Search results for: Wakala buildings
1093 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate
Authors: Ambalika Ekka
Abstract:
In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43 MJ.Keywords: energy efficient, embodied energy, EPI, building materials
Procedia PDF Downloads 1961092 Vibration Transmission across Junctions of Walls and Floors in an Apartment Building: An Experimental Investigation
Authors: Hugo Sampaio Libero, Max de Castro Magalhaes
Abstract:
The perception of sound radiated from a building floor is greatly influenced by the rooms in which it is immersed and by the position of both listener and source. The main question that remains unanswered is related to the influence of the source position on the sound power radiated by a complex wall-floor system in buildings. This research is concerned with the investigation of vibration transmission across walls and floors in buildings. It is primarily based on the determination of vibration reduction index via experimental tests. Knowledge of this parameter may help in predicting noise and vibration propagation in building components. First, the physical mechanisms involving vibration transmission across structural junctions are described. An experimental setup is performed to aid this investigation. The experimental tests have shown that the vibration generation in the walls and floors is directed related to their size and boundary conditions. It is also shown that the vibration source position can affect the overall vibration spectrum significantly. Second, the characteristics of the noise spectra inside the rooms due to an impact source (tapping machine) are also presented. Conclusions are drawn for the general trend of vibration and noise spectrum of the structural components and rooms, respectively. In summary, the aim of this paper is to investigate the vibro-acoustical behavior of building floors and walls under floor impact excitation. The impact excitation was at distinct positions on the slab. The analysis has highlighted the main physical characteristics of the vibration transmission mechanism.Keywords: vibration transmission, vibration reduction index, impact excitation, experimental tests
Procedia PDF Downloads 931091 Adapting Inclusive Residential Models to Match Universal Accessibility and Fire Protection
Authors: Patricia Huedo, Maria José Ruá, Raquel Agost-Felip
Abstract:
Ensuring sustainable development of urban environments means guaranteeing adequate environmental conditions, being resilient and meeting conditions of safety and inclusion for all people, regardless of their condition. All existing buildings should meet basic safety conditions and be equipped with safe and accessible routes, along with visual, acoustic and tactile signals to protect their users or potential visitors, and regardless of whether they undergo rehabilitation or change of use processes. Moreover, from a social perspective, we consider the need to prioritize buildings occupied by the most vulnerable groups of people that currently do not have specific regulations tailored to their needs. Some residential models in operation are not only outside the scope of application of the regulations in force; they also lack a project or technical data that would allow knowing the fire behavior of the construction materials. However, the difficulty and cost involved in adapting the entire building stock to current regulations can never justify the lack of safety for people. Hence, this work develops a simplified model to assess compliance with the basic safety conditions in case of fire and its compatibility with the specific accessibility needs of each user. The purpose is to support the designer in decision making, as well as to contribute to the development of a basic fire safety certification tool to be applied in inclusive residential models. This work has developed a methodology to support designers in adapting Social Services Centers, usually intended to vulnerable people. It incorporates a checklist of 9 items and information from sources or standards that designers can use to justify compliance or propose solutions. For each item, the verification system is justified, and possible sources of consultation are provided, considering the possibility of lacking technical documentation of construction systems or building materials. The procedure is based on diagnosing the degree of compliance with fire conditions of residential models used by vulnerable groups, considering the special accessibility conditions required by each user group. Through visual inspection and site surveying, the verification model can serve as a support tool, significantly streamlining the diagnostic phase and reducing the number of tests to be requested by over 75%. This speeds up and simplifies the diagnostic phase. To illustrate the methodology, two different buildings in the Valencian Region (Spain) have been selected. One case study is a mental health facility for residential purposes, located in a rural area, on the outskirts of a small town; the other one, is a day care facility for individuals with intellectual disabilities, located in a medium-sized city. The comparison between the case studies allow to validate the model in distinct conditions. Verifying compliance with a basic security level can allow a quality seal and a public register of buildings adapted to fire regulations to be established, similarly to what is being done with other types of attributes such as energy performance.Keywords: fire safety, inclusive housing, universal accessibility, vulnerable people
Procedia PDF Downloads 221090 Building Information Management in Context of Urban Spaces, Analysis of Current Use and Possibilities
Authors: Lucie Jirotková, Daniel Macek, Andrea Palazzo, Veronika Malinová
Abstract:
Currently, the implementation of 3D models in the construction industry is gaining popularity. Countries around the world are developing their own modelling standards and implement the use of 3D models into their individual permitting processes. Another theme that needs to be addressed are public building spaces and their subsequent maintenance, where the usage of BIM methodology is directly offered. The significant benefit of the implementation of Building Information Management is the information transfer. The 3D model contains not only the spatial representation of the item shapes but also various parameters that are assigned to the individual elements, which are easily traceable, mainly because they are all stored in one place in the BIM model. However, it is important to keep the data in the models up to date to achieve useability of the model throughout the life cycle of the building. It is now becoming standard practice to use BIM models in the construction of buildings, however, the building environment is very often neglected. Especially in large-scale development projects, the public space of buildings is often forwarded to municipalities, which obtains the ownership and are in charge of its maintenance. A 3D model of the building surroundings would include both the above-ground visible elements of the development as well as the underground parts, such as the technological facilities of water features, electricity lines for public lighting, etc. The paper shows the possibilities of a model in the field of information for the handover of premises, the following maintenance and decision making. The attributes and spatial representation of the individual elements make the model a reliable foundation for the creation of "Smart Cities". The paper analyses the current use of the BIM methodology and presents the state-of-the-art possibilities of development.Keywords: BIM model, urban space, BIM methodology, facility management
Procedia PDF Downloads 1241089 Improvement of Ventilation and Thermal Comfort Using the Atrium Design for Traditional Folk Houses-Fujian Earthen Building
Authors: Ying-Ming Su
Abstract:
Fujian earthen building which was known as a classic for ecological buildings was listed on the world heritage in 2008 (UNESCO) in China. Its design strategy can be applied to modern architecture planning and design. This study chose two different cases (Round Atrium: Er-Yi Building, Double Round Atrium: Zhen-Chen Building) of earthen building in Fu-Jian to compare the ventilation effects of different atrium forms. We adopt field measurements and computational fluid dynamics (CFD) simulation of temperature, humidity, and wind environment to identify the relationship between external environment and atrium about comfort and to confirm the relationship about atrium H/W (height/width). Results indicate that, through the atrium convection effect, it makes the natural wind guides to each space surrounded and keeps indoor comfort. It illustrates that the smaller the ratio of the H/W which is the relationship between the height and the width of an atrium is, the greater the wind speed generated within the street valley. Moreover, the wind speed is very close to the reference wind speed. This field measurement verifies that the value of H/W has great influence of solar radiation heat and sunshine shadows. The ventilation efficiency is: Er-Yi Building (H/W =0.2778) > Zhen-Chen Building (H/W=0.3670). Comparing the cases with the same shape but with different H/W, through the different size patios, airflow revolves in the atriums and can be brought into each interior space. The atrium settings meet the need of building ventilation, and can adjust the humidity and temperature within the buildings. It also creates good ventilation effect.Keywords: traditional folk houses, atrium, tulou, ventilation, building microclimate
Procedia PDF Downloads 4741088 High-Rises and Urban Design: The Reasons for Unsuccessful Placemaking with Residential High-Rises in England
Authors: E. Kalcheva, A. Taki, Y. Hadi
Abstract:
High-rises and placemaking is an understudied combination which receives more and more interest with the proliferation of this typology in many British cities. The reason for studying three major cities in England: London, Birmingham and Manchester, is to learn from the latest advances in urban design in well-developed and prominent urban environment. The analysis of several high-rise sites reveals the weaknesses in urban design of contemporary British cities and presents an opportunity to study from the implemented examples. Therefore, the purpose of this research is to analyze design approaches towards creating a sustainable and varied urban environment when high-rises are involved. The research questions raised by the study are: what is the quality of high-rises and their surroundings; what facilities and features are deployed in the research area; what is the role of the high-rise buildings in the placemaking process; what urban design principles are applicable in this context. The methodology utilizes observation of the researched area by structured questions, developed by the author to evaluate the outdoor qualities of the high-rise surroundings. In this context, the paper argues that the quality of the public realm around the high-rises is quite low, missing basic but vital elements such as plazas, public art, and seating, along with landscaping and pocket parks. There is lack of coherence, the rhythm of the streets is often disrupted, and even though the high-rises are very aesthetically appealing, they fail to create a sense of place on their own. The implications of the study are that future planning can take into consideration the critique in this article and provide more opportunities for urban design interventions around high-rise buildings in the British cities.Keywords: high-rises, placemaking, urban design, townscape
Procedia PDF Downloads 3211087 Cultural Routes: A Study of Anatolian Seljuks Madrasahs
Authors: Zeynep İnan Ocak, Gülsün Tanyeli
Abstract:
One of the most important architectural types of Islamic architecture is madrasah used as educational institutions, hospital or observatory. This type of buildings has one or two storeys, central open or closed courtyards, four iwans and students cells located among the iwans. The main characteristic of the designs featured in the portals. The Islamic art features and adornments are seen well on these buildings made of stone. The earliest examples date to late 12th century in Anatolia after the Battle of Manzikert. Under the Seljuks rule over the one thousand facilities were built in 12th and 13th centuries and there are one hundred thirty five madrasah in total list. But today no all of them are conserved only forty percent are remained. The Seljuks madrasah located in many Anatolian were registered as immovable cultural property in several times by Turkish Culture and Tourism Ministry. The first Turkish buildings inscribed on the World Heritage List are the Great Mosque and Hospital of Divriği in 1985. Also the nominated site named as Anatolian Seljuks Madrasah is in the tentative list of UNESCO World Heritage in 2014. The property is composed some of notable madrasah such as İnce Minareli Madrasah and Karatay Madrasah in Konya; Çifte Madrasah and Sahibiye Madrasah in Kayseri; Buruciye Madrasah, Çifte Minareli Madrasah and Gök Madrasah in Sivas; Çifte Minareli Madrasah and Yakutiye Madrasah in Erzurum; Cacabey Madrasah in Kirşehir. Certainly the advantage of tourism is important for conducting the preservation of heritage. It offers much kind of cultural heritage products by means of visiting monuments. In spite of advantage of tourism, it can be the negative effects of tourism on sites and places of cultural significance. While assisting and guiding the conservation works of madrasah, it should be get reference to international charters and other doctrinal texts about the relation between heritage and tourism. Thereby the monuments will be conserved in good condition promoting by tourism. It should be plan a project about the correlation of visitors and heritage to focus on theme of Seljuks architecture. This study aims to set out the principles about the conservation of madrasah as world heritage taking advantages of tourism. The madrasah as a heritage should be evaluated not only a monument but also cultural route. So the cultural route for madrasah is determined by means of a journey through space and time, how the heritage of the different Anatolian cities. Also the cultural route is created visiting both the madrasah and the other medieval structures. In this study, the route, the principles, relation of tourism are represented considering the conservation of Seljuks madrasah.Keywords: architectural heritage, cultural routes, Seljuks madrasah, Anatolia
Procedia PDF Downloads 2861086 Rediscovery of Important Elements Contributing to Cultural Interchange Values Made during Restoration of Khanpur Gate
Authors: Poonam A. Trambadia, Ashish V. Trambadia
Abstract:
The architecture of sultanate period of Ahmedabad had evolved just before the establishment of Mughal rule in North India. After shifting the capital of the kingdom from Patan to Ahmedabad, when the buildings and structures were being built, an interesting cultural blend happened in architecture. Many sultanate buildings in Ahmedabad historic city have resemblance with Patan including the names. Outer fortification walls and Gates were built during the rule of the third ruler in the late 15th century. All the gates had sandstone slabs supported by three arched entrance in sandstone with wooden shutter. A restoration project of Khanpur Gate was initiated in 2016. The paper identifies some evidences and some hidden layers of structures as important elements of cultural interchange while some were just forgotten in the process. The recycling of pre-existing elements of structures are examined and compared. There were layers uncovered that were hidden behind later repairs using traditional brick arch, which was taken out in the process. As the gate had partially collapsed, the restoration included piece by piece dismantling and restoring in the same sequence wherever required. The recycled materials found in the process were recorded and provided the basis for this study. The gate after this discovery sets a new example of fortification Gate built in Sultanate era. The comparison excludes Maratha and British Period Gates to avoid further confusion and focuses on 15th – 16th century sultanate architecture of Ahmedabad.Keywords: Ahmedabad World Heritage, fortification, Indo-Islamic style, Sultanate architecture, cultural interchange
Procedia PDF Downloads 1161085 Large Panel Technology Apartments of Yesterday and Today: Quality Aspects
Authors: Barbara Gronostajska
Abstract:
Currently, housing conditions of buildings executed in large panel technology are deteriorating. The article presents modernization solutions implemented throughout the variety of architectural activities (adding of balconies and staircases, connecting apartments) which guarantee very intriguing results that meet the needs and expectations of the modern society.Keywords: housing estate, apartments, flats, modernization, plate blocks
Procedia PDF Downloads 4801084 Assessment of Airtightness Through a Standardized Procedure in a Nearly-Zero Energy Demand House
Authors: Mar Cañada Soriano, Rafael Royo-Pastor, Carolina Aparicio-Fernández, Jose-Luis Vivancos
Abstract:
The lack of insulation, along with the existence of air leakages, constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, pressurization and depressurization tests can be performed. Among them, the Blower Door test is a standardized procedure to determine the airtightness of a space which characterizes the rate of air leakages through the envelope surface, calculating to this purpose an air flow rate indicator. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place. Among them, the infrared thermography entails a valuable technique to this purpose since it enables their detection. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house located in the Valencian orchad (Spain) restored under the Passive House standard using to this purpose the blower-door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to determine its energy performance, and the infiltrations’ identification was carried out by means of infrared thermography. The low levels of infiltrations obtained suggest that this house may comply with the Passive House standard.Keywords: airtightness, blower door, trnflow, infrared thermography
Procedia PDF Downloads 1231083 Informed Urban Design: Minimizing Urban Heat Island Intensity via Stochastic Optimization
Authors: Luis Guilherme Resende Santos, Ido Nevat, Leslie Norford
Abstract:
The Urban Heat Island (UHI) is characterized by increased air temperatures in urban areas compared to undeveloped rural surrounding environments. With urbanization and densification, the intensity of UHI increases, bringing negative impacts on livability, health and economy. In order to reduce those effects, it is required to take into consideration design factors when planning future developments. Given design constraints such as population size and availability of area for development, non-trivial decisions regarding the buildings’ dimensions and their spatial distribution are required. We develop a framework for optimization of urban design in order to jointly minimize UHI intensity and buildings’ energy consumption. First, the design constraints are defined according to spatial and population limits in order to establish realistic boundaries that would be applicable in real life decisions. Second, the tools Urban Weather Generator (UWG) and EnergyPlus are used to generate outputs of UHI intensity and total buildings’ energy consumption, respectively. Those outputs are changed based on a set of variable inputs related to urban morphology aspects, such as building height, urban canyon width and population density. Lastly, an optimization problem is cast where the utility function quantifies the performance of each design candidate (e.g. minimizing a linear combination of UHI and energy consumption), and a set of constraints to be met is set. Solving this optimization problem is difficult, since there is no simple analytic form which represents the UWG and EnergyPlus models. We therefore cannot use any direct optimization techniques, but instead, develop an indirect “black box” optimization algorithm. To this end we develop a solution that is based on stochastic optimization method, known as the Cross Entropy method (CEM). The CEM translates the deterministic optimization problem into an associated stochastic optimization problem which is simple to solve analytically. We illustrate our model on a typical residential area in Singapore. Due to fast growth in population and built area and land availability generated by land reclamation, urban planning decisions are of the most importance for the country. Furthermore, the hot and humid climate in the country raises the concern for the impact of UHI. The problem presented is highly relevant to early urban design stages and the objective of such framework is to guide decision makers and assist them to include and evaluate urban microclimate and energy aspects in the process of urban planning.Keywords: building energy consumption, stochastic optimization, urban design, urban heat island, urban weather generator
Procedia PDF Downloads 1311082 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings
Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo
Abstract:
The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.Keywords: building structure, seismic waves, spectral analysis, structural response
Procedia PDF Downloads 4001081 Using Dynamic Glazing to Eliminate Mechanical Cooling in Multi-family Highrise Buildings
Authors: Ranojoy Dutta, Adam Barker
Abstract:
Multifamily residential buildings are increasingly being built with large glazed areas to provide tenants with greater daylight and outdoor views. However, traditional double-glazed window assemblies can lead to significant thermal discomfort from high radiant temperatures as well as increased cooling energy use to address solar gains. Dynamic glazing provides an effective solution by actively controlling solar transmission to maintain indoor thermal comfort, without compromising the visual connection to outdoors. This study uses thermal simulations across three Canadian cities (Toronto, Vancouver and Montreal) to verify if dynamic glazing along with operable windows and ceiling fans can maintain the indoor operative temperature of a prototype southwest facing high-rise apartment unit within the ASHRAE 55 adaptive comfort range for a majority of the year, without any mechanical cooling. Since this study proposes the use of natural ventilation for cooling and the typical building life cycle is 30-40 years, the typical weather files have been modified based on accepted global warming projections for increased air temperatures by 2050. Results for the prototype apartment confirm that thermal discomfort with dynamic glazing occurs only for less than 0.7% of the year. However, in the baseline scenario with low-E glass there are up to 7% annual hours of discomfort despite natural ventilation with operable windows and improved air movement with ceiling fans.Keywords: electrochromic glazing, multi-family housing, passive cooling, thermal comfort, natural ventilation
Procedia PDF Downloads 1051080 Direct-Displacement Based Design for Buildings with Non-Linear Viscous Dampers
Authors: Kelly F. Delgado-De Agrela, Sonia E. Ruiz, Marco A. Santos-Santiago
Abstract:
An approach is proposed for the design of regular buildings equipped with non-linear viscous dissipating devices. The approach is based on a direct-displacement seismic design method which satisfies seismic performance objectives. The global system involved is formed by structural regular moment frames capable of supporting gravity and lateral loads with elastic response behavior plus a set of non-linear viscous dissipating devices which reduce the structural seismic response. The dampers are characterized by two design parameters: (1) a positive real exponent α which represents the non-linearity of the damper, and (2) the damping coefficient C of the device, whose constitutive force-velocity law is given by F=Cvᵃ, where v is the velocity between the ends of the damper. The procedure is carried out using a substitute structure. Two limits states are verified: serviceability and near collapse. The reduction of the spectral ordinates by the additional damping assumed in the design process and introduced to the structure by the viscous non-linear dampers is performed according to a damping reduction factor. For the design of the non-linear damper system, the real velocity is considered instead of the pseudo-velocity. The proposed design methodology is applied to an 8-story steel moment frame building equipped with non-linear viscous dampers, located in intermediate soil zone of Mexico City, with a dominant period Tₛ = 1s. In order to validate the approach, nonlinear static analyses and nonlinear time history analyses are performed.Keywords: based design, direct-displacement based design, non-linear viscous dampers, performance design
Procedia PDF Downloads 1931079 Facilitating Waste Management to Achieve Sustainable Residential Built Environments
Authors: Ingy Ibrahim El-Darwish, Neveen Youssef Azmy
Abstract:
The endowment of a healthy environment can be implemented by endorsing sustainable fundamentals. Design of sustainable buildings through recycling of waste, can reduce health problems, provide good environments and contribute to the aesthetically pleasing entourage. Such environments can help in providing energy-saving alternatives to consolidate the principles of sustainability. The poor community awareness and the absence of laws and legislation in Egypt for waste management specifically in residential areas have led to an inability to provide an integrated system for waste management in urban and rural areas. Many problems and environmental challenges face the Egyptian urban environments. From these problems, is the lack of a cohesive vision for waste collection and recycling for energy-saving. The second problem is the lack public awareness of the short term and long term vision of waste management. Bad practices have adversely affected the efficiency of environmental management systems due to lack of urban legislations that codify collection and recycling of residential communities in Egyptian urban environments. Hence, this research tries to address residents on waste management matters to facilitate legislative process on waste collection and classification within residential units and outside them in a preparation phase for recycling in the Egyptian urban environments. In order to achieve this goal, one of the Egyptian communities has been addressed, analyzed and studied. Waste collection, classification, separation and access to recycling places in the urban city are proposed in preparation for a legislation ruling and regulating the process. Hence, sustainable principles are to be achieved.Keywords: recycling, residential buildings, sustainability, waste
Procedia PDF Downloads 3271078 Exposing The Invisible
Authors: Kimberley Adamek
Abstract:
According to the Council on Tall Buildings, there has been a rapid increase in the construction of tall or “megatall” buildings over the past two decades. Simultaneously, the New England Journal of Medicine has reported that there has been a steady increase in climate related natural disasters since the 1970s; the eastern expansion of the USA's infamous Tornado Alley being just one of many current issues. In the future, this could mean that tall buildings, which already guide high speed winds down to pedestrian levels would have to withstand stronger forces and protect pedestrians in more extreme ways. Although many projects are required to be verified within wind tunnels and a handful of cities such as San Francisco have included wind testing within building code standards, there are still many examples where wind is only considered for basic loading. This typically results in and an increase of structural expense and unwanted mitigation strategies that are proposed late within a project. When building cities, architects rarely consider how each building alters the invisible patterns of wind and how these alterations effect other areas in different ways later on. It is not until these forces move, overpower and even destroy cities that people take notice. For example, towers have caused winds to blow objects into people (Walkie-Talkie Tower, Leeds, England), cause building parts to vibrate and produce loud humming noises (Beetham Tower, Manchester), caused wind tunnels in streets as well as many other issues. Alternatively, there exist towers which have used their form to naturally draw in air and ventilate entire facilities in order to eliminate the needs for costly HVAC systems (The Met, Thailand) and used their form to increase wind speeds to generate electricity (Bahrain Tower, Dubai). Wind and weather exist and effect all parts of the world in ways such as: Science, health, war, infrastructure, catastrophes, tourism, shopping, media and materials. Working in partnership with a leading wind engineering company RWDI, a series of tests, images and animations documenting discovered interactions of different building forms with wind will be collected to emphasize the possibilities for wind use to architects. A site within San Francisco (due to its increasing tower development, consistently wind conditions and existing strict wind comfort criteria) will host a final design. Iterations of this design will be tested within the wind tunnel and computational fluid dynamic systems which will expose, utilize and manipulate wind flows to create new forms, technologies and experiences. Ultimately, this thesis aims to question the amount which the environment is allowed to permeate building enclosures, uncover new programmatic possibilities for wind in buildings, and push the boundaries of working with the wind to ensure the development and safety of future cities. This investigation will improve and expand upon the traditional understanding of wind in order to give architects, wind engineers as well as the general public the ability to broaden their scope in order to productively utilize this living phenomenon that everyone constantly feels but cannot see.Keywords: wind engineering, climate, visualization, architectural aerodynamics
Procedia PDF Downloads 3581077 Adobe Attenuation Coefficient Determination and Its Comparison with Other Shielding Materials for Energies Found in Common X-Rays Procedures
Authors: Camarena Rodriguez C. S., Portocarrero Bonifaz A., Palma Esparza R., Romero Carlos N. A.
Abstract:
Adobe is a construction material that fulfills the same function as a conventional brick. Widely used since ancient times, it is present in an appreciable percentage of buildings in Latin America. Adobe is a mixture of clay and sand. The interest in the study of the properties of this material arises due to its presence in the infrastructure of hospital´s radiological services, located in places with low economic resources, for the attenuation of radiation. Some materials such as lead and concrete are the most used for shielding and are widely studied in the literature. The present study will determine the mass attenuation coefficient of Adobe. The minimum required thicknesses for the primary and secondary barriers will be estimated for the shielding of radiological facilities where conventional and dental X-rays are performed. For the experimental procedure, an X-ray source emitted direct radiation towards different thicknesses of an Adobe barrier, and a detector was placed on the other side. For this purpose, an UNFORS Xi solid state detector was used, which collected information on the difference of radiation intensity. The initial parameters of the exposure started at 45 kV; and then the tube tension was varied in increments of 5 kV, reaching a maximum of 125 kV. The X-Ray tube was positioned at a distance of 0.5 m from the surface of the Adobe bricks, and the collimation of the radiation beam was set for an area of 0.15 m x 0.15 m. Finally, mathematical methods were applied to determine the mass attenuation coefficient for different energy ranges. In conclusion, the mass attenuation coefficient for Adobe was determined and the approximate thicknesses of the most common Adobe barriers in the hospital buildings were calculated for their later application in the radiological protection.Keywords: Adobe, attenuation coefficient, radiological protection, shielding, x-rays
Procedia PDF Downloads 1571076 Fuzzy Logic for Control and Automatic Operation of Natural Ventilation in Buildings
Authors: Ekpeti Bukola Grace, Mahmoudi Sabar Esmail, Chaer Issa
Abstract:
Global energy consumption has been increasing steadily over the last half - century, and this trend is projected to continue. As energy demand rises in many countries throughout the world due to population growth, natural ventilation in buildings has been identified as a viable option for lowering these demands, saving costs, and also lowering CO2 emissions. However, natural ventilation is driven by forces that are generally unpredictable in nature thus, it is important to manage the resulting airflow in order to maintain pleasant indoor conditions, making it a complex system that necessitates specific control approaches. The effective application of fuzzy logic technique amidst other intelligent systems is one of the best ways to bridge this gap, as its control dynamics relates more to human reasoning and linguistic descriptions. This article reviewed existing literature and presented practical solutions by applying fuzzy logic control with optimized techniques, selected input parameters, and expert rules to design a more effective control system. The control monitors used indoor temperature, outdoor temperature, carbon-dioxide levels, wind velocity, and rain as input variables to the system, while the output variable remains the control of window opening. This is achieved through the use of fuzzy logic control tool box in MATLAB and running simulations on SIMULINK to validate the effectiveness of the proposed system. Comparison analysis model via simulation is carried out, and with the data obtained, an improvement in control actions and energy savings was recorded.Keywords: fuzzy logic, intelligent control systems, natural ventilation, optimization
Procedia PDF Downloads 1291075 Material Vitalism’s Potential Role in Informing EU Construction and Demolition Waste Policy
Authors: Cameron Jones
Abstract:
Emissions, produced by landfill waste from demolished obsolete buildings, have a damaging effect on both the Earth’s climate and human health. The philosophical theory of material vitalism - the potential for materials to react and emit harmful pollutants - therefore defines this construction and demolition waste (CDW) as having vitality. The European Union’s ‘Circular Economic Action Plan’ (CEAP) aims to mitigate the effects of CDW by prioritising the circularity of building materials. This dissertation examines how the philosophical theory of material vitalism can make an environmentally responsible contribution to CDW policy. The CEAP and Silvertown Quays development are used as case studies for the application of vitalism to policy revision. The study concludes that vitalism has a positive role to play in informing CDW policy, although its contribution is stronger in some areas. This is established by first appraising the aspects that relate to the obsolescence of buildings outlined in the EU’s existing CDW policies. Next, these policy directives are compared with the CE principles employed in the Silvertown Quays development. Subsequently, a keyword analysis model is used to categorise the language used in the CEAP, demonstrating how socio-political approaches to the CE and strategies to address resource scarcity could be strengthened to represent the EU’s policy aspirations more effectively. Recommendations are then made on how material vitalism could be utilised to strengthen legislation, arguing that a notable contribution can be made in most policy areas. Finally, theoretical testing of the impact of these revisions to policy on the case study development identified some practicalities for consideration in improving waste management outcomes.Keywords: vitalism, construction waste, obsolescence, political ecology, exceptionalism
Procedia PDF Downloads 441074 Analyzing the Shearing-Layer Concept Applied to Urban Green System
Authors: S. Pushkar, O. Verbitsky
Abstract:
Currently, green rating systems are mainly utilized for correctly sizing mechanical and electrical systems, which have short lifetime expectancies. In these systems, passive solar and bio-climatic architecture, which have long lifetime expectancies, are neglected. Urban rating systems consider buildings and services in addition to neighborhoods and public transportation as integral parts of the built environment. The main goal of this study was to develop a more consistent point allocation system for urban building standards by using six different lifetime shearing layers: Site, Structure, Skin, Services, Space, and Stuff, each reflecting distinct environmental damages. This shearing-layer concept was applied to internationally well-known rating systems: Leadership in Energy and Environmental Design (LEED) for Neighborhood Development, BRE Environmental Assessment Method (BREEAM) for Communities, and Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) for Urban Development. The results showed that LEED for Neighborhood Development and BREEAM for Communities focused on long-lifetime-expectancy building designs, whereas CASBEE for Urban Development gave equal importance to the Building and Service Layers. Moreover, although this rating system was applied using a building-scale assessment, “Urban Area + Buildings” focuses on a short-lifetime-expectancy system design, neglecting to improve the architectural design by considering bio-climatic and passive solar aspects.Keywords: green rating system, urban community, sustainable design, standardization, shearing-layer concept, passive solar architecture
Procedia PDF Downloads 5791073 Optimum Design of Dual-Purpose Outriggers in Tall Buildings
Authors: Jiwon Park, Jihae Hur, Kukjae Kim, Hansoo Kim
Abstract:
In this study, outriggers, which are horizontal structures connecting a building core to distant columns to increase the lateral stiffness of a tall building, are used to reduce differential axial shortening in a tall building. Therefore, the outriggers in tall buildings are used to serve the dual purposes of reducing the lateral displacement and reducing the differential axial shortening. Since the location of the outrigger greatly affects the effectiveness of the outrigger in terms of the lateral displacement at the top of the tall building and the maximum differential axial shortening, the optimum locations of the dual-purpose outriggers can be determined by an optimization method. Because the floors where the outriggers are installed are given as integer numbers, the conventional gradient-based optimization methods cannot be directly used. In this study, a piecewise quadratic interpolation method is used to resolve the integrality requirement posed by the optimum locations of the dual-purpose outriggers. The optimal solutions for the dual-purpose outriggers are searched by linear scalarization which is a popular method for multi-objective optimization problems. It was found that increasing the number of outriggers reduced the maximum lateral displacement and the maximum differential axial shortening. It was also noted that the optimum locations for reducing the lateral displacement and reducing the differential axial shortening were different. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (NRF-2017R1A2B4010043) and financially supported by Korea Ministry of Land, Infrastructure and Transport(MOLIT) as U-City Master and Doctor Course Grant Program.Keywords: concrete structure, optimization, outrigger, tall building
Procedia PDF Downloads 1771072 Numerical Simulation of Footing on Reinforced Loose Sand
Authors: M. L. Burnwal, P. Raychowdhury
Abstract:
Earthquake leads to adverse effects on buildings resting on soft soils. Mitigating the response of shallow foundations on soft soil with different methods reduces settlement and provides foundation stability. Few methods such as the rocking foundation (used in Performance-based design), deep foundation, prefabricated drain, grouting, and Vibro-compaction are used to control the pore pressure and enhance the strength of the loose soils. One of the problems with these methods is that the settlement is uncontrollable, leading to differential settlement of the footings, further leading to the collapse of buildings. The present study investigates the utility of geosynthetics as a potential improvement of the subsoil to reduce the earthquake-induced settlement of structures. A steel moment-resisting frame building resting on loose liquefiable dry soil, subjected to Uttarkashi 1991 and Chamba 1995 earthquakes, is used for the soil-structure interaction (SSI) analysis. The continuum model can simultaneously simulate structure, soil, interfaces, and geogrids in the OpenSees framework. Soil is modeled with PressureDependentMultiYield (PDMY) material models with Quad element that provides stress-strain at gauss points and is calibrated to predict the behavior of Ganga sand. The model analyzed with a tied degree of freedom contact reveals that the system responses align with the shake table experimental results. An attempt is made to study the responses of footing structure and geosynthetics with unreinforced and reinforced bases with varying parameters. The result shows that geogrid reinforces shallow foundation effectively reduces the settlement by 60%.Keywords: settlement, shallow foundation, SSI, continuum FEM
Procedia PDF Downloads 1941071 Assessment Using Copulas of Simultaneous Damage to Multiple Buildings Due to Tsunamis
Authors: Yo Fukutani, Shuji Moriguchi, Takuma Kotani, Terada Kenjiro
Abstract:
If risk management of the assets owned by companies, risk assessment of real estate portfolio, and risk identification of the entire region are to be implemented, it is necessary to consider simultaneous damage to multiple buildings. In this research, the Sagami Trough earthquake tsunami that could have a significant effect on the Japanese capital region is focused on, and a method is proposed for simultaneous damage assessment using copulas that can take into consideration the correlation of tsunami depths and building damage between two sites. First, the tsunami inundation depths at two sites were simulated by using a nonlinear long-wave equation. The tsunamis were simulated by varying the slip amount (five cases) and the depths (five cases) for each of 10 sources of the Sagami Trough. For each source, the frequency distributions of the tsunami inundation depth were evaluated by using the response surface method. Then, Monte-Carlo simulation was conducted, and frequency distributions of tsunami inundation depth were evaluated at the target sites for all sources of the Sagami Trough. These are marginal distributions. Kendall’s tau for the tsunami inundation simulation at two sites was 0.83. Based on this value, the Gaussian copula, t-copula, Clayton copula, and Gumbel copula (n = 10,000) were generated. Then, the simultaneous distributions of the damage rate were evaluated using the marginal distributions and the copulas. For the correlation of the tsunami inundation depth at the two sites, the expected value hardly changed compared with the case of no correlation, but the damage rate of the ninety-ninth percentile value was approximately 2%, and the maximum value was approximately 6% when using the Gumbel copula.Keywords: copulas, Monte-Carlo simulation, probabilistic risk assessment, tsunamis
Procedia PDF Downloads 1431070 Analysis of Environmental Sustainability in Post- Earthquake Reconstruction : A Case of Barpak, Nepal
Authors: Sudikshya Bhandari, Jonathan K. London
Abstract:
Barpak in northern Nepal represents a unique identity expressed through the local rituals, values, lifeways and the styles of vernacular architecture. The traditional residential buildings and construction practices adopted by the dominant ethnic groups: Ghales and Gurungs, reflect environmental, social, cultural and economic concerns. However, most of these buildings did not survive the Gorkha earthquake in 2015 that made many residents skeptical about their strength to resist future disasters. This led Barpak residents to prefer modern housing designs primarily for the strength but additionally for convenience and access to earthquake relief funds. Post-earthquake reconstruction has transformed the cohesive community, developed over hundreds of years into a haphazard settlement with the imposition of externally-driven building models. Housing guidelines provided for the community reconstruction and earthquake resilience have been used as a singular template, similar to other communities on different geographical locations. The design and construction of these buildings do not take into account the local, historical, environmental, social, cultural and economic context of Barpak. In addition to the physical transformation of houses and the settlement, the consequences continue to develop challenges to sustainability. This paper identifies the major challenges for environmental sustainability with the construction of new houses in post-earthquake Barpak. Mixed methods such as interviews, focus groups, site observation, and documentation, and analysis of housing and neighborhood design have been used for data collection. The discernible changing situation of this settlement due to the new housing has included reduced climatic adaptation and thermal comfort, increased consumption of agricultural land and water, minimized use of local building materials, and an increase in energy demand. The research has identified that reconstruction housing practices happening in Barpak, while responding to crucial needs for disaster recovery and resilience, are also leading this community towards an unsustainable future. This study has also integrated environmental, social, cultural and economic parameters into an assessment framework that could be used to develop place-based design guidelines in the context of other post-earthquake reconstruction efforts. This framework seeks to minimize the unintended repercussions of unsustainable reconstruction interventions, support the vitality of vernacular architecture and traditional lifeways and respond to context-based needs in coordination with residents.Keywords: earthquake, environment, reconstruction, sustainability
Procedia PDF Downloads 1151069 Design Intervention to Achieve Space Efficiency for Commercial Interiors
Authors: Hari Krishna Ayyappa, Reenu Singh
Abstract:
Rising population and restricted land for development has led towards the growth of vertical buildings and small complexes. It provides many possibilities to change the shape and size of internal space in addition to the social impacts on the commercial spaces. With the increased volatility of necessities of people, the need for mental and physical comfort has continuously increased. . Living in a small space musts minimalist and space- saving cabinetwork results to sustain mortal good. This paper attempts to explore the Influence of Using Minimalist Furniture on the Efficiency of the commercial Space interiors by means of the variable resulting from preceding studies based on literature. A literature review was conducted on research articles to understand the contributing variables in a well designed small commercial spaces. A questionnaire survey was conducted to understand the layout of small commercial spaces with respect to Environmental impact, material, Design elements, Modern approach, Layered lightings, and colours. The problem of small spaces can be resolved by some ways; it's still needed for cabinetwork to develop to be more innovative to accommodate small living spaces. Since cabinetwork is a necessity and not luxury, everybody is in need of it. The spatial factors affecting overall satisfaction at a detailed position were bandied. The variable helped in proposing design ideation and mock ups to explore improved interiors. This paper concludes that most of the principles of the minimalist approach have been overlooked at, which had an impact on the space efficiency in commercial spaces like storage rooms, office area, retail stores, restaurants, and other spaces where business is conducted.Keywords: materials, modern approach, space efficiency, tall commercial buildings
Procedia PDF Downloads 1101068 Sustainable Renovation of Cultural Buildings Case Study: Red Bay National Historic Site, Canada
Authors: Richard Briginshaw, Hana Alaojeli, Javaria Ahmad, Hamza Gaffar, Nourtan Murad
Abstract:
Sustainable renovations to cultural buildings and sites require a high level of competency in the sometimes conflicting areas of social/historical demands, environmental concerns, and the programmatic and technical requirements of the project. A detailed analysis of the existing site, building and client program are critical to reveal both challenges and opportunities. This forms the starting point for the design process – empirical explorations that search for a balanced and inspired architectural solution to the project. The Red Bay National Historic Site on the Labrador Coast of eastern Canada is a challenging project to explore and resolve these ideas. Originally the site of a 16ᵗʰ century whaling station occupied by Basque sailors from France and Spain, visitors now experience this history at the interpretive center, along with the unique geography, climate, local culture and vernacular architecture of the area. Working with our client, Parks Canada, the project called for significant alterations and expansion to the existing facility due to an increase in the number of annual visitors. Sustainable aspects of the design are focused on sensitive site development, passive energy strategies such as building orientation and building envelope efficiency, active renewable energy systems, carefully considered material selections, water efficiency, and interiors that respond to human comfort and a unique visitor experience.Keywords: sustainability, renovations and expansion, cultural project, architectural design, green building
Procedia PDF Downloads 1681067 Explore and Reduce the Performance Gap between Building Modelling Simulations and the Real World: Case Study
Authors: B. Salehi, D. Andrews, I. Chaer, A. Gillich, A. Chalk, D. Bush
Abstract:
With the rapid increase of energy consumption in buildings in recent years, especially with the rise in population and growing economies, the importance of energy savings in buildings becomes more critical. One of the key factors in ensuring energy consumption is controlled and kept at a minimum is to utilise building energy modelling at the very early stages of the design. So, building modelling and simulation is a growing discipline. During the design phase of construction, modelling software can be used to estimate a building’s projected energy consumption, as well as building performance. The growth in the use of building modelling software packages opens the door for improvements in the design and also in the modelling itself by introducing novel methods such as building information modelling-based software packages which promote conventional building energy modelling into the digital building design process. To understand the most effective implementation tools, research projects undertaken should include elements of real-world experiments and not just rely on theoretical and simulated approaches. Upon review of the related studies undertaken, it’s evident that they are mostly based on modelling and simulation, which can be due to various reasons such as the more expensive and time-consuming nature of real-time data-based studies. Taking in to account the recent rise of building energy software modelling packages and the increasing number of studies utilising these methods in their projects and research, the accuracy and reliability of these modelling software packages has become even more crucial and critical. This Energy Performance Gap refers to the discrepancy between the predicted energy savings and the realised actual savings, especially after buildings implement energy-efficient technologies. There are many different software packages available which are either free or have commercial versions. In this study, IES VE (Integrated Environmental Solutions Virtual Environment) is used as it is a common Building Energy Modeling and Simulation software in the UK. This paper describes a study that compares real time results with those in a virtual model to illustrate this gap. The subject of the study is a north west facing north-west (345°) facing, naturally ventilated, conservatory within a domestic building in London is monitored during summer to capture real-time data. Then these results are compared to the virtual results of IES VE, which is a commonly used building energy modelling and simulation software in the UK. In this project, the effect of the wrong position of blinds on overheating is studied as well as providing new evidence of Performance Gap. Furthermore, the challenges of drawing the input of solar shading products in IES VE will be considered.Keywords: building energy modelling and simulation, integrated environmental solutions virtual environment, IES VE, performance gap, real time data, solar shading products
Procedia PDF Downloads 1391066 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework
Authors: Junyu Chen, Peng Xu
Abstract:
In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus
Procedia PDF Downloads 281065 Reviving the Past, Enhancing the Future: Preservation of Urban Heritage Connectivity as a Tool for Developing Liveability in Historical Cities in Jordan, Using Salt City as a Case Study
Authors: Sahar Yousef, Chantelle Niblock, Gul Kacmaz
Abstract:
Salt City, in the context of Jordan’s heritage landscape, is a significant case to explore when it comes to the interaction between tangible and intangible qualities of liveable cities. Most city centers, including Jerash, Salt, Irbid, and Amman, are historical locations. Six of these extraordinary sites were designated UNESCO World Heritage Sites. Jordan is widely acknowledged as a developing country characterized by swift urbanization and unrestrained expansion that exacerbate the challenges associated with the preservation of historic urban areas. The aim of this study is to conduct an examination and analysis of the existing condition of heritage connectivity within heritage city centers. This includes outdoor staircases, pedestrian pathways, footpaths, and other public spaces. Case study-style analysis of the urban core of As-Salt is the focus of this investigation. Salt City is widely acknowledged for its substantial tangible and intangible cultural heritage and has been designated as ‘The Place of Tolerance and Urban Hospitality’ by UNESCO since 2021. Liveability in urban heritage, particularly in historic city centers, incorporates several factors that affect our well-being; its enhancement is a critical issue in contemporary society. The dynamic interaction between humans and historical materials, which serves as a vehicle for the expression of their identity and historical narrative, constitutes preservation that transcends simple conservation. This form of engagement enables people to appreciate the diversity of their heritage recognising their previous and planned futures. Heritage preservation is inextricably linked to a larger physical and emotional context; therefore, it is difficult to examine it in isolation. Urban environments, including roads, structures, and other infrastructure, are undergoing unprecedented physical design and construction requirements. Concurrently, heritage reinforces a sense of affiliation with a particular location or space and unifies individuals with their ancestry, thereby defining their identity. However, a considerable body of research has focused on the conservation of heritage buildings in a fragmented manner without considering their integration within a holistic urban context. Insufficient attention is given to the significance of the physical and social roles played by the heritage staircases and baths that serve as connectors between these valued historical buildings. In doing so, the research uses a methodology that is based on consensus. Given that liveability is considered a complex matter with several dimensions. The discussion starts by making initial observations on the physical context and societal norms inside the urban center while simultaneously establishing the definitions of liveability and connectivity and examining the key criteria associated with these concepts. Then, identify the key elements that contribute to liveable connectivity within the framework of urban heritage in Jordanian city centers. Some of the outcomes that will be discussed in the presentation are: (1) There is not enough connectivity between heritage buildings as can be seen, for example, between buildings in Jada and Qala'. (2) Most of the outdoor spaces suffer from physical issues that hinder their use by the public, like in Salalem. (3) Existing activities in the city center are not well attended because of lack of communication between the organisers and the citizens.Keywords: connectivity, Jordan, liveability, salt city, tangible and intangible heritage, urban heritage
Procedia PDF Downloads 701064 Composite 'C' Springs for Anti-Seismic Building Suspension: Positioning 'Virtual Center of Pendulation above Gravity Center'
Authors: Max Sardou, Patricia Sardou
Abstract:
Now that weight saving is mandatory, to author best knowledge composite springs, that we have invented, are best choice for automotive suspensions, against steel. So, we have created a Joint Ventures called S.ARA, in order to mass produce composite coils springs. Start of Production of composite coils springs was in 2014 for AUDI. As we have demonstrated, on the road, that composite springs are not a sweet dream. The present paper describes all the benefits of ‘C’ springs and ‘S’ springs for high performance vehicles suspension, for rocket stage separation, and for satellite injection into orbit. Developing rocket stage separation, we have developed for CNES (Centre National d’Etudes Spatiales) the following concept. If we call ‘line of action’ a line going from one end of a spring to the other. Our concept is to use for instance two springs inclined. In such a way that their line of action cross together and create at this crossing point a virtual center well above the springs. This virtual center, is pulling from above the top stage and is offering a guidance, perfectly stable and straight. About buildings, our solution is to transfer this rocket technology, creating a ‘virtual center’ of pendulation positioned above the building center of gravity. This is achieved by using tilted composite springs benches oriented in such a way that their line of action converges creating the ‘virtual center’. Thanks to the ‘virtual center’ position, the building behaves as a pendulum, hanged from above. When earthquake happen then the building will oscillate around its ‘virtual center’ and will go back safely to equilibrium after the tremor. ‘C’ springs, offering anti-rust, anti-settlement, fail-safe suspension, plus virtual center solution is the must for long-lasting, perfect protection of buildings against earthquakes.Keywords: virtual center of tilt, composite springs, fail safe springs, antiseismic suspention
Procedia PDF Downloads 244