strength eccentricity, stiffness eccentricity, asymmetric structure, base torsion, push over analysis

Procedia PDF Downloads 279
3109 Effect of Different FRP Wrapping and Thickness of Concrete Cover on Fatigue Bond Strength of Spliced Concrete Beam

Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah

Abstract:

This paper presents results of an ongoing research program at University of Waterloo to study the effect of external FRP sheet wrap confinement along a lap splice of reinforced concrete (RC) beams on their fatigue bond strength. Fatigue loading of RC beams containing a lap splice resulted in an increase in the number and width of cracks, an increase in deflection and a decrease of the bond strength between the steel rebar and the surrounding concrete. The phase of the research described here consists of monotonic and fatigue tests of thirty two reinforced concrete beam with dimensions 2200⨉350⨉250 mm. Each beam was reinforced with two 20M bars lap spliced in the constant moment region of the tension zone and two 10M bars in the compression zone outside the constant moment region. The test variables were the presence or absence of a FRP wrapping, the type of the FRP wrapping (GFRP or CFRP), the type of loading and the fatigue load range. The test results for monotonic loading showed that the stiffness of all beams was almost same, but that the FRP sheet wrapping increased the bond strength and the deflection at ultimate load. All beams tested under fatigue loading failed by a bond failure except one CFRP wrapped beam that failed by fatigue of the main reinforcement. The FRP sheet increased the bond strength for all specimens under fatigue loading.

Keywords: lap splice, bond strength, fatigue loading, FRP

Procedia PDF Downloads 281
3108 Ultimate Strength Prediction of Shear Walls with an Aspect Ratio between One and Two

Authors: Said Boukais, Ali Kezmane, Kahil Amar, Mohand Hamizi, Hannachi Neceur Eddine

Abstract:

This paper presents an analytical study on the behavior of rectangular reinforced concrete walls with an aspect ratio between one and tow. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood equation for shear and strain compatibility analysis for flexure. Subsequently, nominal ultimate wall strengths from the formulas were compared with the ultimate wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate strength. New semi empirical equation are developed using data from tests of 46 walls with the objective of improving the prediction of ultimate strength of walls with the most possible accuracy and for all failure modes.

Keywords: prediction, ultimate strength, reinforced concrete walls, walls, rectangular walls

Procedia PDF Downloads 322
3107 The Effects of Microstructure of Directionally Solidified Al-Si-Fe Alloys on Micro Hardness, Tensile Strength, and Electrical Resistivity

Authors: Sevda Engin, Ugur Buyuk, Necmettin Marasli

Abstract:

Directional solidification of eutectic alloys attracts considerable attention because of microhardness, tensile strength, and electrical resistivity influenced by eutectic structures. In this research, we examined processing of Al–Si–Fe (Al–11.7wt.%Si–1wt.%Fe) eutectic by directional solidification. The alloy was prepared by vacuum furnace and directionally solidified in Bridgman-type equipment. During the directional solidification process, the growth rates utilized varied from 8.25 m/s to 164.80 m/s. The Al–Si–Fe system showed an eutectic transformation, which resulted in the matrix Al, Si and Al5SiFe plate phases. The eutectic spacing between (λ_Si-λ_Si, λ_(Al_5 SiFe)-λ_(Al_5 SiFe)) was measured. Additionally, the microhardness, tensile strength, and electrical resistivity of the alloy were determined using directionally solidified samples. The effects of growth rates on microhardness, tensile strength, and electrical resistivity for directionally solidified Al–Si–Fe eutectic alloy were investigated, and the relationships between them were experimentally obtained. It was found that the microhardness, tensile strength, and electrical resistivity were affected by both eutectic spacing and the solidification parameter.

Keywords: directional solidification, aluminum alloy, microstructure, electrical properties, tensile test, hardness test

Procedia PDF Downloads 284
3106 Corporate Governance and Firm Performance in the UAE

Authors: Bakr Ali Al-Gamrh, Ku Nor Izah B. Ku Ismail

Abstract:

We investigate the relationship between corporate governance, leverage, risk, and firm performance. We use a firm level panel that spans the period 2008 to 2012 of all listed firms on Abu Dhabi Stock Exchange and Dubai Financial Market. After constructing an index of corporate governance strength, we find a negative effect of corporate governance on firm performance. We, however, discover that corporate governance strength indirectly improves the negative influence of leverage on firm performance in normal times. On the contrary, the results completely reversed when there is a black swan event. Corporate governance strength plays a significantly negative role in moderating the relationship between leverage and firm performance during the financial crisis. We also reveal that corporate governance strength increases firms’ risk and deteriorates performance during crisis. Results provide evidence that corporate governance indirectly plays a completely different role in different time periods.

Keywords: corporate governance, firm performance, risk, leverage, the UAE

Procedia PDF Downloads 527
3105 Evaluation of the Use of U-Wrap Anchorage Systems for Strengthening Concrete Members Reinforced by Fiber Reinforced-Polymer Laminate

Authors: Mai A. Aljaberi

Abstract:

The anchorage of fibre-reinforced polymer (FRP) sheets is the most effective solution to prevent or delay debonding failure; this system has proven to get better levels of FRP utilization. Unfortunately, the related design information is still unclear. This shortcoming limits the widespread use of the anchorage system. In order to minimize the knowledge gap about the design of U-wrap anchors, this paper reports the results of tested beams which were strengthened with carbon fiber-reinforced polymer (CFRP) sheets at their tension sides and secured with U-wrap anchors at each end of the longitudinal CFRP. The beams were tested under four-point loading until failure. The parameters examined include the compressive strength of the concrete and the number of longitudinal CFRP. It is concluded that these parameters have a considerable effect on the debonding of the strain. The greatest improvement in the strain was 55.8% over the control beam.

Keywords: CFRP, concrete strengthening, debonding failure, debonding strain, U-wrap anchor

Procedia PDF Downloads 63
3104 An Experimental Investigation in Effect of Confining Stress and Matric Suction on the Mechanical Behavior of Sand with Different Fine Content

Authors: S. Asreazad

Abstract:

This paper presents the results that the soil volumetric strain and shear strength are closely related to the confining stress and initial matric suction under constant water content testing on the specimens of unsaturated sand with clay and silt fines contents. The silty sand specimens reached their peak strength after a very small axial strain followed by a post-peak softening towards an ultimate value. The post-peak drop in stress increased by an increment of the suction, while there is no peak strength for clayey sand specimens. The clayey sand shows compressibility and possesses ductile stress-strain behaviour. Shear strength increased nonlinearly with respect to matric suction for both soil types. When suction exceeds a certain range, the effect of suction on shear strength increment weakens gradually. Under the same confining stress, the dilatant tendencies in the silty sand increased under lower values of suction and decreased for higher suction values under the same confining stress. However, the amount of contraction increased with increasing initial suction for clayey sand specimens.

Keywords: unsaturated soils, silty sand, clayey sand, triaxial test

Procedia PDF Downloads 313
3103 Aging and Mechanical Behavior of Be-treated 7075 Aluminum Alloys

Authors: Mahmoud M. Tash, S. Alkahtani

Abstract:

The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Aging treatments were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural aging was carried out at room temperature for different periods of time. Double aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation as a function of different pre-aging and aging parameters are analysed to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be-treated 7075 alloys.

Keywords: duplex aging treatment, mechanical properties, Al-Mg-Zn (7075) alloys, manufacturing

Procedia PDF Downloads 227
3102 Push-Out Bond Strength of Two Root-End Filling Materials in Root-End Cavities Prepared by Er,Cr: YSGG Laser or Ultrasonic Technique

Authors: Noushin Shokouhinejad, Hasan Razmi, Reza Fekrazad, Saeed Asgary, Ammar Neshati, Hadi Assadian, Sanam Kheirieh

Abstract:

This study compared the push-out bond strength of mineral trioxide aggregate (MTA) and a new endodontic cement (NEC) as root-end filling materials in root-end cavities prepared by ultrasonic technique (US) or Er,Cr:YSGG laser (L). Eighty single-rooted extracted human teeth were endodontically treated, apicectomised and randomly divided into four following groups (n = 20): US/MTA, US/NEC, L/MTA and L/NEC. In US/MTA and US/NEC groups, rooted cavities were prepared with ultrasonic retrotip and filled with MTA and NEC, respectively. In L/MTA and L/NEC groups, root-end cavities were prepared using Er, Cr:YSGG laser and filled with MTA and NEC, respectively. Each root was cut apically to create a 2 mm-thick root slice for measurement of bond strength using a universal testing machine. Then, all slices were examined to determine the mode of bond failure. Data were analysed using two-way ANOVA. Root-end filling materials showed significantly higher bond strength in root-end cavities prepared using the ultrasonic technique (US/MTA and US/NEC) (P < 0.001). The bond strengths of MTA and NEC did not differ significantly. The failure modes were mainly adhesive for MTA, but cohesive for NEC. In conclusion, bond strengths of MTA and NEC to root-end cavities were comparable and higher in ultrasonically prepared cavities.

Keywords: bond strength, Er, Cr:YSGG laser, MTA, NEC, root-end cavity

Procedia PDF Downloads 331
3101 Effect of Strength Class of Concrete and Curing Conditions on Capillary Water Absorption of Self-Compacting and Conventional Concrete

Authors: E. Ebru Demirci, Remzi Şahin

Abstract:

The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC) in terms of their capillary water absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e curing condition) was determined as two levels: moisture and air curing. It was observed that, for both curing environments and all strength classes of concrete, SCCs had lower capillary water absorption values than that of CCs. It was also detected that, for both SCC and CC, capillary water absorption values of samples kept in moisture curing were significantly lower than that of samples stored in air curing. Additionally, it was determined that capillary water absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments.

Keywords: capillary water absorption, curing condition, reinforced concrete beam, self-compacting concrete

Procedia PDF Downloads 315
3100 Understanding Mudrocks and Their Shear Strength Deterioration Associated with Inundation

Authors: Haslinda Nahazanan, Afshin Asadi, Zainuddin Md. Yusoff, Nik Nor Syahariati Nik Daud

Abstract:

Mudrocks is considered as a problematic material due to their unexpected behaviour specifically when they are contacting with water or being exposed to the atmosphere. Many instability problems of cutting slopes were found lying on high slaking mudrocks. It has become one of the major concerns to geotechnical engineer as mudrocks cover up to 50% of sedimentary rocks in the geologic records. Mudrocks display properties between soils and rocks which can be very hard to understand. Therefore, this paper aims to review the definition, mineralogy, geo-chemistry, classification and engineering properties of mudrocks. As water has become one of the major factors that will rapidly change the behaviour of mudrocks, a review on the shear strength of mudrocks in Derbyshire has been made using a fully automated hydraulic stress path testing system under three states: dry, short-term inundated and long-term inundated. It can be seen that the strength of mudrocks has deteriorated as it condition changed from dry to short-term inundated and finally to long-term inundated.

Keywords: mudrocks, sedimentary rocks, inundation, shear strength

Procedia PDF Downloads 221
3099 Design and Development of High Strength Aluminium Alloy from Recycled 7xxx-Series Material Using Bayesian Optimisation

Authors: Alireza Vahid, Santu Rana, Sunil Gupta, Pratibha Vellanki, Svetha Venkatesh, Thomas Dorin

Abstract:

Aluminum is the preferred material for lightweight applications and its alloys are constantly improving. The high strength 7xxx alloys have been extensively used for structural components in aerospace and automobile industries for the past 50 years. In the next decade, a great number of airplanes will be retired, providing an obvious source of valuable used metals and great demand for cost-effective methods to re-use these alloys. The design of proper aerospace alloys is primarily based on optimizing strength and ductility, both of which can be improved by controlling the additional alloying elements as well as heat treatment conditions. In this project, we explore the design of high-performance alloys with 7xxx as a base material. These designed alloys have to be optimized and improved to compare with modern 7xxx-series alloys and to remain competitive for aircraft manufacturing. Aerospace alloys are extremely complex with multiple alloying elements and numerous processing steps making optimization often intensive and costly. In the present study, we used Bayesian optimization algorithm, a well-known adaptive design strategy, to optimize this multi-variable system. An Al alloy was proposed and the relevant heat treatment schedules were optimized, using the tensile yield strength as the output to maximize. The designed alloy has a maximum yield strength and ultimate tensile strength of more than 730 and 760 MPa, respectively, and is thus comparable to the modern high strength 7xxx-series alloys. The microstructure of this alloy is characterized by electron microscopy, indicating that the increased strength of the alloy is due to the presence of a high number density of refined precipitates.

Keywords: aluminum alloys, Bayesian optimization, heat treatment, tensile properties

Procedia PDF Downloads 105
3098 The Effect of Blood Flow Restriction on the Knee Rehabilitation

Authors: O. Casasayas, M. Vigo, R. Navarro, P. Ragazzi, P. Alvarez, A. Perez-Bellmunt

Abstract:

Introduction: The blood flow restriction training (BFR) is a method of muscle training that allows increasing the stress of muscle tissue to enhance the muscle cross-section and strength. This type of training has clear benefits in the rehabilitation field since it can improve muscle strength using low mechanical loads. The aim of this study is to know in which knee pathologies BFR has been used, what methodology was used and what were the obtained results. Study design: We performed a systematic literature search using strategies for the concepts of “blood flow restriction OR blood flow restriction training AND knee” in Medline. Articles were screened by authors and included if they used the blood flow restriction training in pathology of the knee. Results: The pathology more frequently treated by BFR was knee osteoarthritis and the variables most analyzed were strength and pain. The vascular occlusion used was 80% in the major part of studies. The groups of BFR obtained an increase of strength with less pain but not always the results are statistically significant. The evidence levels are poor in the high number of studies because in some cases there is not a control group or the evaluators were not blinded. Conclusion: The use of BFR is useful to improve muscle strength in knee pathology since it does not increase the pain, but more studies are needed to see (comprehend) if this type of treatment obtains better results than a conventional therapy. No studies have been found that compare the different occlusion effects in both the strength improvement and the pain reduction. Neither studies that analyse the effects of BFR on the muscle contractile parameters have been found.

Keywords: blood flow restriction training, knee, arthroscopy knee, physical therapy

Procedia PDF Downloads 152
3097 Evaluation of Soil Stiffness and Strength for Quality Control of Compacted Earthwork

Authors: A. Sawangsuriya, T. B. Edil

Abstract:

Microstructure and fabric of soils play an important role on structural properties e.g. stiffness and strength of compacted earthwork. Traditional quality control monitoring based on moisture-density tests neither reflects the variability of soil microstructure nor provides a direct assessment of structural property, which is the ultimate objective of the earthwork quality control. Since stiffness and strength are sensitive to soil microstructure and fabric, any independent test methods that provide simple, rapid, and direct measurement of stiffness and strength are anticipated to provide an effective assessment of compacted earthen materials’ uniformity. In this study, the soil stiffness gauge (SSG) and the dynamic cone penetrometer (DCP) were respectively utilized to measure and monitor the stiffness and strength in companion with traditional moisture-density measurements of various earthen materials used in Thailand road construction projects. The practical earthwork quality control criteria are presented herein in order to assure proper earthwork quality control and uniform structural property of compacted earthworks.

Keywords: dynamic cone penetrometer, moisture content, quality control, relative compaction, soil stiffness gauge, structural properties

Procedia PDF Downloads 342
3096 Eco-Efficient Self-Compacting Concrete for Sustainable Building

Authors: Valeria Corinaldesi

Abstract:

In general, for self-compacting concrete production, a high volume of very fine materials is necessary in order to make the concrete more fluid and cohesive. For this purpose, either rubble powder (which is a powder obtained from suitable treatment of rubble from building demolition) or ash from municipal solid waste incineration was used as mineral addition in order to ensure adequate rheological properties of the self-compacting concrete in the absence of any viscosity modifying admixture. Recycled instead of natural aggregates were used by completely substituting the coarse aggregate fraction. The fresh concrete properties were evaluated through the slump flow, the V-funnel and the L-box test. Compressive strength and segregation resistance were also determined. The results obtained showed that self-compacting concrete could be successfully developed by incorporating both recycled aggregates and waste powders with an improved quality of the concrete surface finishing. This encouraging goal, beyond technical performance, matches with the more and more widely accepted sustainable development issues.

Keywords: sustainable concrete, self compacting concrete, municipal solid waste, recycled aggregate, sustainable building

Procedia PDF Downloads 65