Search results for: commercial buildings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4016

Search results for: commercial buildings

3326 Comparison of Buyback Contracts and Concession Regimes in the Regime of the Common Law System and the Islamic Legal Regime

Authors: Javid Zarei

Abstract:

International buyback contracts are a type of contract service. These kinds of contracts are the most important instrument for attracting foreign investors in accordance with Iran's laws. These contracts have been the basis of commercial and economic relations between Iran and foreign companies for about 30 years. The legal structure of this type of contract has gradually evolved, so today, an advanced generation of it under the title of Iran Petroleum Contract is being used in the industry of Iran. This article has analytically examined the issue of Iran's commercial contracts in the oil industry and contracting services and allocated sections to examine the strengths and weaknesses of these oil contracts. Also, this research is an attempt to examine and compare the Concession regime with the Buyback contracts, each of which is derived from the common law legal system and the Islamic legal system, respectively.

Keywords: buyback contracts, concession regime, ownership, common law legal system, Islamic legal system of Iran

Procedia PDF Downloads 82
3325 Fuel Properties of Distilled Tire Pyrolytic Oil and Its Blends with Biodiesel and Commercial Diesel Fuel

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

Tires are extremely challenging to recycle due to the available chemically cross-linked polymer which constitutes their nature and therefore, they are neither fusible nor soluble and consequently, cannot be remoulded into other shapes without serious degradation. Pyrolysis of tires produces four valuable products namely; char, steel, tire pyrolytic oil (TPO) and non-condensable gases. TPO has been reported to have similar properties to commercial diesel fuel (CDF). In this study, distillation of TPO was carried out in a batch distillation column and biodiesel was produced from waste cooking oil. FTIR analysis proved that TPO can be used as a fuel due to the available compounds detected and GC analysis displayed 94% biodiesel concentration from waste cooking oil. Different blends of TPO/biodiesel, TPO/CDF and biodiesel/CDF were prepared at different ratios. Fuel properties such as viscosity, density, flash point, and calorific value were studied. Viscosity and density models were also studied to measure the quality of different blends.

Keywords: biodiesel, distillation, pyrolysis, tire

Procedia PDF Downloads 161
3324 Study on Varying Solar Blocking Depths in the Exploration of Energy-Saving Renovation of the Energy-Saving Design of the External Shell of Existing Buildings: Using Townhouse Residences in Kaohsiung City as an Example

Authors: Kuang Sheng Liu, Yu Lin Shih*, Chun Ta Tzeng, Cheng Chen Chen

Abstract:

Buildings in the 21st century are facing issues such as an extreme climate and low-carbon/energy-saving requirements. Many countries in the world are of the opinion that a building during its medium- and long-term life cycle is an energy-consuming entity. As for the use of architectural resources, including the United Nations-implemented "Global Green Policy" and "Sustainable building and construction initiative", all are working towards "zero-energy building" and "zero-carbon building" policies. Because of this, countries are cooperating with industry development using policies such as "mandatory design criteria", "green procurement policy" and "incentive grants and rebates programme". The results of this study can provide a reference for sustainable building renovation design criteria. Aimed at townhouses in Kaohsiung City, this study uses different levels of solar blocking depth to carry out evaluation of design and energy-saving renovation of the outer shell of existing buildings by using data collection and the selection of representative cases. Using building resources from a building information model (BIM), simulation and efficiency evaluation are carried out and proven with simulation estimation. This leads into the ECO-efficiency model (EEM) for the life cycle cost efficiency (LCCE) evalution. The buildings selected by this research sit in a north-south direction set with different solar blocking depths. The indoor air-conditioning consumption rates are compared. The current balcony depth of 1 metre as the simulated EUI value acts as a reference value of 100%. The solar blocking of the balcony is increased to 1.5, 2, 2.5 and 3 metres for a total of 5 different solar-blocking balcony depths, for comparison of the air-conditioning improvement efficacy. This research uses different solar-blocking balcony depths to carry out air-conditioning efficiency analysis. 1.5m saves 3.08%, 2m saves 6.74%, 2.5m saves 9.80% and 3m saves 12.72% from the air-conditioning EUI value. This shows that solar-blocking balconies have an efficiency-increasing potential for indoor air-conditioning.

Keywords: building information model, eco-efficiency model, energy-saving in the external shell, solar blocking depth.

Procedia PDF Downloads 402
3323 The Study of Flood Resilient House in Ebo-Town

Authors: Alagie Salieu Nankey

Abstract:

Flood-resistant house is the key mechanism to withstand flood hazards in Ebo-Town. It emerged simple yet powerful way of mitigating flooding in the community of Ebo- Town. Even though there are different types of buildings, little is known yet how and why flood affects building severely. In this paper, we examine three different types of flood-resistant buildings that are suitable for Ebo Town. We gather content and contextual features from six (6) respondents and used this data set to identify factors that are significantly associated with the flood-resistant house. Moreover, we built a suitable design concept. We found that amongst all the theories studied in the literature study Slit or Elevated House is the most suitable building design in Ebo-Town and Pile foundation is the most appropriate foundation type in the study area. Amongst contextual features, local materials are the most economical materials for the proposed design. This research proposes a framework that explains the theoretical relationships between flood hazard zones and flood-resistant houses in Ebo Town. Moreover, this research informs the design of sense-making and analytics tools for the resistant house.

Keywords: flood-resistant, slit, flood hazard zone, pile foundation

Procedia PDF Downloads 45
3322 Surrogacy in India: Emerging Business or Disguised Human Trafficking

Authors: Priya Sepaha

Abstract:

Commercial Surrogacy refers to a contract in which a woman carries a pregnancy for intended parents. There are two types of surrogacy; first, Traditional Surrogacy, in which, sperm of the donor or father is artificially inseminated in the women and carries the fetus till birth. Second, Gestational Surrogacy, in which the egg and sperm of the intended parent are collected for artificial fertilization through In Vitro Fertilization (IVF) technique and after the embryo formation, it is transferred into the womb of a surrogate mother with the help of Assisted Reproductive Technique. Surrogacy has become so widespread in India that it has now been nicknamed the "rent-a-womb" capital of the world due to relatively low cost and lack of stringent regulatory legalisation. The legal aspects surrounding surrogacy are complex, diverse and mostly unsettled. Although this appears to be beneficial for the parties concerned, there are certain sensitive issues which need to be addressed to ensure ample protection to all stakeholders. Commercial surrogacy is an emerging business and a new means of human trafficking particularly in India. Poor and illiterate women are often lured in such deals by their spouse or broker for earning easy money. Traffickers also use force, fraud, or coercion at times to intimidate the probable surrogate mothers. A major chunk of money received from covert surrogacy agreement is taken away by the brokers. The Law Commission of India has specifically reviewed the issue as India is emerging as a major global surrogacy destination. The Supreme Court of India held in the Manji's case in 2008, that commercial surrogacy can be permitted with certain restrictions but had directed the Legislature to pass an appropriate Law for governing Surrogacy in India. The draft Assisted Reproductive Technique (ART) Bill, 2010 is still pending for approval. At present, the Surrogacy Contract between the parties and the ART Clinics Guidelines are perhaps the only guiding force. The Immoral Trafficking Prevention Act (ITPA), 1956 and Sections 366(A) and 372 of the Indian Penal Code, 1860 are perhaps the only existing laws, which deal with human trafficking. Yet, none of these provisions specifically deal with the serious issue of trafficking for the purpose of Commercial Surrogacy. India remains one of the few countries that still allow commercial surrogacy. International Surrogacy involves bilateral issues, where the laws of both the nations have to be at par in order to ensure that the concerns and interests of parties involved get amicably resolved. There is urgent need to pass a comprehensive law by incorporating the latest developments in this field in order to make it ethical on the one hand and to curb disguised human trafficking on the other.

Keywords: business, human trafficking, legal, surrogacy

Procedia PDF Downloads 343
3321 Correlation between Seismic Risk Insurance Indexes and Uninhabitability Indexes of Buildings in Morocco

Authors: Nabil Mekaoui, Nacer Jabour, Abdelhamid Allaoui, Abderahim Oulidi

Abstract:

The reliability of several insurance indexes of the seismic risk is evaluated and compared for an efficient seismic risk coverage of buildings in Morocco, thus, reducing the basic risk. A large database of earthquake ground motions is established from recent seismic events in Morocco and synthetic ground motions compatible with the design spectrum in order to conduct nonlinear time history analyses on three building models representative of the building stock in Morocco. The uninhabitability index is evaluated based on the simulated damage index, then correlated with preselected insurance indexes. Interestingly, the commonly used peak ground acceleration index showed poor correlation when compared with other indexes, such as spectral accelerations at low periods. Recommendations on the choice of suitable insurance indexes are formulated for efficient seismic risk coverage in Morocco.

Keywords: catastrophe modeling, damage, earthquake, reinsurance, seismic hazard, trigger index, vulnerability

Procedia PDF Downloads 69
3320 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital

Authors: Esraa A. Khalil, Mohamed N. AbouZeid

Abstract:

Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.

Keywords: AAC blocks, building material, environmental impact, modern construction, new Egyptian administrative capital

Procedia PDF Downloads 121
3319 Sustainable Design Features Implementing Public Rental Housing for Remodeling

Authors: So-Young Lee, Myoung-Won Oh, Soon-Cheol Eom, Yeon-Won Suh

Abstract:

Buildings produce more than one thirds of the total energy consumption and CO₂ emissions. Korean government agency pronounced and initiated Zero Energy Buildings policy for construction as of 2025. The net zero energy design features include passive (daylight, layout, materials, insulation, finishes, etc.) and active (renewable energy sources) elements. The Zero Energy House recently built in Nowon-gu, Korea is provided for 121 households as a public rental housing complex. However most of public rental housing did not include sustainable features which can reduce housing maintaining cost significantly including energy cost. It is necessary to implement net zero design features to the obsolete public rental housing during the remodeling procedure since it can reduce housing cost in long term. The purpose of this study is to investigate sustainable design elements implemented in Net Zero Energy House in Korea and passive and active housing design features in order to apply the sustainable features to the case public rental apartment for remodeling. Housing complex cases in this study are Nowan zero Energy house, Gangnam Bogemjari House, and public rental housings built in more than 20 years in Seoul areas. As results, energy consumption in public rental housing built in 5-years can be improved by exterior surfaces. Energy optimizing in case housing built in more than 20 years can be enhanced by renovated materials, insulation, replacement of windows, exterior finishes, lightings, gardening, water, renewable energy installation, Green IT except for sunlight and layout of buildings. Further life costing analysis is needed for energy optimizing for case housing alternatives.

Keywords: affordable housing, remodeling, sustainable design, zero-energy house

Procedia PDF Downloads 192
3318 Cyclic Response of Reinforced Concrete Beam-Column Joint Strengthening by FRP

Authors: N. Attari, S. Amziane, M. Chemrouk

Abstract:

A large number of old buildings have been identified as having potentially critical detailing to resist earthquakes. The main reinforcement of lap-spliced columns just above the joint region, discontinuous bottom beam reinforcement, and little or no joint transverse reinforcement are the most critical details of interior beam column joints in such buildings. This structural type constitutes a large share of the building stock, both in developed and developing countries, and hence it represents a substantial exposure. Direct observation of damaged structures, following the Algiers 2003 earthquake, has shown that damage occurs usually at the beam-column joints, with failure in bending or shear, depending on geometry and reinforcement distribution and type. While substantial literature exists for the design of concrete frame joints to withstand this type of failure, after the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore; there exists a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.

Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 417
3317 Fault Diagnosis and Fault-Tolerant Control of Bilinear-Systems: Application to Heating, Ventilation, and Air Conditioning Systems in Multi-Zone Buildings

Authors: Abderrhamane Jarou, Dominique Sauter, Christophe Aubrun

Abstract:

Over the past decade, the growing demand for energy efficiency in buildings has attracted the attention of the control community. Failures in HVAC (heating, ventilation and air conditioning) systems in buildings can have a significant impact on the desired and expected energy performance of buildings and on the user's comfort as well. FTC is a recent technology area that studies the adaptation of control algorithms to faulty operating conditions of a system. The application of Fault-Tolerant Control (FTC) in HVAC systems has gained attention in the last two decades. The objective is to maintain the variations in system performance due to faults within an acceptable range with respect to the desired nominal behavior. This paper considers the so-called active approach, which is based on fault and identification scheme combined with a control reconfiguration algorithm that consists in determining a new set of control parameters so that the reconfigured performance is "as close as possible, "in some sense, to the nominal performance. Thermal models of buildings and their HVAC systems are described by non-linear (usually bi-linear) equations. Most of the works carried out so far in FDI (fault diagnosis and isolation) or FTC consider a linearized model of the studied system. However, this model is only valid in a reduced range of variation. This study presents a new fault diagnosis (FD) algorithm based on a bilinear observer for the detection and accurate estimation of the magnitude of the HVAC system failure. The main contribution of the proposed FD algorithm is that instead of using specific linearized models, the algorithm inherits the structure of the actual bilinear model of the building thermal dynamics. As an immediate consequence, the algorithm is applicable to a wide range of unpredictable operating conditions, i.e., weather dynamics, outdoor air temperature, zone occupancy profile. A bilinear fault detection observer is proposed for a bilinear system with unknown inputs. The residual vector in the observer design is decoupled from the unknown inputs and, under certain conditions, is made sensitive to all faults. Sufficient conditions are given for the existence of the observer and results are given for the explicit computation of observer design matrices. Dedicated observer schemes (DOS) are considered for sensor FDI while unknown input bilinear observers are considered for actuator or system components FDI. The proposed strategy for FTC works as follows: At a first level, FDI algorithms are implemented, making it also possible to estimate the magnitude of the fault. Once the fault is detected, the fault estimation is then used to feed the second level and reconfigure the control low so that that expected performances are recovered. This paper is organized as follows. A general structure for fault-tolerant control of buildings is first presented and the building model under consideration is introduced. Then, the observer-based design for Fault Diagnosis of bilinear systems is studied. The FTC approach is developed in Section IV. Finally, a simulation example is given in Section V to illustrate the proposed method.

Keywords: bilinear systems, fault diagnosis, fault-tolerant control, multi-zones building

Procedia PDF Downloads 172
3316 A Multicriteria Framework for Assessing Energy Audit Software for Low-Income Households

Authors: Charles Amoo, Joshua New, Bill Eckman

Abstract:

Buildings in the United States account for a significant proportion of energy consumption and greenhouse gas (GHG) emissions, and this trend is expected to continue as well as rise in the near future. Low-income households, in particular, bear a disproportionate burden of high building energy consumption and spending due to high energy costs. Energy efficiency improvements need to reach an average of 4% per year in this decade in order to meet global net zero emissions target by 2050, but less than 1 % of U.S. buildings are improved each year. The government has recognized the importance of technology in addressing this issue, and energy efficiency programs have been developed to tackle the problem. The Weatherization Assistance Program (WAP), the largest residential whole-house energy efficiency program in the U.S., is specifically designed to reduce energy costs for low-income households. Under the WAP, energy auditors must follow specific audit procedures and use Department of Energy (DOE) approved energy audit tools or software. This article proposes an expanded framework of factors that should be considered in energy audit software that is approved for use in energy efficiency programs, particularly for low-income households. The framework includes more than 50 factors organized under 14 assessment criteria and can be used to qualitatively and quantitatively score different energy audit software to determine their suitability for specific energy efficiency programs. While the tool can be useful for developers to build new tools and improve existing software, as well as for energy efficiency program administrators to approve or certify tools for use, there are limitations to the model, such as the lack of flexibility that allows continuous scoring to accommodate variability and subjectivity. These limitations can be addressed by using aggregate scores of each criterion as weights that could be combined with value function and direct rating scores in a multicriteria decision analysis for a more flexible scoring.

Keywords: buildings, energy efficiency, energy audit, software

Procedia PDF Downloads 77
3315 Study of the Diaphragm Flexibility Effect on the Inelastic Seismic Response of Thin Wall Reinforced Concrete Buildings (TWRCB): A Purpose to Reduce the Uncertainty in the Vulnerability Estimation

Authors: A. Zapata, Orlando Arroyo, R. Bonett

Abstract:

Over the last two decades, the growing demand for housing in Latin American countries has led to the development of construction projects based on low and medium-rise buildings with thin reinforced concrete walls. This system, known as Thin Walls Reinforced Concrete Buildings (TWRCB), uses walls with thicknesses from 100 to 150 millimetres, with flexural reinforcement formed by welded wire mesh (WWM) with diameters between 5 and 7 millimetres, arranged in one or two layers. These walls often have irregular structural configurations, including combinations of rectangular shapes. Experimental and numerical research conducted in regions where this structural system is commonplace indicates inherent weaknesses, such as limited ductility due to the WWM reinforcement and thin element dimensions. Because of its complexity, numerical analyses have relied on two-dimensional models that don't explicitly account for the floor system, even though it plays a crucial role in distributing seismic forces among the resilient elements. Nonetheless, the numerical analyses assume a rigid diaphragm hypothesis. For this purpose, two study cases of buildings were selected, low-rise and mid-rise characteristics of TWRCB in Colombia. The buildings were analyzed in Opensees using the MVLEM-3D for walls and shell elements to simulate the slabs to involve the effect of coupling diaphragm in the nonlinear behaviour. Three cases are considered: a) models without a slab, b) models with rigid slabs, and c) models with flexible slabs. An incremental static (pushover) and nonlinear dynamic analyses were carried out using a set of 44 far-field ground motions of the FEMA P-695, scaled to 1.0 and 1.5 factors to consider the probability of collapse for the design base earthquake (DBE) and the maximum considered earthquake (MCE) for the model, according to the location sites and hazard zone of the archetypes in the Colombian NSR-10. Shear base capacity, maximum displacement at the roof, walls shear base individual demands and probabilities of collapse were calculated, to evaluate the effect of absence, rigid and flexible slabs in the nonlinear behaviour of the archetype buildings. The pushover results show that the building exhibits an overstrength between 1.1 to 2 when the slab is considered explicitly and depends on the structural walls plan configuration; additionally, the nonlinear behaviour considering no slab is more conservative than if the slab is represented. Include the flexible slab in the analysis remarks the importance to consider the slab contribution in the shear forces distribution between structural elements according to design resistance and rigidity. The dynamic analysis revealed that including the slab reduces the collapse probability of this system due to have lower displacements and deformations, enhancing the safety of residents and the seismic performance. The strategy of including the slab in modelling is important to capture the real effect on the distribution shear forces in walls due to coupling to estimate the correct nonlinear behaviour in this system and the adequate distribution to proportionate the correct resistance and rigidity of the elements in the design to reduce the possibility of damage to the elements during an earthquake.

Keywords: thin wall reinforced concrete buildings, coupling slab, rigid diaphragm, flexible diaphragm

Procedia PDF Downloads 74
3314 Reuse of Huge Industrial Areas

Authors: Martina Perinkova, Lenka Kolarcikova, Marketa Twrda

Abstract:

Brownfields are one of the most important problems that must be solved by today's cities. The topic of this article is description of developing a comprehensive transformation of post-industrial area of the former iron factory national cultural heritage Lower Vítkovice. City of Ostrava used to be industrial superpower of the Czechoslovak Republic, especially in the area of coal mining and iron production, after declining industrial production and mining in the 80s left many unused areas of former factories generally brownfields and backfields. Since the late 90s we are observing how the city officials or private entities seeking to remedy this situation. Regeneration of brownfields is a very expensive and long-term process. The area is now rebuilt for tourists and residents of the city in the entertainment, cultural, and social center. It was necessary do the reconstruction of the industrial monuments. Equally important was the construction of new buildings, which helped reusing of the entire complex. This is a unique example of transformation of technical monuments and completion of necessary new objects, so that the area could start working again and reintegrate back into the urban system.

Keywords: brown fields, conversion, historical and industrial buildings, reconstruction

Procedia PDF Downloads 330
3313 Nanotechnology as a Futuristic Approach to Architecture with Special Reference to Chandigarh

Authors: Chaudhary Archana, Dhingra Poshika

Abstract:

The architecture of the world is at a crossroads with the advent of new technology. The issues of energy efficiency and global warming are getting important with the coming times. New technologies are making their mark. For the architecture profession, nanotechnology will greatly impact construction materials and their properties. Nanotechnology, the understanding and control of matter at a scale of one to one hundred billions of a meter, is bringing incredible changes to the materials and processes of buildings. Materials will behave in many different ways as we are able to more precisely control their properties at the nanoscale. It is precisely called the next industrial revolution. We live in an age where scientific progress continues to transform human lifestyle. This is evermore true when it comes to the progress being made in the field of nanotechnology. This science stands to change and advance the practice of design in a multitude of ways – where architectural progress is being made at the molecular level. The nanotechnology has already been adopted in various buildings across the world. What an impact it shall have on the futuristic architecture in Chandigarh, India shall be discussed in the paper. But before we hurtle off toward a nano-utopia, we need to step back and ask ourselves whether this is a direction in which we really want to go.

Keywords: building materials, energy efficiency, nanotechnology, sustainability

Procedia PDF Downloads 460
3312 Green Walls and Living Facades: The Portuguese Experience

Authors: Andreia Cortes, Carla Pimentel-Rodrigues, Joao Almeida, Myriam Kanoun-Boule, Carla Carvalho, Antonio Tadeu, Armando Silva-Afonso

Abstract:

The adoption of green infrastructure is nowadays encouraged as an essential measure of urban planning and territorial development whenever it offers a better alternative, or is complementary, to current solutions. Green walls and living facades often provide healthy alternatives to traditional grey infrastructures, offering many benefits for both citizens and cities. Beyond the ability to improve environmental conditions and quality of life, they can augment the energy efficiency of buildings, enhance biodiversity and deliver a range of ecosystem services such as water purification, reduction of the urban heat island effect, improvement of air quality and climate change adaptation. For this communication, a systematic survey of the existing green walls and living facades in Portugal was carried out. Different systems were analyzed and compared in terms of dimensions, constructive solutions, vegetative species, maintenance necessities and environmental aspects.

Keywords: green buildings, green walls, living facades, sustainability construction

Procedia PDF Downloads 425
3311 Manufacturing Commercial Bricks with Construction and Demolition Wastes

Authors: Mustafa Kara, Yasemin Kilic, Bahattin Murat Demir, Ümit Ustaoglu, Cavit Unal

Abstract:

This paper reports utilization of different kind of construction and demolition wastes (C&D) in the production of bricks at industrial scale. Plastered brick waste and tile wastes were collected from ISTAÇ Co. Compost and Recovery Plant, Istanbul, Turkey. Plastered brick waste and tile waste are mixed with brick clay in the proportion of 0-30% and fired at 900ºC. The physical and mechanical properties of the produced bricks were determined and evaluated according to IKIZLER Brick Company Production values, Brick Industry Association (BIA) and Turkish Standards (TS). The resulted showed that plastered brick waste and tile waste can be used to produce good quality brick for various engineering applications in construction and building. The replacement of brick clay by plastered brick waste and tile waste at the levels of 30% has good effects on the compressive strength of the bricks.

Keywords: commercial brick, construction and demolition waste, manufacturing, recycling

Procedia PDF Downloads 358
3310 Noise Pollution in Nigerian Cities: Case Study of Bida, Nigeria

Authors: Funke Morenike Jiyah, Joshua Jiyah

Abstract:

The occurrence of various health issues have been linked to excessive noise pollution in all works of life as evident in many research efforts. This study provides empirical analysis of the effects of noise pollution on the well-being of the residents of Bida Local Government Area, Niger State, Nigeria. The study adopted a case study research design, involving cross-sectional procedure. Field observations and medical reports were obtained to support the respondents’ perception on the state of their well-being. The sample size for the study was selected using the housing stock in the various wards. One major street in each ward was selected. A total of 1,833 buildings were counted along the sampled streets and 10% of this was selected for the administration of structured questionnaire.The environmental quality of the wards was determined by measuring the noise level using Testo 815 noise meters. The result revealed that Bariki ward which houses the GRA has the lowest noise level of 37.8 dB(A)while the noise pollution levels recorded in the other thirteen wards were all above the recommended levels. The average ambient noise level in sawmills, commercial centres, road junctions and industrial areas were above 90 dB(A). The temporal record from the Federal Medical Centre, Bida revealed that, apart from malaria, hypertension (5,614 outpatients) was the most prevalent health issue in 2013 alone. The paper emphasised the need for compatibility consideration in the choice of residential location, the use of ear muffler and effective enforcement of zoning regulations.

Keywords: bida, decibels, environmental quality, noise, well-being

Procedia PDF Downloads 133
3309 Application of the Building Information Modeling Planning Approach to the Factory Planning

Authors: Peggy Näser

Abstract:

Factory planning is a systematic, objective-oriented process for planning a factory, structured into a sequence of phases, each of which is dependent on the preceding phase and makes use of particular methods and tools, and extending from the setting of objectives to the start of production. The digital factory, on the other hand, is the generic term for a comprehensive network of digital models, methods, and tools – including simulation and 3D visualisation – integrated by a continuous data management system. Its aim is the holistic planning, evaluation and ongoing improvement of all the main structures, processes and resources of the real factory in conjunction with the product. Digital factory planning has already become established in factory planning. The application of Building Information Modeling has not yet been established in factory planning but has been used predominantly in the planning of public buildings. Furthermore, this concept is limited to the planning of the buildings and does not include the planning of equipment of the factory (machines, technical equipment) and their interfaces to the building. BIM is a cooperative method of working, in which the information and data relevant to its lifecycle are consistently recorded, managed and exchanged in a transparent communication between the involved parties on the basis of digital models of a building. Both approaches, the planning approach of Building Information Modeling and the methodical approach of the Digital Factory, are based on the use of a comprehensive data model. Therefore it is necessary to examine how the approach of Building Information Modeling can be extended in the context of factory planning in such a way that an integration of the equipment planning, as well as the building planning, can take place in a common digital model. For this, a number of different perspectives have to be investigated: the equipment perspective including the tools used to implement a comprehensive digital planning process, the communication perspective between the planners of different fields, the legal perspective, that the legal certainty in each country and the quality perspective, on which the quality criteria are defined and the planning will be evaluated. The individual perspectives are examined and illustrated in the article. An approach model for the integration of factory planning into the BIM approach, in particular for the integrated planning of equipment and buildings and the continuous digital planning is developed. For this purpose, the individual factory planning phases are detailed in the sense of the integration of the BIM approach. A comprehensive software concept is shown on the tool. In addition, the prerequisites required for this integrated planning are presented. With the help of the newly developed approach, a better coordination between equipment and buildings is to be achieved, the continuity of the digital factory planning is improved, the data quality is improved and expensive implementation errors are avoided in the implementation.

Keywords: building information modeling, digital factory, digital planning, factory planning

Procedia PDF Downloads 267
3308 High Temperature Behaviour of Various Limestone Used in Heritage Buildings at Material and Block Scales

Authors: Ayoub Daoudi, Javad Eslami, Anne-Lise Beaucour, Martin Vigroux, Albert Noumowé

Abstract:

As a fact, many cultural heritage masonry buildings have undergone violent fires during their history. In order to investigate the high temperature behaviour of stone masonry, six French limestones were heated to 600 °C at a rate of 9 °C/min. The main focus is the comparison between the high temperature behaviour of stones at the material and at the structural scale. In order to evaluate the risk of spalling, the tests have been carried out on the stone blocks (12x30x30 cm) instrumented with thermocouples and subjected to an unidirectional heating on one face. Thereafter, visual assessments and non-destructive measurements (dynamic elastic modulus) performed on blocks demonstrate a different behaviour from what was observed at the material scale. Finally, a series of thermo-mechanical computations, using finite element method, allowed us to highlight the difference between the behaviour of stones at material and block scales.

Keywords: limestones, hight temperature behaviour, damage, thermo-mechanical modeling, material and blocks scales, color change

Procedia PDF Downloads 109
3307 Design an Intelligent Fire Detection System Based on Neural Network and Particle Swarm Optimization

Authors: Majid Arvan, Peyman Beygi, Sina Rokhsati

Abstract:

In-time detection of fire in buildings is of great importance. Employing intelligent methods in data processing in fire detection systems leads to a significant reduction of fire damage at lowest cost. In this paper, the raw data obtained from the fire detection sensor networks in buildings is processed by using intelligent methods based on neural networks and the likelihood of fire happening is predicted. In order to enhance the quality of system, the noise in the sensor data is reduced by analyzing wavelets and applying SVD technique. Meanwhile, the proposed neural network is trained using particle swarm optimization (PSO). In the simulation work, the data is collected from sensor network inside the room and applied to the proposed network. Then the outputs are compared with conventional MLP network. The simulation results represent the superiority of the proposed method over the conventional one.

Keywords: intelligent fire detection, neural network, particle swarm optimization, fire sensor network

Procedia PDF Downloads 380
3306 Harnessing Environmental DNA to Assess the Environmental Sustainability of Commercial Shellfish Aquaculture in the Pacific Northwest United States

Authors: James Kralj

Abstract:

Commercial shellfish aquaculture makes significant contributions to the economy and culture of the Pacific Northwest United States. The industry faces intense pressure to minimize environmental impacts as a result of Federal policies like the Magnuson-Stevens Fisheries Conservation and Management Act and the Endangered Species Act. These policies demand the protection of essential fish habitat and declare several salmon species as endangered. Consequently, numerous projects related to the protection and rehabilitation of eelgrass beds, a crucial ecosystem for countless fish species, have been proposed at both state and federal levels. Both eelgrass beds and commercial shellfish farms occupy the same physical space, and therefore understanding the effects of shellfish aquaculture on eelgrass ecosystems has become a top ecological and economic priority of both government and industry. This study evaluates the organismal communities that eelgrass and oyster aquaculture habitats support. Water samples were collected from Willapa Bay, Washington; Tillamook Bay, Oregon; Humboldt Bay, California; and Sammish Bay, Washington to compare species diversity in eelgrass beds, oyster aquaculture plots, and boundary edges between these two habitats. Diversity was assessed using a novel technique: environmental DNA (eDNA). All organisms constantly shed small pieces of DNA into their surrounding environment through the loss of skin, hair, tissues, and waste. In the marine environment, this DNA becomes suspended in the water column allowing it to be easily collected. Once extracted and sequenced, this eDNA can be used to paint a picture of all the organisms that live in a particular habitat making it a powerful technology for environmental monitoring. Industry professionals and government officials should consider these findings to better inform future policies regulating eelgrass beds and oyster aquaculture. Furthermore, the information collected in this study may be used to improve the environmental sustainability of commercial shellfish aquaculture while simultaneously enhancing its growth and profitability in the face of ever-changing political and ecological landscapes.

Keywords: aquaculture, environmental DNA, shellfish, sustainability

Procedia PDF Downloads 246
3305 Sustainability of the Built Environment of Ranchi District

Authors: Vaidehi Raipat

Abstract:

A city is an expression of coexistence between its users and built environment. The way in which its spaces are animated signify the quality of this coexistence. Urban sustainability is the ability of a city to respond efficiently towards its people, culture, environment, visual image, history, visions and identity. The quality of built environment determines the quality of our lifestyles, but poor ability of the built environment to adapt and sustain itself through the changes leads to degradation of cities. Ranchi was created in November 2000, as the capital of the newly formed state Jharkhand, located on eastern side of India. Before this Ranchi was known as summer capital of Bihar and was a little larger than a town in terms of development. But since then it has been vigorously expanding in size, infrastructure as well as population. This sudden expansion has created a stress on existing built environment. The large forest covers, agricultural land, diverse culture and pleasant climatic conditions have degraded and decreased to a large extent. Narrow roads and old buildings are unable to bear the load of the changing requirements, fast improving technology and growing population. The built environment has hence been rendered unsustainable and unadaptable through fastidious changes of present era. Some of the common hazards that can be easily spotted in the built environment are half-finished built forms, pedestrians and vehicles moving on the same part of the road. Unpaved areas on street edges. Over-sized, bright and randomly placed hoardings. Negligible trees or green spaces. The old buildings have been poorly maintained and the new ones are being constructed over them. Roads are too narrow to cater to the increasing traffic, both pedestrian and vehicular. The streets have a large variety of activities taking place on them, but haphazardly. Trees are being cut down for road widening and new constructions. There is no space for greenery in the commercial as well as old residential areas. The old infrastructure is deteriorating because of poor maintenance and the economic limitations. Pseudo understanding of functionality as well as aesthetics drive the new infrastructure. It is hence necessary to evaluate the extent of sustainability of existing built environment of the city and create or regenerate the existing built environment into a more sustainable and adaptable one. For this purpose, research titled “Sustainability of the Built Environment of Ranchi District” has been carried out. In this research the condition of the built environment of Ranchi are explored so as to figure out the problems and shortcomings existing in the city and provide for design strategies that can make the existing built-environment sustainable. The built environment of Ranchi that include its outdoor spaces like streets, parks, other open areas, its built forms as well as its users, has been analyzed in terms of various urban design parameters. Based on which strategies have been suggested to make the city environmentally, socially, culturally and economically sustainable.

Keywords: adaptable, built-environment, sustainability, urban

Procedia PDF Downloads 237
3304 Incorporating Circular Economy into Passive Design Strategies in Tropical Nigeria

Authors: Noah G. Akhimien, Eshrar Latif

Abstract:

The natural environment is in need for an urgent rescue due to dilapidation and recession of resources. Passive design strategies have proven to be one of the effective ways to reduce CO2 emissions and to improve building performance. On the other hand, there is a huge drop in material availability due to poor recycling culture. Consequently, building waste pose environmental hazard due to unrecycled building materials from construction and deconstruction. Buildings are seen to be material banks for a circular economy, therefore incorporating circular economy into passive housing will not only safe guide the climate but also improve resource efficiency. The study focuses on incorporating a circular economy in passive design strategies for an affordable energy and resource efficient residential building in Nigeria. Carbon dioxide (CO2) concentration is still on the increase as buildings are responsible for a significant amount of this emission globally. Therefore, prompt measures need to be taken to combat the effect of global warming and associated threats. Nigeria is rapidly growing in human population, resources on the other hand have receded greatly, and there is an abrupt need for recycling even in the built environment. It is necessary that Nigeria responds to these challenges effectively and efficiently considering building resource and energy. Passive design strategies were assessed using simulations to obtain qualitative and quantitative data which were inferred to case studies as it relates to the Nigeria climate. Building materials were analysed using the ReSOLVE model in order to explore possible recycling phase. This provided relevant information and strategies to illustrate the possibility of circular economy in passive buildings. The study offers an alternative approach, as it is the general principle for the reworking of an economy on ecological lines in passive housing and by closing material loops in circular economy.

Keywords: building, circular, efficiency, environment, sustainability

Procedia PDF Downloads 253
3303 Synthesis of Iron-Based Perovskite Type Catalysts from Rust Wastes as a Source of Iron

Authors: M. P. Joshi, F. Deganello, L. F. Liotta, V. La Parola, G. Pantaleo

Abstract:

For the first time, commercial iron nitrate was replaced by rust wastes, as a source of Iron for the preparation of LaFeO₃ powders by solution combustion synthesis (SCS). A detailed comparison with a reference powder obtained by SCS, starting from a commercial iron nitrate, was also performed. Several techniques such as X-ray diffraction combined with Rietveld refinement, mass plasma atomic emission spectroscopy, nitrogen adsorption measurements, temperature programmed reduction, X-ray photoelectron spectroscopy, Fourier transform analysis and scanning electron microscopy were used for the characterization of the rust wastes as well as of the perovskite powders. The performance of this ecofriendly material was evaluated by testing the activity and selectivity in the propylene oxidation, in order to use it for the benefit of the environment. Characterization and performance results clearly evidenced limitations and peculiarities of this new approach.

Keywords: perovskite type catalysts, solution combustion synthesis, X-ray diffraction, rust wastes

Procedia PDF Downloads 333
3302 Accuracy of Peak Demand Estimates for Office Buildings Using Quick Energy Simulation Tool

Authors: Mahdiyeh Zafaranchi, Ethan S. Cantor, William T. Riddell, Jess W. Everett

Abstract:

The New Jersey Department of Military and Veteran’s Affairs (NJ DMAVA) operates over 50 facilities throughout the state of New Jersey, U.S. NJDMAVA is under a mandate to move toward decarbonization, which will eventually include eliminating the use of natural gas and other fossil fuels for heating. At the same time, the organization requires increased resiliency regarding electric grid disruption. These competing goals necessitate adopting the use of on-site renewables such as photovoltaic and geothermal power, as well as implementing power control strategies through microgrids. Planning for these changes requires a detailed understanding of current and future electricity use on yearly, monthly, and shorter time scales, as well as a breakdown of consumption by heating, ventilation, and air conditioning (HVAC) equipment. This paper discusses case studies of two buildings that were simulated using the QUick Energy Simulation Tool (eQUEST). Both buildings use electricity from the grid and photovoltaics. One building also uses natural gas. While electricity use data are available in hourly intervals and natural gas data are available in monthly intervals, the simulations were developed using monthly and yearly totals. This approach was chosen to reflect the information available for most NJ DMAVA facilities. Once completed, simulation results are compared to metrics recommended by several organizations to validate energy use simulations. In addition to yearly and monthly totals, the simulated peak demands are compared to actual monthly peak demand values. The simulations resulted in monthly peak demand values that were within 30% of the measured values. These benchmarks will help to assess future energy planning efforts for NJ DMAVA.

Keywords: building energy modeling, eQUEST, peak demand, smart meters

Procedia PDF Downloads 68
3301 An Analysis of Prefabricated Construction Waste: A Case Study Approach

Authors: H. Hakim, C. Kibert, C. Fabre, S. Monadizadeh

Abstract:

Construction industry is an industry saddled with chronic problems of high waste generation. Waste management that is to ensure materials are utilized in an efficient manner would make a major contribution to mitigating the negative environmental impacts of construction waste including finite resources depletion and growing occupied landfill areas to name a few. Furthermore, ‘material resource efficiency’ has been found an economically smart approach specially when considered during the design phase. One effective strategy is to utilizing off-site construction process which includes a series of prefabricated systems such as mobile, modular, and HUD construction (Department of Housing and Urban Development manufactured buildings). These types of buildings are by nature material and resource-efficient. Despite conventional construction that is exposed to adverse weather conditions, manufactured construction production line is capable of creating repetitive units in a factory controlled environment. A factory can have several parallel projects underway with a high speed and in a timely manner which simplifies the storage of excess materials and re-allocating to the next projects. The literature reports that prefabricated construction significantly helps reduce errors, site theft, rework, and delayed problems and can ultimately lead to a considerable waste reduction. However, there is not sufficient data to quantify this reduction when it comes to a regular modular house in the U.S. Therefore, this manuscript aims to provide an analysis of waste originated from a manufactured factory trend. The analysis was made possible with several visits and data collection of Homes of Merits, a Florida Manufactured and Modular Homebuilder. The results quantify and verify a noticeable construction waste reduction.

Keywords: construction waste, modular construction, prefabricated buildings, waste management

Procedia PDF Downloads 267
3300 Food Safety in Wine: Removal of Ochratoxin a in Contaminated White Wine Using Commercial Fining Agents

Authors: Antònio Inês, Davide Silva, Filipa Carvalho, Luís Filipe-Riberiro, Fernando M. Nunes, Luís Abrunhosa, Fernanda Cosme

Abstract:

The presence of mycotoxins in foodstuff is a matter of concern for food safety. Mycotoxins are toxic secondary metabolites produced by certain molds, being ochratoxin A (OTA) one of the most relevant. Wines can also be contaminated with these toxicants. Several authors have demonstrated the presence of mycotoxins in wine, especially ochratoxin A. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L-β-phenylalanine via an amide bond. As these toxicants can never be completely removed from the food chain, many countries have defined levels in food in order to attend health concerns. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption. The maximum acceptable level of OTA in wines is 2.0 μg/kg according to the Commission regulation No. 1881/2006. Therefore, the aim of this work was to reduce OTA to safer levels using different fining agents, as well as their impact on white wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white wine. Trials (including a control without addition of a fining agent) were performed in white wine artificially supplemented with OTA (10 µg/L). OTA analyses were performed after wine fining. Wine was centrifuged at 4000 rpm for 10 min and 1 mL of the supernatant was collected and added of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v). Also, the solid fractions obtained after fining, were centrifuged (4000 rpm, 15 min), the resulting supernatant discarded, and the pellet extracted with 1 mL of the above solution and 1 mL of H2O. OTA analysis was performed by HPLC with fluorescence detection. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatin, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. Following, the effectiveness of seven commercial activated carbons was also evaluated and compared with the commercial formulation that contains gelatin, bentonite and activated carbon. The different activated carbons were applied at the concentration recommended by the manufacturer in order to evaluate their efficiency in reducing OTA levels. Trial and OTA analysis were performed as explained previously. The results showed that in white wine all activated carbons except one reduced 100% of OTA. The commercial formulation that contains gelatin, bentonite and activated carbon reduced only 73% of OTA concentration. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.

Keywords: wine, ota removal, food safety, fining

Procedia PDF Downloads 538
3299 Enhanced Near-Infrared Upconversion Emission Based Lateral Flow Immunoassay for Background-Free Detection of Avian Influenza Viruses

Authors: Jaeyoung Kim, Heeju Lee, Huijin Jung, Heesoo Pyo, Seungki Kim, Joonseok Lee

Abstract:

Avian influenza viruses (AIV) are the primary cause of highly contagious respiratory diseases caused by type A influenza viruses of the Orthomyxoviridae family. AIV are categorized on the basis of types of surface glycoproteins such as hemagglutinin and neuraminidase. Certain H5 and H7 subtypes of AIV have evolved to the high pathogenic avian influenza (HPAI) virus, which has caused considerable economic loss to the poultry industry and led to severe public health crisis. Several commercial kits have been developed for on-site detection of AIV. However, the sensitivity of these methods is too low to detect low virus concentrations in clinical samples and opaque stool samples. Here, we introduced a background-free near-infrared (NIR)-to-NIR upconversion nanoparticle-based lateral flow immunoassay (NNLFA) platform to yield a sensor that detects AIV within 20 minutes. Ca²⁺ ion in the shell was used to enhance the NIR-to-NIR upconversion photoluminescence (PL) emission as a heterogeneous dopant without inducing significant changes in the morphology and size of the UCNPs. In a mixture of opaque stool samples and gold nanoparticles (GNPs), which are components of commercial AIV LFA, the background signal of the stool samples mask the absorption peak of GNPs. However, UCNPs dispersed in the stool samples still show strong emission centered at 800 nm when excited at 980 nm, which enables the NNLFA platform to detect 10-times lower viral load than a commercial GNP-based AIV LFA. The detection limit of NNLFA for low pathogenic avian influenza (LPAI) H5N2 and HPAI H5N6 viruses was 10² EID₅₀/mL and 10³.⁵ EID₅₀/mL, respectively. Moreover, when opaque brown-colored samples were used as the target analytes, strong NIR emission signal from the test line in NNLFA confirmed the presence of AIV, whereas commercial AIV LFA detected AIV with difficulty. Therefore, we propose that this rapid and background-free NNLFA platform has the potential of detecting AIV in the field, which could effectively prevent the spread of these viruses at an early stage.

Keywords: avian influenza viruses, lateral flow immunoassay on-site detection, upconversion nanoparticles

Procedia PDF Downloads 163
3298 Determination of Some Agricultural Characters of Developed Pea (Pisum sativum L.) Lines

Authors: Ercan Ceyhan, Mehmet Ali Avci

Abstract:

This research was made during the 2015 growing periods in the trial filed of ‘Research Station for Department of Field Crops, Agricultural Faculty, Selcuk University’ according to ‘Randomized Blocks Design’ with 3 replications. Research material was the following pea lines; PS16, PS18, PS21, PS23, PS24, PS25, PS36, PS47, PS49, PS51, PS54, PS58, PS67, PS69, PS71, PS73, PS83, PS84, PS87 and PSKY and three cultivars and other 2 commercial varieties named as Bolero, Rondo and Ultrello. Some agronomical characteristics such as plant height (cm) number of pod per plant number of seed per pod number of seed per plant 100 seed weight (g) and seed yield (kg ha-1) were determined. Results of the research implicated that the new developed lines were superior compared with the control (commercial) varieties by means of most of the characteristics. Nevertheless, similar researches should be continued in different locations and years.

Keywords: agricultural characters, pea, Pisum sativum, seed yield

Procedia PDF Downloads 240
3297 Spatial Analysis of Festival Spaces in Traditional Festivals in Taipei City

Authors: Liu Szu Yin

Abstract:

The center of urban development lies in commercial transactions and folk religious activities. In Taipei City, temples serve as crucial urban spaces and centers for civic activities and religious beliefs. The appearance of local temples can be influenced by the prosperity of the surrounding communities. Apart from being centers of religious worship, Taipei's temples also host festival celebrations, allowing people to gather in front of the temples and form collective urban memories. The spatial attributes for hosting festival activities include streets, squares, parks, and buildings. In Taipei, many traditional festivals take place on the streets, either as round-trip routes or linear routes with a single starting and ending point. Given the processions and parades involving palanquins and other ceremonial objects during traditional festival activities, street spaces are frequently utilized. Therefore, this study analyzes the historical context and street spaces of three traditional festivals in Taipei City, including Qingshan Temple in Monga, Xiahai City God Temple in Dadaocheng, and Baoan Temple in Dalongdong, through on-site research. Most urban festival planners need to understand the characteristics of the city's streets in order to effectively utilize street spaces for festival planning. Taipei's traditional festivals not only preserve Chinese traditional culture but also incorporate modern elements, ensuring the transmission of culture and faith and allowing the city to become characterized by sustainable culture and unique urban memories.

Keywords: festival space, urban festival, taipei, urban memory

Procedia PDF Downloads 71