Search results for: proposed module
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9459

Search results for: proposed module

2319 Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor

Authors: Michel Han, Christophe Besson, Alain Savary, Yvan Becher

Abstract:

The variable flux permanent magnet synchronous motor (VF-PMSM), also called "Memory Motor", is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications.

Keywords: efficiency, magnetization state, memory motors, performances, permanent-magnet, synchronous machine, variable-flux, variable magnetization, wide speed application

Procedia PDF Downloads 191
2318 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports

Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani

Abstract:

In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.

Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method

Procedia PDF Downloads 293
2317 Noise and Thermal Analyses of Memristor-Based Phase Locked Loop Integrated Circuit

Authors: Naheem Olakunle Adesina

Abstract:

The memristor is considered as one of the promising candidates for mamoelectronic engineering and applications. Owing to its high compatibility with CMOS, nanoscale size, and low power consumption, memristor has been employed in the design of commonly used circuits such as phase-locked loop (PLL). In this paper, we designed a memristor-based loop filter (LF) together with other components of PLL. Following this, we evaluated the noise-rejection feature of loop filter by comparing the noise levels of input and output signals of the filter. Our SPICE simulation results showed that memristor behaves like a linear resistor at high frequencies. The result also showed that loop filter blocks the high-frequency components from phase frequency detector so as to provide a stable control voltage to the voltage controlled oscillator (VCO). In addition, we examined the effects of temperature on the performance of the designed phase locked loop circuit. A critical temperature, where there is frequency drift of VCO as a result of variations in control voltage, is identified. In conclusion, the memristor is a suitable choice for nanoelectronic systems owing to a small area, low power consumption, dense nature, high switching speed, and endurance. The proposed memristor-based loop filter, together with other components of the phase locked loop, can be designed using memristive emulator and EDA tools in current CMOS technology and simulated.

Keywords: Fast Fourier Transform, hysteresis curve, loop filter, memristor, noise, phase locked loop, voltage controlled oscillator

Procedia PDF Downloads 185
2316 Pros and Cons of Different Types of Irrigation Systems for Date Palm Production in Sebha, Libya

Authors: Ahmad Aridah, Maria Fay Rola-Rubzen, Zora Singh

Abstract:

This study investigated the effectiveness of various types of irrigation systems in regards to the impact that these have on the productivity of date palms in the semi-arid and arid region of Sebha, Southwest Libya. The date palm is an economically important crop in Libya and contributes to the agriculture industry, foreign exchange earnings, farmers’ income, and employment in the country. The date palm industry relies on large amounts of water for growing the crop. Farmers in Southwest Libya use a variety of irrigation systems, but the quality and quantity of water varies between systems and this affects the productivity and income of farmers. Using survey data from 210 farmers, this study estimated and assessed the pros and cons of different types of irrigation systems for date palm production under various irrigation systems currently used in Sebha, Libya. The number of years farmers have used irrigation, the area, irrigation water consumption, time of irrigation, number of farm workers (including family labour) and inputs used were measured for surface, sprinkler and drip irrigation methods. Findings from this research provide new insights into the advantages and disadvantages of the various irrigation systems, problems encountered by farmers and the factors that affect the quality and quantity of the irrigation system. The paper discussed proposed solutions to deal with the problems including timing of irrigation, canal maintenance, repair of wells and water control.

Keywords: Libya, factors, irrigation method, date palm

Procedia PDF Downloads 348
2315 Brain-Computer Interface Based Real-Time Control of Fixed Wing and Multi-Rotor Unmanned Aerial Vehicles

Authors: Ravi Vishwanath, Saumya Kumaar, S. N. Omkar

Abstract:

Brain-computer interfacing (BCI) is a technology that is almost four decades old, and it was developed solely for the purpose of developing and enhancing the impact of neuroprosthetics. However, in the recent times, with the commercialization of non-invasive electroencephalogram (EEG) headsets, the technology has seen a wide variety of applications like home automation, wheelchair control, vehicle steering, etc. One of the latest developed applications is the mind-controlled quadrotor unmanned aerial vehicle. These applications, however, do not require a very high-speed response and give satisfactory results when standard classification methods like Support Vector Machine (SVM) and Multi-Layer Perceptron (MLPC). Issues are faced when there is a requirement for high-speed control in the case of fixed-wing unmanned aerial vehicles where such methods are rendered unreliable due to the low speed of classification. Such an application requires the system to classify data at high speeds in order to retain the controllability of the vehicle. This paper proposes a novel method of classification which uses a combination of Common Spatial Paradigm and Linear Discriminant Analysis that provides an improved classification accuracy in real time. A non-linear SVM based classification technique has also been discussed. Further, this paper discusses the implementation of the proposed method on a fixed-wing and VTOL unmanned aerial vehicles.

Keywords: brain-computer interface, classification, machine learning, unmanned aerial vehicles

Procedia PDF Downloads 281
2314 Simultaneous Determination of Six Characterizing/Quality Parameters of Biodiesels via 1H NMR and Multivariate Calibration

Authors: Gustavo G. Shimamoto, Matthieu Tubino

Abstract:

The characterization and the quality of biodiesel samples are checked by determining several parameters. Considering a large number of analysis to be performed, as well as the disadvantages of the use of toxic solvents and waste generation, multivariate calibration is suggested to reduce the number of tests. In this work, hydrogen nuclear magnetic resonance (1H NMR) spectra were used to build multivariate models, from partial least squares (PLS) regression, in order to determine simultaneously six important characterizing and/or quality parameters of biodiesels: density at 20 ºC, kinematic viscosity at 40 ºC, iodine value, acid number, oxidative stability, and water content. Biodiesels from twelve different oils sources were used in this study: babassu, brown flaxseed, canola, corn, cottonseed, macauba almond, microalgae, palm kernel, residual frying, sesame, soybean, and sunflower. 1H NMR reflects the structures of the compounds present in biodiesel samples and showed suitable correlations with the six parameters. The PLS models were constructed with latent variables between 5 and 7, the obtained values of r(cal) and r(val) were greater than 0.994 and 0.989, respectively. In addition, the models were considered suitable to predict all the six parameters for external samples, taking into account the analytical speed to perform it. Thus, the alliance between 1H NMR and PLS showed to be appropriate to characterize and evaluate the quality of biodiesels, reducing significantly analysis time, the consumption of reagents/solvents, and waste generation. Therefore, the proposed methods can be considered to adhere to the principles of green chemistry.

Keywords: biodiesel, multivariate calibration, nuclear magnetic resonance, quality parameters

Procedia PDF Downloads 538
2313 The Effectiveness of a Program Based on the Employment of the Proposed Folk Songs to Enrich the Visual Expressive Drawings with the Artistic Connotations for the Early Stage Childhood

Authors: Ahmed Mousa, Huda Mazeed

Abstract:

The research aims to determine the appropriate songs and artistic indications for the kindergarten child. In addition, it aims to use the songs of folk to develop expressive visual drawings with artistic connotations for the kindergarten child. The current research used a one group semi-experimental approach to identify the impact of songs on expressive children's drawings. The research community is represented in the educational administration in Giza Governorate for the academic year (2018 - 2019). The sample was taken from the kindergarten of Gamal Abdel Nasser School of Dokki Educational Administration in Giza Governorate. The study was applied to the second level children sample (5-6 years), where they numbered 20 children, males and females. The research results show that there are statistically significant differences between the average scores of the children of the experimental group in the pre and post-measurements on the observation card for children after hearing the songs of social and national folk in favor of post measurement. Moreover, the results demonstrate that there are no statistically significant differences between the average scores of children in the experimental group in the measurements, the post and follow-up, on the observation card of children's drawings for social and national folk.

Keywords: folk songs, visual expressive, artistic connotations, early childhood

Procedia PDF Downloads 175
2312 The Applications of Four Fingers Theory: The Proof of 66 Acupoints under the Human Elbow and Knee

Authors: Chih-I. Tsai, Yu-Chien. Lin

Abstract:

Through experiences of clinical practices, it is discovered that locations on the body at a level of four fingerbreadth above and below the joints are the points at which muscles connect to tendons, and since the muscles and tendons possess opposite characteristics, muscles are full of blood but lack qi, while tendons are full of qi but lack blood, these points on our body become easily blocked. It is proposed that through doing acupuncture or creating localized pressure to the areas four fingerbreadths above and below our joints, with an elastic bandage, we could help the energy, also known as qi, to flow smoothly in our body and further improve our health. Based on the Four Fingers Theory, we understand that human height is 22 four fingerbreadths. In addition, qi and blood travel through 24 meridians, 50 times each day, and they flow through 6 cun with every human breath. We can also understand the average number of human heartbeats is 75 times per minute. And the function of qi-blood circulation system in Traditional Chinese Medicine is the same as the blood circulation in Western Medical Science. Informed by Four Fingers Theory, this study further examined its applications in acupuncture practices. The research question is how Four Fingers Theory proves what has been mentioned in Nei Jing that there are 66 acupoints under a human’s elbow and knee. In responding to the research question, there are 66 acupoints under a human’s elbow and knee. Four Fingers Theory facilitated the creation of the acupuncture naming and teaching system. It is expected to serve as an approachable and effective way to deliver knowledge of acupuncture to the public worldwide.

Keywords: four fingers theory, meridians circulation, 66 acupoints under human elbow and knee, acupuncture

Procedia PDF Downloads 296
2311 Steam Reforming of Acetic Acid over Microwave-Synthesized Ce0.75Zr0.25O2 Supported Ni Catalysts

Authors: Panumard Kaewmora, Thirasak Rirksomboon, Vissanu Meeyoo

Abstract:

Due to the globally growing demands of petroleum fuel and fossil fuels, the scarcity or even depletion of fossil fuel sources could be inevitable. Alternatively, the utilization of renewable sources, such as biomass, has become attractive to the community. Biomass can be converted into bio-oil by fast pyrolysis. In water phase of bio-oil, acetic acid which is one of its main components can be converted to hydrogen with high selectivity over effective catalysts in steam reforming process. Steam reforming of acetic acid as model compound has been intensively investigated for hydrogen production using various metal oxide supported nickel catalysts and yet they seem to be rapidly deactivated depending on the support utilized. A catalyst support such as Ce1-xZrxO2 mixed oxide was proposed for alleviating this problem with the anticipation of enhancing hydrogen yield. However, catalyst preparation methods play a significant role in catalytic activity and performance of the catalysts. In this work, Ce0.75Zr0.25O2 mixed oxide solid solution support was prepared by urea hydrolysis using microwave as heat source. After that nickel metal was incorporated at 15 wt% by incipient wetness impregnation method. The catalysts were characterized by several techniques including BET, XRD, H2-TPR, XRF, SEM, and TEM as well as tested for the steam reforming of acetic acid at various operating conditions. Preliminary results showed that a hydrogen yield of ca. 32% with a relatively high acetic conversion was attained at 650°C.

Keywords: acetic acid, steam reforming, microwave, nickel, ceria, zirconia

Procedia PDF Downloads 173
2310 Little Retrieval Augmented Generation for Named Entity Recognition: Toward Lightweight, Generative, Named Entity Recognition Through Prompt Engineering, and Multi-Level Retrieval Augmented Generation

Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira

Abstract:

We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models Mistral-v0.3, Llama-3, and Phi-3, for Generative Named Entity Recognition (GNER). Our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We consider recent developments at the cross roads of prompt engineering and Retrieval Augmented Generation (RAG), such as EmotionPrompt. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.

Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification

Procedia PDF Downloads 44
2309 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services

Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme

Abstract:

Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.

Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing

Procedia PDF Downloads 109
2308 An Integrated Approach for Risk Management of Transportation of HAZMAT: Use of Quality Function Deployment and Risk Assessment

Authors: Guldana Zhigerbayeva, Ming Yang

Abstract:

Transportation of hazardous materials (HAZMAT) is inevitable in the process industries. The statistics show a significant number of accidents has occurred during the transportation of HAZMAT. This makes risk management of HAZMAT transportation an important topic. The tree-based methods including fault-trees, event-trees and cause-consequence analysis, and Bayesian network, have been applied to risk management of HAZMAT transportation. However, there is limited work on the development of a systematic approach. The existing approaches fail to build up the linkages between the regulatory requirements and the safety measures development. The analysis of historical data from the past accidents’ report databases would limit our focus on the specific incidents and their specific causes. Thus, we may overlook some essential elements in risk management, including regulatory compliance, field expert opinions, and suggestions. A systematic approach is needed to translate the regulatory requirements of HAZMAT transportation into specified safety measures (both technical and administrative) to support the risk management process. This study aims to first adapt the House of Quality (HoQ) to House of Safety (HoS) and proposes a new approach- Safety Function Deployment (SFD). The results of SFD will be used in a multi-criteria decision-support system to develop find an optimal route for HazMats transportation. The proposed approach will be demonstrated through a hypothetical transportation case in Kazakhstan.

Keywords: hazardous materials, risk assessment, risk management, quality function deployment

Procedia PDF Downloads 140
2307 Light-Weight Network for Real-Time Pose Estimation

Authors: Jianghao Hu, Hongyu Wang

Abstract:

The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).

Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone

Procedia PDF Downloads 152
2306 Voice Liveness Detection Using Kolmogorov Arnold Networks

Authors: Arth J. Shah, Madhu R. Kamble

Abstract:

Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.

Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection

Procedia PDF Downloads 38
2305 Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach

Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed

Abstract:

Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.

Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model

Procedia PDF Downloads 460
2304 Tolerance of Ambiguity in Relation to Listening Performance across Learners of Various Linguistic Backgrounds

Authors: Amin Kaveh Boukani

Abstract:

Foreign language learning is not straightforward and can be affected by numerous factors, among which personality features like tolerance of ambiguity (TA) are so well-known and important. Such characteristics yet can be affected by other factors like learning additional languages. The current investigation, thus, opted to explore the possible effect of linguistic background (being bilingual or trilingual) on the tolerance of ambiguity (TA) of Iranian EFL learners. Furthermore, the possible mediating effect of TA on multilingual learners' language performance (listening comprehension in this study) was expounded. This research involved 68 EFL learners (32 bilinguals, 29 trilinguals) with the age range of 19-29 doing their degrees in the Department of English Language and Literature of Urmia University. A set of questionnaires, including tolerance of ambiguity (Herman et. al., 2010) and linguistic background information (Modirkhameneh, 2005), as well as the IELTS listening comprehension test, were used for data collection purposes. The results of a set of independent samples t-test and mediation analysis (Hayes, 2022) showed that (1) linguistic background (being bilingual or trilingual) had a significant direct effect on EFL learners' TA, (2) Linguistic background had a significant direct influence on listening comprehension, (3) TA had a substantial direct influence on listening comprehension, and (4) TA moderated the influence of linguistic background on listening comprehension considerably. These results suggest that multilingualism may be considered as an advantageous asset for EFL learners and should be a prioritized characteristic in EFL instruction in multilingual contexts. Further pedagogical implications and suggestions for research are proposed in light of effective EFL instruction in multilingual contexts.

Keywords: tolerance of ambiguity, listening comprehension, multilingualism, bilingual, trilingual

Procedia PDF Downloads 59
2303 An Automatic Bayesian Classification System for File Format Selection

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.

Keywords: data mining, digital libraries, digital preservation, file format

Procedia PDF Downloads 497
2302 Knowledge Transformation Flow (KTF) of Visually Impaired Students: The Virtual Knowledge System as a New Service Innovation

Authors: Chatcai Tangsri, Onjaree Na-Takuatoong

Abstract:

This paper aims to present the key factors that support the decision to use the technology and to present the knowledge transformation flow of visually impaired students after the use of virtual knowledge system as proposed as a new service innovation to universities in Thailand. Correspondents of 27 visually impaired students are involved in this research. Total of 25 students are selected from the University that mainly conducts non-classroom teaching environment; while another 2 visually impaired students are selected from classroom teaching environment. All of them are fully involved in the study along 8 weeks duration. All correspondents are classified into 5 small groups in various conditions. The research results revealed that the involvement from knowledge facilitator can push out for the behavioral actual use of the virtual knowledge system although there is no any developed intention to use behaviors. Secondly, the situations that the visually impaired students inadequate of the knowledge sources that usually provided by assistants i.e. peers, audio files etc. In this case, they will use the virtual knowledge system for both knowledge access and knowledge transfer request. With this evidence, the need of knowledge would play a stronger role than all technology acceptance factors. Finally, this paper revealed that the knowledge transfer in the normal method that students have a chance to physically meet up is still confirmed as their preference method. In term of other aspects of technology acceptance, it will be discussed together with challenges and recommendations at the end of this paper.

Keywords: knowledge system, visually impaired students, higher education, knowledge management enable technology, synchronous/asynchronous knowledge access, synchronous/asynchronous knowledge transfer

Procedia PDF Downloads 354
2301 Radical Degradation of Acetaminophen with Peroxymonosulfate-Based Oxidation Processes

Authors: Chaoqun Tan, Naiyun Gao, Xiaoyan Xin

Abstract:

Perxymonosulfate (PMS)-based oxidation processes, as an alternative of hydrogen peroxide-based oxidation processes, are more and more popular because of reactive radical species (SO4-•, OH•) produced in systems. Magnetic nano-scaled particles Fe3O4 and ferrous anion (Fe2+) were studied for the activation of PMS for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for APAP and the reactions well followed a pseudo-first-order kinetics pattern (R2>0.95). While the degradation of APAP in PMS-Fe2+ system proceeds through two stages: a fast stage and a much slower stage. Within 5 min, approximately 7% and 18% of 10 ppm APAP was accomplished by 0.2 mM PMS in Fe3O4 (0.8g/L) and Fe2+ (0.1mM) activation process. However, as reaction proceed to 120 min, approximately 75% and 35% of APAP was removed in Fe3O4 activation process and Fe2+ activation process, respectively. Within 120 min, the mineralization of APAP was about 7.5% and 5.0% (initial APAP of 10 ppm and [PMS]0 of 0.2 mM) in Fe3O4-PMS and Fe2+-PMS system, while the mineralization could be greatly increased to about 31% and 40% as [PMS]0 increased to 2.0 mM in in Fe3O4-PMS and Fe2+-PMS system, respectively. At last, the production of reactive radical species were validated directly from Electron Paramagnetic Resonance (ESR) tests with 0.1 M 5,5-Dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 and Fe2+ activation of PMS are proposed on the results of radial identification tests. The results demonstrated that Fe3O4 MNPs activated PMS and Fe2+ anion activated PMS systems are promising technologies for water pollution caused by contaminants such as pharmaceutical. Fe3O4-PMS system is more suitable for slowly remediation, while Fe2+-PMS system is more suitable for fast remediation.

Keywords: acetaminophen, peroxymonosulfate, radicals, Electron Paramagnetic Resonance (ESR)

Procedia PDF Downloads 348
2300 The Concepts of Ibn Taymiyyah in Halal and Haram and Their Relevance to Contemporary Issues

Authors: Muhammad Fakhrul Arrazi

Abstract:

Ibn Taymiyyah is a great figure in Islam. His works have become the reference for many Muslims in implementing the fiqh of Ibadah and Muamalat. This article reviews the concepts that Ibn Taymiyyah has initiated in Halal and Haram, long before the books on Halal and Haram are written by contemporary scholars. There are at least four concepts of Halal and Haram ever spawned by Ibn Taymiyyah. First, the belief of a jurist (Faqih) in a matter that is Haram does not necessarily make the matter Haram. Haram arises from the Quran, Sunnah, Ijma’ and Qiyas as the tarjih. Due to the different opinions among the ulama, we should revisit this concept. Second, if a Muslim involves in a transaction (Muamalat), believes it permissible and gets money from such transaction, then it is legal for other Muslims to transact with the property of this Muslim brother, even if he does not believe that the transactions made by his Muslims brother are permissible. Third, Haram is divided into two; first is Haram because of the nature of an object, such as carrion, blood, and pork. If it is mixed with water or food and alters their taste, color, and smell, the food and water become Haram. Second is Haram because of the way it is obtained such as a stolen item and a broken aqad. If it is mixed with the halal property, the property does not automatically become Haram. Fourth, a treasure whose owners cannot be traced back then it is used for the benefit of the ummah. This study used the secondary data from the classics books by Ibn Taymiyyah, particularly those entailing his views on Halal and Haram. The data were then analyzed by using thematic and comparative approach. It is found that most of the concepts proposed by Ibn Taymiyyah in Halal and Haram correspond the majority’s views in the schools. However, some of his concepts are also in contrary to other scholars. His concepts will benefit the ummah, should it be applied to the contemporary issues.

Keywords: fiqh Muamalat, halal, haram, Ibn Taymiyyah

Procedia PDF Downloads 182
2299 Using Cyclic Structure to Improve Inference on Network Community Structure

Authors: Behnaz Moradijamei, Michael Higgins

Abstract:

Identifying community structure is a critical task in analyzing social media data sets often modeled by networks. Statistical models such as the stochastic block model have proven to explain the structure of communities in real-world network data. In this work, we develop a goodness-of-fit test to examine community structure's existence by using a distinguishing property in networks: cyclic structures are more prevalent within communities than across them. To better understand how communities are shaped by the cyclic structure of the network rather than just the number of edges, we introduce a novel method for deciding on the existence of communities. We utilize these structures by using renewal non-backtracking random walk (RNBRW) to the existing goodness-of-fit test. RNBRW is an important variant of random walk in which the walk is prohibited from returning back to a node in exactly two steps and terminates and restarts once it completes a cycle. We investigate the use of RNBRW to improve the performance of existing goodness-of-fit tests for community detection algorithms based on the spectral properties of the adjacency matrix. Our proposed test on community structure is based on the probability distribution of eigenvalues of the normalized retracing probability matrix derived by RNBRW. We attempt to make the best use of asymptotic results on such a distribution when there is no community structure, i.e., asymptotic distribution under the null hypothesis. Moreover, we provide a theoretical foundation for our statistic by obtaining the true mean and a tight lower bound for RNBRW edge weights variance.

Keywords: hypothesis testing, RNBRW, network inference, community structure

Procedia PDF Downloads 150
2298 Multi-Objective Optimization for the Green Vehicle Routing Problem: Approach to Case Study of the Newspaper Distribution Problem

Authors: Julio C. Ferreira, Maria T. A. Steiner

Abstract:

The aim of this work is to present a solution procedure referred to here as the Multi-objective Optimization for Green Vehicle Routing Problem (MOOGVRP) to provide solutions for a case study. The proposed methodology consists of three stages to resolve Scenario A. Stage 1 consists of the “treatment” of data; Stage 2 consists of applying mathematical models of the p-Median Capacitated Problem (with the objectives of minimization of distances and homogenization of demands between groups) and the Asymmetric Traveling Salesman Problem (with the objectives of minimizing distances and minimizing time). The weighted method was used as the multi-objective procedure. In Stage 3, an analysis of the results is conducted, taking into consideration the environmental aspects related to the case study, more specifically with regard to fuel consumption and air pollutant emission. This methodology was applied to a (partial) database that addresses newspaper distribution in the municipality of Curitiba, Paraná State, Brazil. The preliminary findings for Scenario A showed that it was possible to improve the distribution of the load, reduce the mileage and the greenhouse gas by 17.32% and the journey time by 22.58% in comparison with the current scenario. The intention for future works is to use other multi-objective techniques and an expanded version of the database and explore the triple bottom line of sustainability.

Keywords: Asymmetric Traveling Salesman Problem, Green Vehicle Routing Problem, Multi-objective Optimization, p-Median Capacitated Problem

Procedia PDF Downloads 110
2297 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks

Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas

Abstract:

This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).

Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems

Procedia PDF Downloads 133
2296 A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile

Authors: Hala Alshamlan, Ghada Badr, Yousef Alohali

Abstract:

Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile.

Keywords: gene selection, feature selection, cancer classification, microarray, gene expression profile

Procedia PDF Downloads 453
2295 An Orphan Software Engineering Course: Supportive Ways toward a True Software Engineer

Authors: Haya Sammana

Abstract:

A well-defined curricula must be adopted to meet the increasing complexity and diversity in the software applications. In reality, some IT majors such as computer science and computer engineering receive the software engineering education in a single course which is considered as a big challenged for the instructors and universities. Also, it requires students to gain the most of practical experiences that simulate the real work in software companies. Furthermore, we have noticed that there is no consensus on how, when and what to teach in that introductory course to gain the practical experiences that are required by the software companies. Because all of software engineering disciplines will not fit in just one course, so the course needs reasonable choices in selecting its topics. This arises an important question which is an essential one to ask: Is this course has the ability to formulate a true software engineer that meets the needs of industry? This question arises a big challenge in selecting the appropriate topics. So answering this question is very important for the next undergraduate students. During teaching this course in the curricula, the feedbacks from an undergraduate students and the keynotes of the annual meeting for an advisory committee from industrial side provide a probable answer for the proposed question: it is impossible to build a true software engineer who possesses all the essential elements of software engineering education such teamwork, communications skills, project management skills and contemporary industrial practice from one course and it is impossible to have a one course covering all software engineering topics. Besides the used teaching approach, the author proposes an implemented three supportive ways aiming for mitigating the expected risks and increasing the opportunity to build a true software engineer.

Keywords: software engineering course, software engineering education, software experience, supportive approach

Procedia PDF Downloads 357
2294 Infertility Awareness: Knowledge and Attitude of Medical & Non-Medical Moroccan Young People

Authors: Sana El Adlani, Yassir Ait Ben Kaddour, Abdelhafid Benksim, Abderraouf Soummani, Mohamed Cherkaoui

Abstract:

Background: Infertility in all countries of the word is on an increase, it’s why the World Health Organization included an investigation into young people's fertility. In this sense, it’s important to increase efforts to improve the knowledge about fertility for the young population. The aim of this study is to describe the difference between knowledge and attitude of medical and non-medical Moroccan young people. Materials and Methods: 100 medical Moroccan students (group 1) participated in the study, between 18 and 30 years, by a simple random sampling method, during 2020 and using a previously validated questionnaire. The answers were confronted to the result of our same study among 355 non-medical Moroccan young people (group 2) in 2019. Statistical analyses were performed using Statistical Package for the Social Sciences (version 10). Result: Medical students had a significantly higher level of knowledge about infertility than non-medical young people. However, both groups were aware of the impact of lifestyle on infertility. The knowledge state of the first group about infertility management was higher than the second group. Moreover, all non-medical Moroccan young people believed that it is easier to conceive if the couples had already their first baby, whereas, among medical students, only 53% had confirmed this belief. The results showed that 65% of medical students had proposed to try fertility treatments more than one time if treatment fails. Besides, the first advice of the second group was polygamy and adoption. Conclusion: Following the result of our study, the investigation of young people is the measure to optimize reproductive health. So, it’s crucial that the government increase efforts to improve the knowledge about infertility not only for medical universities but for all scholar programs.

Keywords: attitude, infertility, knowledge, medical, non-medical, young people

Procedia PDF Downloads 226
2293 Programming without Code: An Approach and Environment to Conditions-On-Data Programming

Authors: Philippe Larvet

Abstract:

This paper presents the concept of an object-based programming language where tests (if... then... else) and control structures (while, repeat, for...) disappear and are replaced by conditions on data. According to the object paradigm, by using this concept, data are still embedded inside objects, as variable-value couples, but object methods are expressed into the form of logical propositions (‘conditions on data’ or COD).For instance : variable1 = value1 AND variable2 > value2 => variable3 = value3. Implementing this approach, a central inference engine turns and examines objects one after another, collecting all CODs of each object. CODs are considered as rules in a rule-based system: the left part of each proposition (left side of the ‘=>‘ sign) is the premise and the right part is the conclusion. So, premises are evaluated and conclusions are fired. Conclusions modify the variable-value couples of the object and the engine goes to examine the next object. The paper develops the principles of writing CODs instead of complex algorithms. Through samples, the paper also presents several hints for implementing a simple mechanism able to process this ‘COD language’. The proposed approach can be used within the context of simulation, process control, industrial systems validation, etc. By writing simple and rigorous conditions on data, instead of using classical and long-to-learn languages, engineers and specialists can easily simulate and validate the functioning of complex systems.

Keywords: conditions on data, logical proposition, programming without code, object-oriented programming, system simulation, system validation

Procedia PDF Downloads 220
2292 Optimal Wind Based DG Placement Considering Monthly Changes Modeling in Wind Speed

Authors: Belal Mohamadi Kalesar, Raouf Hasanpour

Abstract:

Proper placement of Distributed Generation (DG) units such as wind turbine generators in distribution system are still very challenging issue for obtaining their maximum potential benefits because inappropriate placement may increase the system losses. This paper proposes Particle Swarm Optimization (PSO) technique for optimal placement of wind based DG (WDG) in the primary distribution system to reduce energy losses and voltage profile improvement with four different wind levels modeling in year duration. Also, wind turbine is modeled as a DFIG that will be operated at unity power factor and only one wind turbine tower will be considered to install at each bus of network. Finally, proposed method will be implemented on widely used 69 bus power distribution system in MATLAB software environment under four scenario (without, one, two and three WDG units) and for capability test of implemented program it is supposed that all buses of standard system can be candidate for WDG installing (large search space), though this program can consider predetermined number of candidate location in WDG placement to model financial limitation of project. Obtained results illustrate that wind speed increasing in some months will increase output power generated but this can increase / decrease power loss in some wind level, also results show that it is required about 3MW WDG capacity to install in different buses but when this is distributed in overall network (more number of WDG) it can cause better solution from point of view of power loss and voltage profile.

Keywords: wind turbine, DG placement, wind levels effect, PSO algorithm

Procedia PDF Downloads 446
2291 Implementation of a Paraconsistent-Fuzzy Digital PID Controller in a Level Control Process

Authors: H. M. Côrtes, J. I. Da Silva Filho, M. F. Blos, B. S. Zanon

Abstract:

In a modern society the factor corresponding to the increase in the level of quality in industrial production demand new techniques of control and machinery automation. In this context, this work presents the implementation of a Paraconsistent-Fuzzy Digital PID controller. The controller is based on the treatment of inconsistencies both in the Paraconsistent Logic and in the Fuzzy Logic. Paraconsistent analysis is performed on the signals applied to the system inputs using concepts from the Paraconsistent Annotated Logic with annotation of two values (PAL2v). The signals resulting from the paraconsistent analysis are two values defined as Dc - Degree of Certainty and Dct - Degree of Contradiction, which receive a treatment according to the Fuzzy Logic theory, and the resulting output of the logic actions is a single value called the crisp value, which is used to control dynamic system. Through an example, it was demonstrated the application of the proposed model. Initially, the Paraconsistent-Fuzzy Digital PID controller was built and tested in an isolated MATLAB environment and then compared to the equivalent Digital PID function of this software for standard step excitation. After this step, a level control plant was modeled to execute the controller function on a physical model, making the tests closer to the actual. For this, the control parameters (proportional, integral and derivative) were determined for the configuration of the conventional Digital PID controller and of the Paraconsistent-Fuzzy Digital PID, and the control meshes in MATLAB were assembled with the respective transfer function of the plant. Finally, the results of the comparison of the level control process between the Paraconsistent-Fuzzy Digital PID controller and the conventional Digital PID controller were presented.

Keywords: fuzzy logic, paraconsistent annotated logic, level control, digital PID

Procedia PDF Downloads 283
2290 Combination of Geological, Geophysical and Reservoir Engineering Analyses in Field Development: A Case Study

Authors: Atif Zafar, Fan Haijun

Abstract:

A sequence of different Reservoir Engineering methods and tools in reservoir characterization and field development are presented in this paper. The real data of Jin Gas Field of L-Basin of Pakistan is used. The basic concept behind this work is to enlighten the importance of well test analysis in a broader way (i.e. reservoir characterization and field development) unlike to just determine the permeability and skin parameters. Normally in the case of reservoir characterization we rely on well test analysis to some extent but for field development plan, the well test analysis has become a forgotten tool specifically for locations of new development wells. This paper describes the successful implementation of well test analysis in Jin Gas Field where the main uncertainties are identified during initial stage of field development when location of new development well was marked only on the basis of G&G (Geologic and Geophysical) data. The seismic interpretation could not encounter one of the boundary (fault, sub-seismic fault, heterogeneity) near the main and only producing well of Jin Gas Field whereas the results of the model from the well test analysis played a very crucial rule in order to propose the location of second well of the newly discovered field. The results from different methods of well test analysis of Jin Gas Field are also integrated with and supported by other tools of Reservoir Engineering i.e. Material Balance Method and Volumetric Method. In this way, a comprehensive way out and algorithm is obtained in order to integrate the well test analyses with Geological and Geophysical analyses for reservoir characterization and field development. On the strong basis of this working and algorithm, it was successfully evaluated that the proposed location of new development well was not justified and it must be somewhere else except South direction.

Keywords: field development plan, reservoir characterization, reservoir engineering, well test analysis

Procedia PDF Downloads 363