Search results for: RAO (Response Amplitude Operator)
5499 Estimation of Elastic Modulus of Soil Surrounding Buried Pipeline Using Multi-Response Surface Methodology
Authors: Won Mog Choi, Seong Kyeong Hong, Seok Young Jeong
Abstract:
The stress on the buried pipeline under pavement is significantly affected by vehicle loads and elastic modulus of the soil surrounding the pipeline. The correct elastic modulus of soil has to be applied to the finite element model to investigate the effect of the vehicle loads on the buried pipeline using finite element analysis. The purpose of this study is to establish the approach to calculating the correct elastic modulus of soil using the optimization process. The optimal elastic modulus of soil, which minimizes the difference between the strain measured from vehicle driving test at the velocity of 35km/h and the strain calculated from finite element analyses, was calculated through the optimization process using multi-response surface methodology. Three elastic moduli of soil (road layer, original soil, dense sand) surrounding the pipeline were defined as the variables for the optimization. Further analyses with the optimal elastic modulus at the velocities of 4.27km/h, 15.47km/h, 24.18km/h were performed and compared to the test results to verify the applicability of multi-response surface methodology. The results indicated that the strain of the buried pipeline was mostly affected by the elastic modulus of original soil, followed by the dense sand and the load layer, as well as the results of further analyses with optimal elastic modulus of soil show good agreement with the test.Keywords: pipeline, optimization, elastic modulus of soil, response surface methodology
Procedia PDF Downloads 3875498 Photo-Fenton Decolorization of Methylene Blue Adsolubilized on Co2+ -Embedded Alumina Surface: Comparison of Process Modeling through Response Surface Methodology and Artificial Neural Network
Authors: Prateeksha Mahamallik, Anjali Pal
Abstract:
In the present study, Co(II)-adsolubilized surfactant modified alumina (SMA) was prepared, and methylene blue (MB) degradation was carried out on Co-SMA surface by visible light photo-Fenton process. The entire reaction proceeded on solid surface as MB was embedded on Co-SMA surface. The reaction followed zero order kinetics. Response surface methodology (RSM) and artificial neural network (ANN) were used for modeling the decolorization of MB by photo-Fenton process as a function of dose of Co-SMA (10, 20 and 30 g/L), initial concentration of MB (10, 20 and 30 mg/L), concentration of H2O2 (174.4, 348.8 and 523.2 mM) and reaction time (30, 45 and 60 min). The prediction capabilities of both the methodologies (RSM and ANN) were compared on the basis of correlation coefficient (R2), root mean square error (RMSE), standard error of prediction (SEP), relative percent deviation (RPD). Due to lower value of RMSE (1.27), SEP (2.06) and RPD (1.17) and higher value of R2 (0.9966), ANN was proved to be more accurate than RSM in order to predict decolorization efficiency.Keywords: adsolubilization, artificial neural network, methylene blue, photo-fenton process, response surface methodology
Procedia PDF Downloads 2555497 Systematic Analysis of Immune Response to Biomaterial Surface Characteristics
Authors: Florian Billing, Soren Segan, Meike Jakobi, Elsa Arefaine, Aliki Jerch, Xin Xiong, Matthias Becker, Thomas Joos, Burkhard Schlosshauer, Ulrich Rothbauer, Nicole Schneiderhan-Marra, Hanna Hartmann, Christopher Shipp
Abstract:
The immune response plays a major role in implant biocompatibility, but an understanding of how to design biomaterials for specific immune responses is yet to be achieved. We aimed to better understand how changing certain material properties can drive immune responses. To this end, we tested immune response to experimental implant coatings that vary in specific characteristics. A layer-by-layer approach was employed to vary surface charge and wettability. Human-based in vitro models (THP-1 macrophages and primary peripheral blood mononuclear cells (PBMCS)) were used to assess immune responses using multiplex cytokine analysis, flow cytometry (CD molecule expression) and microscopy (cell morphology). We observed dramatic differences in immune response due to specific alterations in coating properties. For example altering the surface charge of coating A from anionic to cationic resulted in the substantial elevation of the pro-inflammatory molecules IL-1beta, IL-6, TNF-alpha and MIP-1beta, while the pro-wound healing factor VEGF was significantly down-regulated. We also observed changes in cell surface marker expression in relation to altered coating properties, such as CD16 on NK Cells and HLA-DR on monocytes. We furthermore observed changes in the morphology of THP-1 macrophages following cultivation on different coatings. A correlation between these morphological changes and the cytokine expression profile is ongoing. Targeted changes in biomaterial properties can produce vast differences in immune response. The properties of the coatings examined here may, therefore, be a method to direct specific biological responses in order to improve implant biocompatibility.Keywords: biomaterials, coatings, immune system, implants
Procedia PDF Downloads 1905496 Realization of Hybrid Beams Inertial Amplifier
Authors: Somya Ranjan Patro, Abhigna Bhatt, Arnab Banerjee
Abstract:
Inertial amplifier has recently gained increasing attention as a new mechanism for vibration control of structures. Currently, theoretical investigations are undertaken by researchers to reveal its fundamentals and to understand its underline principles in altering the structural response of structures against dynamic loadings. This paper investigates experimental and analytical studies on the dynamic characteristics of hybrid beam inertial amplifier (HBIA). The analytical formulation of the HBIA has been derived by implementing the spectral element method and rigid body dynamics. This formulation gives the relation between dynamic force and the response of the structure in the frequency domain. Further, for validation of the proposed HBIA, the experiments have been performed. The experimental setup consists of a 3D printed HBIA of polylactic acid (PLA) material screwed at the base plate of the shaker system. Two numbers of accelerometers are used to study the response, one at the base plate of the shaker second one placed at the top of the inertial amplifier. A force transducer is also placed in between the base plate and the inertial amplifier to calculate the total amount of load transferred from the base plate to the inertial amplifier. The obtained time domain response from the accelerometers have been converted into the frequency domain using the Fast Fourier Transform (FFT) algorithm. The experimental transmittance values are successfully validated with the analytical results, providing us essential confidence in our proposed methodology.Keywords: inertial amplifier, fast fourier transform, natural frequencies, polylactic acid, transmittance, vibration absorbers
Procedia PDF Downloads 1035495 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design
Authors: A. Thakur, P. S. Panesar, M. S. Saini
Abstract:
Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio (φ), and batch extraction time (τ) with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs,, ψ, φ and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively.Keywords: emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology
Procedia PDF Downloads 3835494 Time Effective Structural Frequency Response Testing with Oblique Impact
Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi
Abstract:
Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.Keywords: frequency response function, impact testing, modal analysis, oblique angle, oblique impact
Procedia PDF Downloads 5015493 Comparison of Bioelectric and Biomechanical Electromyography Normalization Techniques in Disparate Populations
Authors: Drew Commandeur, Ryan Brodie, Sandra Hundza, Marc Klimstra
Abstract:
The amplitude of raw electromyography (EMG) is affected by recording conditions and often requires normalization to make meaningful comparisons. Bioelectric methods normalize with an EMG signal recorded during a standardized task or from the experimental protocol itself, while biomechanical methods often involve measurements with an additional sensor such as a force transducer. Common bioelectric normalization techniques for treadmill walking include maximum voluntary isometric contraction (MVIC), dynamic EMG peak (EMGPeak) or dynamic EMG mean (EMGMean). There are several concerns with using MVICs to normalize EMG, including poor reliability and potential discomfort. A limitation of bioelectric normalization techniques is that they could result in a misrepresentation of the absolute magnitude of force generated by the muscle and impact the interpretation of EMG between functionally disparate groups. Additionally, methods that normalize to EMG recorded during the task may eliminate some real inter-individual variability due to biological variation. This study compared biomechanical and bioelectric EMG normalization techniques during treadmill walking to assess the impact of the normalization method on the functional interpretation of EMG data. For the biomechanical method, we normalized EMG to a target torque (EMGTS) and the bioelectric methods used were normalization to the mean and peak of the signal during the walking task (EMGMean and EMGPeak). The effect of normalization on muscle activation pattern, EMG amplitude, and inter-individual variability were compared between disparate cohorts of OLD (76.6 yrs N=11) and YOUNG (26.6 yrs N=11) adults. Participants walked on a treadmill at a self-selected pace while EMG was recorded from the right lower limb. EMG data from the soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL), and biceps femoris (BF) were phase averaged into 16 bins (phases) representing the gait cycle with bins 1-10 associated with right stance and bins 11-16 with right swing. Pearson’s correlations showed that activation patterns across the gait cycle were similar between all methods, ranging from r =0.86 to r=1.00 with p<0.05. This indicates that each method can characterize the muscle activation pattern during walking. Repeated measures ANOVA showed a main effect for age in MG for EMGPeak but no other main effects were observed. Interactions between age*phase of EMG amplitude between YOUNG and OLD with each method resulted in different statistical interpretation between methods. EMGTS normalization characterized the fewest differences (four phases across all 5 muscles) while EMGMean (11 phases) and EMGPeak (19 phases) showed considerably more differences between cohorts. The second notable finding was that coefficient of variation, the representation of inter-individual variability, was greatest for EMGTS and lowest for EMGMean while EMGPeak was slightly higher than EMGMean for all muscles. This finding supports our expectation that EMGTS normalization would retain inter-individual variability which may be desirable, however, it also suggests that even when large differences are expected, a larger sample size may be required to observe the differences. Our findings clearly indicate that interpretation of EMG is highly dependent on the normalization method used, and it is essential to consider the strengths and limitations of each method when drawing conclusions.Keywords: electromyography, EMG normalization, functional EMG, older adults
Procedia PDF Downloads 935492 Influence of the Test Environment on the Dynamic Response of a Composite Beam
Authors: B. Moueddene, B. Labbaci, L. Missoum, R. Abdeldjebar
Abstract:
Quality estimation of the experimental simulation of boundary conditions is one of the problems encountered while performing an experimental program. In fact, it is not easy to estimate directly the effective influence of these simulations on the results of experimental investigation. The aim of this is article to evaluate the effect of boundary conditions uncertainties on structure response, using the change of the dynamics characteristics. The experimental models used and the correlation by the Frequency Domain Assurance Criterion (FDAC) allowed an interpretation of the change in the dynamic characteristics. The application of this strategy to stratified composite structures (glass/ polyester) has given satisfactory results.Keywords: vibration, composite, endommagement, correlation
Procedia PDF Downloads 3665491 Optimization of Diluted Organic Acid Pretreatment on Rice Straw Using Response Surface Methodology
Authors: Rotchanaphan Hengaroonprasan, Malinee Sriariyanun, Prapakorn Tantayotai, Supacharee Roddecha, Kraipat Cheenkachorn
Abstract:
Lignocellolusic material is a substance that is resistant to be degraded by microorganisms or hydrolysis enzymes. To be used as materials for biofuel production, it needs pretreatment process to improve efficiency of hydrolysis. In this work, chemical pretreatments on rice straw using three diluted organic acids, including acetic acid, citric acid, oxalic acid, were optimized. Using Response Surface Methodology (RSM), the effect of three pretreatment parameters, acid concentration, treatment time, and reaction temperature, on pretreatment efficiency were statistically evaluated. The results indicated that dilute oxalic acid pretreatment led to the highest enhancement of enzymatic saccharification by commercial cellulase and yielded sugar up to 10.67 mg/ml when using 5.04% oxalic acid at 137.11 oC for 30.01 min. Compared to other acid pretreatment by acetic acid, citric acid, and hydrochloric acid, the maximum sugar yields are 7.07, 6.30, and 8.53 mg/ml, respectively. Here, it was demonstrated that organic acids can be used for pretreatment of lignocellulosic materials to enhance of hydrolysis process, which could be integrated to other applications for various biorefinery processes.Keywords: lignocellolusic biomass, pretreatment, organic acid response surface methodology, biorefinery
Procedia PDF Downloads 6545490 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems
Authors: Prasad Pokkunuri
Abstract:
Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids
Procedia PDF Downloads 2925489 Short-Term Effects of an Open Monitoring Meditation on Cognitive Control and Information Processing
Authors: Sarah Ullrich, Juliane Rolle, Christian Beste, Nicole Wolff
Abstract:
Inhibition and cognitive flexibility are essential parts of executive functions in our daily lives, as they enable the avoidance of unwanted responses or selectively switch between mental processes to generate appropriate behavior. There is growing interest in improving inhibition and response selection through brief mindfulness-based meditations. Arguably, open-monitoring meditation (OMM) improves inhibitory and flexibility performance by optimizing cognitive control and information processing. Yet, the underlying neurophysiological processes have been poorly studied. Using the Simon-Go/Nogo paradigm, the present work examined the effect of a single 15-minute smartphone app-based OMM on inhibitory performance and response selection in meditation novices. We used both behavioral and neurophysiological measures (event-related potentials, ERPs) to investigate which subprocesses of response selection and inhibition are altered after OMM. The study was conducted in a randomized crossover design with N = 32 healthy adults. We thereby investigated Go and Nogo trials in the paradigm. The results show that as little as 15 minutes of OMM can improve response selection and inhibition at behavioral and neurophysiological levels. More specifically, OMM reduces the rate of false alarms, especially during Nogo trials regardless of congruency. It appears that OMM optimizes conflict processing and response inhibition compared to no meditation, also reflected in the ERP N2 and P3 time windows. The results may be explained by the meta control model, which argues in terms of a specific processing mode with increased flexibility and inclusive decision-making under OMM. Importantly, however, the effects of OMM were only evident when there was the prior experience with the task. It is likely that OMM provides more cognitive resources, as the amplitudes of these EKPs decreased. OMM novices seem to induce finer adjustments during conflict processing after familiarization with the task.Keywords: EEG, inhibition, meditation, Simon Nogo
Procedia PDF Downloads 2115488 Evaluation of the exIWO Algorithm Based on the Traveling Salesman Problem
Authors: Daniel Kostrzewa, Henryk Josiński
Abstract:
The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.Keywords: expanded invasive weed optimization algorithm (exIWO), traveling salesman problem (TSP), heuristic approach, inversion operator
Procedia PDF Downloads 8365487 Static Priority Approach to Under-Frequency Based Load Shedding Scheme in Islanded Industrial Networks: Using the Case Study of Fatima Fertilizer Company Ltd - FFL
Authors: S. H. Kazmi, T. Ahmed, K. Javed, A. Ghani
Abstract:
In this paper static scheme of under-frequency based load shedding is considered for chemical and petrochemical industries with islanded distribution networks relying heavily on the primary commodity to ensure minimum production loss, plant downtime or critical equipment shutdown. A simplistic methodology is proposed for in-house implementation of this scheme using underfrequency relays and a step by step guide is provided including the techniques to calculate maximum percentage overloads, frequency decay rates, time based frequency response and frequency based time response of the system. Case study of FFL electrical system is utilized, presenting the actual system parameters and employed load shedding settings following the similar series of steps. The arbitrary settings are then verified for worst overload conditions (loss of a generation source in this case) and comprehensive system response is then investigated.Keywords: islanding, under-frequency load shedding, frequency rate of change, static UFLS
Procedia PDF Downloads 4885486 The Relationship between Amplitude and Stability of Circadian Rhythm with Sleep Quality and Sleepiness: A Population Study, Kerman 2018
Authors: Akram Sadat Jafari Roodbandi, Farzaneh Akbari, Vafa Feyzi, Zahra Zare, Zohreh Foroozanfar
Abstract:
Introduction: Circadian rhythm or sleep-awake cycle in 24 hours is one of the important factors affecting the physiological and psychological characteristics in humans that contribute to biochemical, physiological and behavioral processes and helps people to set up brain and body for sleep or active awakening during certain hours. The purpose of this study was to investigate the relationship between the characteristics of circadian rhythms on the sleep quality and sleepiness according to their demographic characteristics such as age. Methods: This cross-sectional descriptive-analytic study was carried out among the general population of Kerman, aged 15-84 years. After dividing the age groups into 10-year demographic characteristics questionnaire, the type of circadian questionnaire, Pittsburgh sleep quality questionnaire and Euporth sleepiness questionnaire were completed in equal numbers between men and women of that age group. Using cluster sampling with effect design equal 2, 1300 questionnaires were distributed during the various hours of 24 hours in public places in Kerman city. Data analysis was done using SPSS software and univariate tests and linear regressions at a significance level of 0.05. Results: In this study, 1147 subjects were included in the study, 584 (50.9%) were male and the rest were women. The mean age was 39.50 ± 15.38. 133 (11.60%) subjects from the study participants had sleepiness and 308 (26.90%) subjects had undesirable sleep quality. Using linear regression test, sleep quality was the significant correlation with sex, hours needed for sleep at 24 hours, chronic illness, sleepiness, and circadian rhythm amplitude. Sleepiness was the meaningful relationship with marital status, sleep-wake schedule of other family members and the stability of circadian rhythm. Both women and men, with age, decrease the quality of sleep and increase the rate of sleepiness. Conclusion: Age, sex, and type of circadian people, the need for sleep at 24 hours, marital status, sleep-wake schedule of other family members are significant factors related to the sleep quality and sleepiness and their adaptation to night shift work.Keywords: circadian type, sleep quality, sleepiness, age, shift work
Procedia PDF Downloads 1575485 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations
Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu
Abstract:
This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategiesKeywords: rotor, crack, rubbing, axial force, non linear
Procedia PDF Downloads 4015484 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load
Authors: David Koren, Vojko Kilar
Abstract:
The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab. The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.Keywords: extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction
Procedia PDF Downloads 3045483 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI
Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova
Abstract:
The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.Keywords: mechatronic systems, Matlab GUI, sensitivity, tolerance
Procedia PDF Downloads 4335482 Individual Physiological and Psycho-Physical Response on Predicting Thermal Comfort in Transient Environments: A Literature Review
Authors: Fatemeh Deldarabdolmaleki, Nur Dalilah Dahlan, Farzad Hejazi
Abstract:
Human individual physiological and psycho-physical responses widely affect thermal comfort and preferences. They should be carefully researched to help improve the design and comfort of indoor environments. This paper aims to explore and test the degree and importance of individual physiological and psycho-physical differences, reviewing the most preferred, neutral, and comfortable temperature in previous studies conducted across the world. Basic individual physiological differences like gender, age, BMI and etc., have been the focus of this research. There is no unique consensus in the literature to date in regard to providing a universal thermal comfort formula that meets all individual physiological and psycho-physical needs. In order to achieve a balanced, thermally comfortable indoor environment, studying and evaluating individual needs in different parts of the world could be helpful. Even though personalized comfort systems in indoor environments sound promising, they might not be easily achieved in bigger office interiors, considering the cost and current open-plan office trends.Keywords: thermal comfort, indoor environments, occupants' physiological response, occupants psycho-physical response
Procedia PDF Downloads 735481 Investigation of a Natural Convection Heat Sink for LEDs Based on Micro Heat Pipe Array-Rectangular Channel
Authors: Wei Wang, Yaohua Zhao, Yanhua Diao
Abstract:
The exponential growth of the lighting industry has rendered traditional thermal technologies inadequate for addressing the thermal management challenges inherent to high-power light-emitting diode (LED) technology. To enhance the thermal management of LEDs, this study proposes a heat sink configuration that integrates a miniature heat pipe array based on phase change technology with rectangular channels. The thermal performance of the heat sink was evaluated through experimental testing, and the results demonstrated that when the input power was 100W, 150W, and 200W, the temperatures of the LED substrate were 47.64℃, 56.78℃, and 69.06℃, respectively. Additionally, the maximum temperature difference of the MHPA in the vertical direction was observed to be 0.32℃, 0.30℃, and 0.30℃, respectively. The results demonstrate that the heat sink not only effectively dissipates the heat generated by the LEDs, but also exhibits excellent temperature uniformity. In consideration of the experimental measurement outcomes, a corresponding numerical model was developed as part of this study. Following the model validation, the effect of the structural parameters of the heat sink on its heat dissipation efficacy was examined through the use of response surface methodology (RSM) analysis. The rectangular channel width, channel height, channel length, number of channel cross-sections, and channel cross-section spacing were selected as the input parameters, while the LED substrate temperature and the total mass of the heat sink were regarded as the response variables. Subsequently, the response was subjected to an analysis of variance (ANOVA), which yielded a regression model that predicted the response based on the input variables. This offers some direction for the design of the radiator.Keywords: light-emitting diodes, heat transfer, heat pipe, natural convection, response surface methodology
Procedia PDF Downloads 375480 Statistical Analysis of Surface Roughness and Tool Life Using (RSM) in Face Milling
Authors: Mohieddine Benghersallah, Lakhdar Boulanouar, Salim Belhadi
Abstract:
Currently, higher production rate with required quality and low cost is the basic principle in the competitive manufacturing industry. This is mainly achieved by using high cutting speed and feed rates. Elevated temperatures in the cutting zone under these conditions shorten tool life and adversely affect the dimensional accuracy and surface integrity of component. Thus it is necessary to find optimum cutting conditions (cutting speed, feed rate, machining environment, tool material and geometry) that can produce components in accordance with the project and having a relatively high production rate. Response surface methodology is a collection of mathematical and statistical techniques that are useful for modelling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The work presented in this paper examines the effects of cutting parameters (cutting speed, feed rate and depth of cut) on to the surface roughness through the mathematical model developed by using the data gathered from a series of milling experiments performed.Keywords: Statistical analysis (RSM), Bearing steel, Coating inserts, Tool life, Surface Roughness, End milling.
Procedia PDF Downloads 4325479 Analysis of Anti-Tuberculosis Immune Response Induced in Lungs by Intranasal Immunization with Mycobacterium indicus pranii
Authors: Ananya Gupta, Sangeeta Bhaskar
Abstract:
Mycobacterium indicus pranii (MIP) is a saprophytic mycobacterium. It is a predecessor of M. avium complex (MAC). Whole genome analysis and growth kinetics studies have placed MIP in between pathogenic and non-pathogenic species. It shares significant antigenic repertoire with M. tuberculosis and have unique immunomodulatory properties. MIP provides better protection than BCG against pulmonary tuberculosis in animal models. Immunization with MIP by aerosol route provides significantly higher protection as compared to immunization by subcutaneous (s.c.) route. However, mechanism behind differential protection has not been studied. In this study, using mice model we have evaluated and compared the M.tb specific immune response in lung compartments (airway lumen / lung interstitium) as well as spleen following MIP immunization via nasal (i.n.) and s.c. route. MIP i.n. vaccination resulted in increased seeding of memory T cells (CD4+ and CD8+ T-cells) in the airway lumen. Frequency of CD4+ T cells expressing Th1 migratory marker (CXCR3) and activation marker (CD69) were also high in airway lumen of MIP i.n. group. Significantly high ex vivo secretion of cytokines- IFN-, IL-12, IL-17 and TNF- from cells of airway luminal spaces provides evidence of antigen-specific lung immune response, besides generating systemic immunity comparable to MIP s.c. group. Analysis of T cell response on per cell basis revealed that antigen specific T-cells of MIP i.n. group were functionally superior as higher percentage of these cells simultaneously secreted IFN-gamma, IL-2 and TNF-alpha cytokines as compared to MIP s.c. group. T-cells secreting more than one of the cytokines simultaneously are believed to have robust effector response and crucial for protection, compared with single cytokine secreting T-cells. Adoptive transfer of airway luminal T-cells from MIP i.n. group into trachea of naive B6 mice revealed that MIP induced CD8 T-cells play crucial role in providing long term protection. Thus the study demonstrates that MIP intranasal vaccination induces M.tb specific memory T-cells in the airway lumen that results in an early and robust recall response against M.tb infection.Keywords: airway lumen, Mycobacterium indicus pranii, Th1 migratory markers, vaccination
Procedia PDF Downloads 1885478 Efficient Filtering of Graph Based Data Using Graph Partitioning
Authors: Nileshkumar Vaishnav, Aditya Tatu
Abstract:
An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.Keywords: graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing
Procedia PDF Downloads 3135477 ICAM-2, A Protein of Antitumor Immune Response in Mekong Giant Catfish (Pangasianodon gigas)
Authors: Jiraporn Rojtinnakorn
Abstract:
ICAM-2 (intercellular adhesion molecule 2) or CD102 (Cluster of Differentiation 102) is type I trans-membrane glycoproteins, composing 2-9 immunoglobulin-like C2-type domains. ICAM-2 plays the particular role in immune response and cell surveillance. It is concerned in innate and specific immunity, cell survival signal, apoptosis, and anticancer. EST clone of ICAM-2, from P. gigas blood cell EST libraries, showed high identity to human ICAM-2 (92%) with conserve region of ICAM N-terminal domain and part of Ig superfamily. Gene and protein of ICAM-2 has been founded in mammals. This is the first report of ICAM-2 in fish.Keywords: ICAM-2, CD102, Pangasianodon gigas, antitumor
Procedia PDF Downloads 2275476 Time Domain Dielectric Relaxation Microwave Spectroscopy
Authors: A. C. Kumbharkhane
Abstract:
Time domain dielectric relaxation microwave spectroscopy (TDRMS) is a term used to describe a technique of observing the time dependant response of a sample after application of time dependant electromagnetic field. A TDRMS probes the interaction of a macroscopic sample with a time dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the TDRS technique covers an extensive dynamical process. The corresponding frequencies range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy, which yield information on the motions of individual molecules. Recently, we have developed and established the TDR technique in laboratory that provides information regarding dielectric permittivity in the frequency range 10 MHz to 30 GHz. The TDR method involves the generation of step pulse with rise time of 20 pico-seconds in a coaxial line system and monitoring the change in pulse shape after reflection from the sample placed at the end of the coaxial line. There is a great interest to study the dielectric relaxation behaviour in liquid systems to understand the role of hydrogen bond in liquid system. The intermolecular interaction through hydrogen bonds in molecular liquids results in peculiar dynamical properties. The dynamics of hydrogen-bonded liquids have been studied. The theoretical model to explain the experimental results will be discussed.Keywords: microwave, time domain reflectometry (TDR), dielectric measurement, relaxation time
Procedia PDF Downloads 3365475 Photoimpedance Spectroscopy Analysis of Planar and Nano-Textured Thin-Film Silicon Solar Cells
Authors: P. Kumar, D. Eisenhauer, M. M. K. Yousef, Q. Shi, A. S. G. Khalil, M. R. Saber, C. Becker, T. Pullerits, K. J. Karki
Abstract:
In impedance spectroscopy (IS) the response of a photo-active device is analysed as a function of ac bias. It is widely applied in a broad class of material systems and devices. It gives access to fundamental mechanisms of operation of solar cells. We have implemented a method of IS where we modulate the light instead of the bias. This scheme allows us to analyze not only carrier dynamics but also impedance of device locally. Here, using this scheme, we have measured the frequency-dependent photocurrent response of the thin-film planar and nano-textured Si solar cells using this method. Photocurrent response is measured in range of 50 Hz to 50 kHz. Bode and Nyquist plots are used to determine characteristic lifetime of both the cells. Interestingly, the carrier lifetime of both planar and nano-textured solar cells depend on back and front contact positions. This is due to either heterogeneity of device or contacts are not optimized. The estimated average lifetime is found to be shorter for the nano-textured cell, which could be due to the influence of the textured interface on the carrier relaxation dynamics.Keywords: carrier lifetime, impedance, nano-textured, photocurrent
Procedia PDF Downloads 2335474 Assessments of Internal Erosion in a Landfill Due to Changes in the Groundwater Level
Authors: Siamak Feizi, Gunvor Baardvik
Abstract:
Soil erosion has special consequences for landfills that are more serious than those found at conventional construction sites. Different potential heads between two sides of a landfill and the subsequent movement of water through pores within the soil body could trigger the soil erosion and construction instability. Such a condition was encountered in a landfill project in the southern part of Norway. To check the risk of internal erosion due to changes in the groundwater level (because of seasonal flooding in the river), a series of numerical simulations by means of Geo-Seep software was conducted. Output of this study provides a total picture of the landfill stability, possibilities of erosions, and necessary measures to prevent or reduce the risk for the landfill operator.Keywords: erosion, seepage, landfill, stability
Procedia PDF Downloads 1355473 Lentil Protein Fortification in Cranberry Squash
Authors: Sandhya Devi A
Abstract:
The protein content of the cranberry squash (protein: 0g) may be increased by extracting protein from the lentils (9 g), which is particularly linked to a lower risk of developing heart disease. Using the technique of alkaline extraction from the lentils flour, protein may be extracted. Alkaline extraction of protein from lentil flour was optimized utilizing response surface approach in order to maximize both protein content and yield. Cranberry squash may be taken if a protein fortification syrup is prepared and processed into the squash.Keywords: alkaline extraction, cranberry squash, protein fortification, response surface methodology
Procedia PDF Downloads 1125472 Tiger Team Strategy as a Health District Response to the COVID-19 Pandemic in Sydney, Australia during the Period between March 2020 to January 2022
Authors: Rehana Khan
Abstract:
Background: The study investigates the experiences of Tiger Teams within the Sydney Local Health District during the COVID-19 pandemic. Aim: The aims were to understand the experiences of the Tiger Team members, to evaluate the effectiveness of Tiger Teams, and to elicit any learnings for future implementation of Tiger Teams in a similar context. Methods: Tiger Team members who worked from March 2020 to January 2022 were approached, with 23 members agreeing to participate in the study. Individual interviews were undertaken by a researcher on a virtual platform. Thematic analysis was used to analyse the data. Saturation was deemed to have been reached when no new themes or subthemes arose within the final three interviews. Results: Four themes emerged: diversity worked well in Tiger Teams; fear of the unknown and challenging conversations were the main challenges of Tiger Teams; improved use of resources and more structure around the strategy of the Tiger Team model would help in future implementations; and Sydney Local Health District’s response to the pandemic was uniformly considered effective in keeping the community safe. In relation to Sydney Local Health District’s response in future pandemics, participants suggested having a pool of staff in readiness to undertake Tiger Team duties when required; prioritise staff welfare at all levels of involvement during a pandemic; maintaining transparent communication and relationship building between Executive level, Tiger Team members and clinical floor level in relation to decision making; and improve documentation, including evaluations of the COVID-19 pandemic response. Implications: The study provides constructive insights into the experiences of Tiger Team members, and these findings will help inform future planning for surge and secondment of staff in public health emergencies.Keywords: Tiger Team, pandemic response, future planning, COVID-19
Procedia PDF Downloads 825471 The Investigation of Fiber Reinforcement Self-Compacting Concrete and Fiber Reinforcement Concrete
Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri
Abstract:
The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. From the 1960s the comprehensive investigation of pile foundations during earthquake excitation indicate that, piles are subject to damage by affecting the superstructure integrity and serviceability. The main part of these research has been focused on the behavior of liquefiable soil and lateral spreading load on piles. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. And researchers have been listed the large cracks reason such as liquefaction, lateral spreading and inertial load. In the field of designing, elastic response of piles are always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. And emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.Keywords: self-compacting concrete, fiber, tensile strength, post-cracking, direct and inverse technique
Procedia PDF Downloads 2395470 Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame
Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi
Abstract:
Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis.Keywords: fast nonlinear analysis, friction damper, base isolator, seismic vibration control, seismic response
Procedia PDF Downloads 321