Search results for: performance standard
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16565

Search results for: performance standard

9515 An Innovative Approach to Improve Skills of Students in Qatar University Spending in Virtual Class though LMS

Authors: Mohammad Shahid Jamil

Abstract:

In this study we have investigated students’ learning and satisfaction in one of the course offered in the Foundation Program at Qatar University. We implied innovative teaching methodology that emphasizes on enhancing students’ thinking skills, decision making, and problem solving skills. Some interesting results were found which can be used to further improve the teaching methodology. To make sure the full use of technology in Foundation Program at Qatar University has started implementing new ways of teaching Math course by using Blackboard as an innovative interactive tool to support standard teaching such as Discussion board, Virtual class, and Study plan in My Math Lab “MML”. In MML Study Plan is designed in such a way that the student can improve their skills wherever they face difficulties with in their Homework, Quiz or Test. Discussion board and Virtual Class are collaborative learning tools encourages students to engage outside of class time. These tools are useful to share students’ knowledge and learning experiences, promote independent and active learning and they helps students to improve their critical thinking skills through the learning process.

Keywords: blackboard, discussion board, critical thinking, active learning, independent learning, problem solving

Procedia PDF Downloads 414
9514 Benefits of Whole-Body Vibration Training on Lower-Extremity Muscle Strength and Balance Control in Middle-Aged and Older Adults

Authors: Long-Shan Wu, Ming-Chen Ko, Chien-Chang Ho, Po-Fu Lee, Jenn-Woei Hsieh, Ching-Yu Tseng

Abstract:

This study aimed to determine the effects of whole-body vibration (WBV) training on lower-extremity muscle strength and balance control performance among community-dwelling middle-aged and older adults in the United States. Twenty-nine participants without any contraindication of performing WBV exercise completed all the study procedures. Participants were randomly assigned to do body weight exercise with either an individualized vibration frequency and amplitude, a fixed vibration frequency and amplitude, or no vibration. Isokinetic knee extensor power, limits of stability, and sit-to-stand tests were performed at the baseline and after 8 weeks of training. Neither the individualized frequency-amplitude WBV training protocol nor the fixed frequency-amplitude WBV training protocol improved isokinetic knee extensor power. The limits of stability endpoint excursion score for the individualized frequency-amplitude group increased by 8.8 (12.9%; p = 0.025) after training. No significant differences were observed in fixed and control group. The maximum excursion score for the individualized frequency-amplitude group at baseline increased by 9.2 (11.5%; p = 0.006) after training. The average weight transfer time score significantly decreased by 0.21 s in the fixed group. The participants in the individualized group showed a significant increase (3.2%) in weight rising index score after 8 weeks of WBV training. These results suggest that 8 weeks of WBV training improved limit of stability and sit-to-stand performance. Future studies need to determine whether WBV training improves other factors that can influence posture control.

Keywords: whole-body vibration training, muscle strength, balance control, middle-aged and older adults

Procedia PDF Downloads 212
9513 Isolation Enhancement of Compact Dual-Band Printed Multiple Input Multiple Output Antenna for WLAN Applications

Authors: Adham M. Salah, Tariq A. Nagem, Raed A. Abd-Alhameed, James M. Noras

Abstract:

Recently, the demand for wireless communications systems to cover more than one frequency band (multi-band) with high data rate has been increased for both fixed and mobile services. Multiple Input Multiple Output (MIMO) technology is one of the significant solutions for attaining these requirements and to achieve the maximum channel capacity of the wireless communications systems. The main issue associated with MIMO antennas especially in portable devices is the compact space between the radiating elements which leads to limit the physical separation between them. This issue exacerbates the performance of the MIMO antennas by increasing the mutual coupling between the radiating elements. In other words, the mutual coupling will be stronger if the radiating elements of the MIMO antenna are closer. This paper presents a low–profile dual-band (2×1) MIMO antenna that works at 2.4GHz, 5.3GHz and 5.8GHz for wireless local area networks (WLAN) applications. A neutralization line (NL) technique for enhancing the isolation has been used by introducing a strip line with a length of λg/4 at the isolation frequency (2.4GHz) between the radiating elements. The overall dimensions of the antenna are 33.5 x 36 x 1.6 mm³. The fabricated prototype shows a good agreement between the simulated and measured results. The antenna impedance bandwidths are 2.38–2.75 GHz and 4.4–6 GHz for the lower and upper band respectively; the reflection coefficient and mutual coupling are better than -25 dB in both lower and higher bands. The MIMO antenna performance characteristics are reported in terms of the scattering parameters, envelope correlation coefficient (ECC), total active reflection coefficient, capacity loss, antenna gain, and radiation patterns. Analysis of these characteristics indicates that the design is appropriate for the WLAN terminal applications.

Keywords: ECC, neutralization line, MIMO antenna, multi-band, mutual coupling, WLAN

Procedia PDF Downloads 120
9512 Evaluation of Liquefaction Potential of Fine Grained Soil: Kerman Case Study

Authors: Reza Ziaie Moayed, Maedeh Akhavan Tavakkoli

Abstract:

This research aims to investigate and evaluate the liquefaction potential in a project in Kerman city based on different methods for fine-grained soils. Examining the previous damages caused by recent earthquakes, it has been observed that fine-grained soils play an essential role in the level of damage caused by soil liquefaction. But, based on previous investigations related to liquefaction, there is limited attention to evaluating the cyclic resistance ratio for fine-grain soils, especially with the SPT method. Although using a standard penetration test (SPT) to find the liquefaction potential of fine-grain soil is not common, it can be a helpful method based on its rapidness, serviceability, and availability. In the present study, the liquefaction potential has been first determined by the soil’s physical properties obtained from laboratory tests. Then, using the SPT test and its available criterion for evaluating the cyclic resistance ratio and safety factor of liquefaction, the correction of effecting fine-grained soils is made, and then the results are compared. The results show that using the SPT test for liquefaction is more accurate than using laboratory tests in most cases due to the contribution of different physical parameters of soil, which leads to an increase in the ultimate N₁(60,cs).

Keywords: liquefaction, cyclic resistance ratio, SPT test, clay soil, cohesion soils

Procedia PDF Downloads 87
9511 An Index to Measure Transportation Sustainable Performance in Construction Projects

Authors: Sareh Rajabi, Taha Anjamrooz, Salwa Bheiry

Abstract:

The continuous increase in the world population, resource shortage and the warning of climate change cause various environmental and social issues to the world. Thus, sustainability concept is much needed nowadays. Organizations are progressively falling under strong worldwide pressure to integrate sustainability practices into their project decision-making development. Construction projects in the industry are amongst the most significant, since it is one of the biggest divisions and of main significance for the national economy and hence has a massive effect on the environment and society. So, it is important to discover approaches to incorporate sustainability into the management of those projects. This study presents a combined sustainability index of projects with sustainable transportation which has been formed as per a comprehensive literature review and survey study. Transportation systems enable the movement of goods and services worldwide, and it is leading to economic growth and creating jobs while creating negative impacts on the environment and society. This research is study to quantify the sustainability indicators, through 1) identifying the importance of sustainable transportation indicators that are based on the sustainable practices used for the construction projects and 2) measure the effectiveness of practices through these indicators on the three sustainable pillars. A total 26 sustainability indicators have been selected and grouped under each related sustainability pillars. A survey was used to collect the opinion about the sustainability indicators by a scoring system. A combined sustainability index considering three sustainable pillars can be helpful in evaluating the transportation sustainable practices of a project and making decisions regarding project selection. In addition to focus on the issue of financial resource allocation in a project selection, the decision-maker could take into account the sustainability as an important key in addition to the project’s return and risk. The purpose of this study is to measure the performance of transportation sustainability which allow companies to assess multiple projects selection. This is useful to decision makers to rank and focus more on future sustainable projects.

Keywords: sustainable transportation, transportation performances, sustainable indicators, sustainable construction practice, sustainability

Procedia PDF Downloads 128
9510 La₀.₈Ba₀.₂FeO₃ Perovskite as an Additive in the Three-Way Catalyst (TWCs) for Reduction of PGMs Loading

Authors: Mahshid Davoodpoor, Zahra Shamohammadi Ghahsareh, Saeid Razfar, Alaleh Dabbaghi

Abstract:

Nowadays, air pollution has become a topic of great concern all over the world. One of the main sources of air pollution is automobile exhaust gas, which introduces a large number of toxic gases, including CO, unburned hydrocarbons (HCs), NOx, and non-methane hydrocarbons (NMHCs), into the air. The application of three-way catalysts (TWCs) is still the most effective strategy to mitigate the emission of these pollutants. Due to the stringent environmental regulations which continuously become stricter, studies on the TWCs are ongoing despite several years of research and development. This arises from the washcoat complexity and the several numbers of parameters involved in the redox reactions. The main objectives of these studies are the optimization of washcoat formulation and the investigation of different coating modes. Perovskite (ABO₃), as a promising class of materials, has unique features that make it versatile to use as an alternative to commonly mixed oxides in washcoats. High catalytic activity for oxidation reactions and its relatively high oxygen storage capacity are important properties of perovskites in catalytic applications. Herein, La₀.₈Ba₀.₂FeO₃ perovskite material was synthesized using the co-precipitation method and characterized by XRD, ICP, and BET analysis. The effect of synthesis conditions, including B site metal (Fe and Co), metal precursor concentration, and dopant (Ba), were examined on the phase purity of the products. The selected perovskite sample was used as one of the components in the TWC formulation to evaluate its catalytic performance through Light-off, oxygen storage capacity, and emission analysis. Results showed a remarkable increment in oxygen storage capacity and also revealed that T50 and emission of CO, HC, and NOx reduced in the presence of perovskite structure which approves the enhancement of catalytic performance for the new washcoat formulation. This study shows the brilliant future of advanced oxide structures in the TWCs.

Keywords: Perovskite, three-way catalyst, PGMs, PGMs reduction

Procedia PDF Downloads 54
9509 Economics and Management Information Systems: Institute of Management and Technology Enugu a Case Study

Authors: Cletus Agbowo

Abstract:

Standard principles, rules, regulations, norms and guides are necessities in practice especially in the Economics and management information system Institute of management of and technology (IMT) Enugu a case sturdy as presented by the presenter. Without mincing words, the fundamental bottle neck of management is economics, how to select to engage merger productivity resources to achieve uncountable objectives without tears. Management information system inevitably become bound up in organizational politics because the influence access to a key resource – namely information. Economics and management information can effect who does what to whom, when, where and how in an organization. In great institutions like the Institute of Management and Technology (IMT) Enugu a case study many new information systems require changes in personnel, individual routines that can be painful for those involved and require retraining and additional effort may or may not be compensated. In a nut shell, because management information system potentially change an organization’s structure, culture, business processes, and strategy, there is often considerable resistance to them when they are introduced. The case study have many schools, departments, divisions and units which needs research on economics and management information systems. A system can be defined as a set of interrelated components and / or elements, which reacts with input to produce output. A department in an organization is a system. The researcher is faced to itemize the practical challenges encountered and solution adopted by the Institute Management and Enugu state government.

Keywords: economics, information, management, productivity, regulations

Procedia PDF Downloads 362
9508 HCl-Based Hydrometallurgical Recycling Route for Metal Recovery from Li-Ion Battery Wastes

Authors: Claudia Schier, Arvid Biallas, Bernd Friedrich

Abstract:

The demand for Li-ion-batteries owing to their benefits, such as; fast charging time, high energy density, low weight, large temperature range, and a long service life performance is increasing compared to other battery systems. These characteristics are substantial not only for battery-operated portable devices but also in the growing field of electromobility where high-performance energy storage systems in the form of batteries are highly requested. Due to the sharp rising production, there is a tremendous interest to recycle spent Li-Ion batteries in a closed-loop manner owed to the high content of valuable metals such as cobalt, manganese, and lithium as well as regarding the increasing demand for those scarce applied metals. Currently, there are just a few industrial processes using hydrometallurgical methods to recover valuable metals from Li-ion-battery waste. In this study, the extraction of valuable metals from spent Li-ion-batteries is investigated by pretreated and subsequently leached battery wastes using different precipitation methods in a comparative manner. For the extraction of lithium, cobalt, and other valuable metals, pelletized battery wastes with an initial Li content of 2.24 wt. % and cobalt of 22 wt. % is used. Hydrochloric acid with 4 mol/L is applied with 1:50 solid to liquid (s/l) ratio to generate pregnant leach solution for subsequent precipitation steps. In order to obtain pure precipitates, two different pathways (pathway 1 and pathway 2) are investigated, which differ from each other with regard to the precipitation steps carried out. While lithium carbonate recovery is the final process step in pathway 1, pathway 2 requires a preliminary removal of lithium from the process. The aim is to evaluate both processes in terms of purity and yield of the products obtained. ICP-OES is used to determine the chemical content of leach liquor as well as of the solid residue.

Keywords: hydrochloric acid, hydrometallurgy, Li-ion-batteries, metal recovery

Procedia PDF Downloads 154
9507 Retro-Reflectivity and Diffuse Reflectivity Degradation of Thermoplastic Pavement Marking: A Case Study on Asphaltic Road in Thailand

Authors: Kittichai Thanasupsin, Satis Sukniam

Abstract:

Pavement marking is an essential task of road construction and maintenance. One of several benefits of pavement markings has been used to provide information about road alignment and road conditions ahead. In some cases, retro-reflectivity of road marking at night may not meet the standard. This degradation may be caused by internal factors such as the size of glass beads and the number of glass beads or external factors such as traffic volume, lane width, vehicle weight, and so on. This research aims to investigate the reflective efficiency of thermoplastic road marking with the glass beads. Ratios of glass beads, ranging from 359 to 553 grams per square meter on an asphaltic concrete, have been tested. The reflective efficiency data was collected at the beginning and at a specific time interval for a total of 8 months. It was found that the difference in glass beads quantity affects the rate of retro-reflectivity but does not affect the diffuse reflectivity. It was also found that other factors affect retro-reflectivity, such as duration, the position of road marking, traffic density, the quantity of glass beads, and dirt coating on top. The dirt coating on top is the most crucial factor that deteriorating retro-reflectivity.

Keywords: thermoplastic pavement marking, retro-reflectivity, diffuse reflectivity, asphalt concrete

Procedia PDF Downloads 117
9506 Enhanced Physiological Response of Blood Pressure and Improved Performance in Successive Divided Attention Test Seen with Classical Instrumental Background Music Compared to Controls

Authors: Shantala Herlekar

Abstract:

Introduction: Entrainment effect of music on cardiovascular parameters is well established. Music is being used in the background by medical students while studying. However, does it really help them relax faster and concentrate better? Objectives: This study was done to compare the effects of classical instrumental background music versus no music on blood pressure response over time and on successively performed divided attention test in Indian and Malaysian 1st-year medical students. Method: 60 Indian and 60 Malaysian first year medical students, with an equal number of girls and boys were randomized into two groups i.e music group and control group thus creating four subgroups. Three different forms of Symbol Digit Modality Test (to test concentration ability) were used as a pre-test, during music/control session and post-test. It was assessed using total, correct and error score. Simultaneously, multiple Blood Pressure recordings were taken as pre-test, during 1, 5, 15, 25 minutes during music/control (+SDMT) and post-test. The music group performed the test with classical instrumental background music while the control group performed it in silence. Results were analyzed using students paired t test. p value < 0.05 was taken as statistically significant. A drop in BP recording was indicative of relaxed state and a rise in BP with task performance was indicative of increased arousal. Results: In Symbol Digit Modality Test (SDMT) test, Music group showed significant better results for correct (p = 0.02) and total (p = 0.029) scores during post-test while errors reduced (p = 0.002). Indian music group showed decline in post-test error scores (p = 0.002). Malaysian music group performed significantly better in all categories. Blood pressure response was similar in music and control group with following variations, a drop in BP at 5minutes, being significant in music group (p < 0.001), a steep rise in values till 15minutes (corresponding to SDMT test) also being significant only in music group (p < 0.001) and the Systolic BP readings in controls during post-test were at lower levels compared to music group. On comparing the subgroups, not much difference was noticed in recordings of Indian student’s subgroups while all the paired-t test values in the Malaysian music group were significant. Conclusion: These recordings indicate an increased relaxed state with classical instrumental music and an increased arousal while performing a concentration task. Music used in our study was beneficial to students irrespective of their nationality and preference of music type. It can act as an “active coping” strategy and alleviate stress within a very short period of time, in our study within a span of 5minutes. When used in the background, during task performance, can increase arousal which helps the students perform better. Implications: Music can be used between lectures for a short time to relax the students and help them concentrate better for the subsequent classes, especially for late afternoon sessions.

Keywords: blood pressure, classical instrumental background music, ethnicity, symbol digit modality test

Procedia PDF Downloads 125
9505 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery

Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas

Abstract:

The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.

Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition

Procedia PDF Downloads 132
9504 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison

Authors: B. S. Abdelwahed, B. B. Belkassem

Abstract:

Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.

Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance

Procedia PDF Downloads 448
9503 Control of a Plane Jet Spread by Tabs at the Nozzle Exit

Authors: Makito Sakai, Takahiro Kiwata, Takumi Awa, Hiroshi Teramoto, Takaaki Kono, Kuniaki Toyoda

Abstract:

Using experimental and numerical results, this paper describes the effects of tabs on the flow characteristics of a plane jet at comparatively low Reynolds numbers while focusing on the velocity field and the vortical structure. The flow visualization and velocity measurements were respectively carried out using laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). In addition, three-dimensional (3D) plane jet numerical simulations were performed using ANSYS Fluent, a commercially available computational fluid dynamics (CFD) software application. We found that the spreads of jets perturbed by large delta tabs and round tabs were larger than those produced by the other tabs tested. Additionally, it was determined that a plane jet with square tabs had the smallest jet spread downstream, and the jet’s centerline velocity was larger than those of jets perturbed by the other tabs tested. It was also observed that the spanwise vortical structure of a plane jet with tabs disappeared completely. Good agreement was found between the experimental and numerical simulation velocity profiles in the area near the nozzle exit when the laminar flow model was used. However, we also found that large eddy simulation (LES) is better at predicting the developing flow field of a plane jet than the laminar and the standard k-ε turbulent models.

Keywords: plane jet, flow control, tab, flow measurement, numerical simulation

Procedia PDF Downloads 322
9502 Canada Deuterium Uranium Updated Fire Probabilistic Risk Assessment Model for Canadian Nuclear Plants

Authors: Hossam Shalabi, George Hadjisophocleous

Abstract:

The Canadian Nuclear Power Plants (NPPs) use some portions of NUREG/CR-6850 in carrying out Fire Probabilistic Risk Assessment (PRA). An assessment for the applicability of NUREG/CR-6850 to CANDU reactors was performed and a CANDU Fire PRA was introduced. There are 19 operating CANDU reactors in Canada at five sites (Bruce A, Bruce B, Darlington, Pickering and Point Lepreau). A fire load density survey was done for all Fire Safe Shutdown Analysis (FSSA) fire zones in all CANDU sites in Canada. National Fire Protection Association (NFPA) Standard 557 proposes that a fire load survey must be conducted by either the weighing method or the inventory method or a combination of both. The combination method results in the most accurate values for fire loads. An updated CANDU Fire PRA model is demonstrated in this paper that includes the fuel survey in all Canadian CANDU stations. A qualitative screening step for the CANDU fire PRA is illustrated in this paper to include any fire events that can damage any part of the emergency power supply in addition to FSSA cables.

Keywords: fire safety, CANDU, nuclear, fuel densities, FDS, qualitative analysis, fire probabilistic risk assessment

Procedia PDF Downloads 124
9501 Effect of Testing Device Calibration on Liquid Limit Assessment

Authors: M. O. Bayram, H. B. Gencdal, N. O. Fercan, B. Basbug

Abstract:

Liquid limit, which is used as a measure of soil strength, can be detected by Casagrande and fall-cone testing methods. The two methods majorly diverge from each other in terms of operator dependency. The Casagrande method that is applied according to ASTM D4318-17 standards may give misleading results, especially if the calibration process is not performed well. To reveal the effect of calibration for drop height and amount of soil paste placement in the Casagrande cup, a series of tests were carried out by multipoint method as it is specified in the ASTM standards. The tests include the combination of 6 mm, 8 mm, 10 mm, and 12 mm drop heights and under-filled, half-filled, and full-filled Casagrande cups by kaolinite samples. It was observed that during successive tests, the drop height of the cup deteriorated; hence the device was recalibrated before and after each test to provide the accuracy of the results. Besides, the tests by under-filled and full-filled samples for higher drop heights revealed lower liquid limit values than the lower drop heights revealed. For the half-filled samples, it was clearly seen that the liquid limit values didn’t change at all as the drop height increased, and this explains the function of standard specifications.

Keywords: calibration, casagrande cup method, drop height, kaolinite, liquid limit, placing form

Procedia PDF Downloads 142
9500 Impact Factor Analysis for Spatially Varying Aerosol Optical Depth in Wuhan Agglomeration

Authors: Wenting Zhang, Shishi Liu, Peihong Fu

Abstract:

As an indicator of air quality and directly related to concentration of ground PM2.5, the spatial-temporal variation and impact factor analysis of Aerosol Optical Depth (AOD) have been a hot spot in air pollution. This paper concerns the non-stationarity and the autocorrelation (with Moran’s I index of 0.75) of the AOD in Wuhan agglomeration (WHA), in central China, uses the geographically weighted regression (GRW) to identify the spatial relationship of AOD and its impact factors. The 3 km AOD product of Moderate Resolution Imaging Spectrometer (MODIS) is used in this study. Beyond the economic-social factor, land use density factors, vegetable cover, and elevation, the landscape metric is also considered as one factor. The results suggest that the GWR model is capable of dealing with spatial varying relationship, with R square, corrected Akaike Information Criterion (AICc) and standard residual better than that of ordinary least square (OLS) model. The results of GWR suggest that the urban developing, forest, landscape metric, and elevation are the major driving factors of AOD. Generally, the higher AOD trends to located in the place with higher urban developing, less forest, and flat area.

Keywords: aerosol optical depth, geographically weighted regression, land use change, Wuhan agglomeration

Procedia PDF Downloads 348
9499 Prediction of Changes in Optical Quality by Tissue Redness after Pterygium Surgery

Authors: Mohd Radzi Hilmi, Mohd Zulfaezal Che Azemin, Khairidzan Mohd Kamal, Azrin Esmady Ariffin, Mohd Izzuddin Mohd Tamrin, Norfazrina Abdul Gaffur, Tengku Mohd Tengku Sembok

Abstract:

Purpose: The purpose of this study is to predict optical quality changes after pterygium surgery using tissue redness grading. Methods: Sixty-eight primary pterygium participants were selected from patients who visited an ophthalmology clinic. We developed a semi-automated computer program to measure the pterygium fibrovascular redness from digital pterygium images. The outcome of this software is a continuous scale grading of 1 (minimum redness) to 3 (maximum redness). The region of interest (ROI) was selected manually using the software. Reliability was determined by repeat grading of all 68 images and its association with contrast sensitivity function (CSF) and visual acuity (VA) was examined. Results: The mean and standard deviation of redness of the pterygium fibrovascular images was 1.88 ± 0.55. Intra- and inter-grader reliability estimates were high with intraclass correlation ranging from 0.97 to 0.98. The new grading was positively associated with CSF (p<0.01) and VA (p<0.01). The redness grading was able to predict 25% and 23% of the variance in the CSF and the VA respectively. Conclusions: The new grading of pterygium fibrovascular redness can be reliably measured from digital images and show a good correlation with CSF and VA. The redness grading can be used in addition to the existing pterygium grading.

Keywords: contrast sensitivity, pterygium, redness, visual acuity

Procedia PDF Downloads 495
9498 Porosity and Ultraviolet Protection Ability of Woven Fabrics

Authors: Polona Dobnik Dubrovski, Abhijit Majumdar

Abstract:

The increasing awareness of negative effects of ultraviolet radiation and regular, effective protection are actual themes in many countries. Woven fabrics as clothing items can provide convenient personal protection however not all fabrics offer sufficient UV protection. Porous structure of the material has a great effect on UPF. The paper is focused on an overview of porosity in woven fabrics, including the determination of porosity parameters on the basis of an ideal geometrical model of porous structure. Our experiment was focused on 100% cotton woven fabrics in a grey state with the same yarn fineness (14 tex) and different thread densities (to achieve relative fabric density between 59 % and 87 %) and different type of weaves (plain, 4-end twill, 5-end satin). The results of the research dealing with the modelling of UPF and the influence of volume and open porosity of tested samples on UPF are exposed. The results show that open porosity should be lower than 12 % to achieve good UV protection according to AS/NZ standard of tested samples. The results also indicate that there is no direct correlation between volume porosity and UPF, moreover, volume porosity namely depends on the type of weave and affects UPF as well. Plain fabrics did not offer any UV protection, while twill and satin fabrics offered good UV protection when volume porosity was less than 64 % and 66 %, respectively.

Keywords: fabric engineering, UV radiation, porous materials, woven fabric construction, modelling

Procedia PDF Downloads 253
9497 Numerical Investigation of the Evaporation and Mixing of UWS in a Diesel Exhaust Pipe

Authors: Tae Hyun Ahn, Gyo Woo Lee, Man Young Kim

Abstract:

Because of high thermal efficiency and low CO2 emission, diesel engines are being used widely in many industrial fields although it makes many PM and NOx which give both human health and environment a negative effect. NOx regulations for diesel engines, however, are being strengthened and it is impossible to meet the emission standard without NOx reduction devices such as SCR (Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT (Lean NOx Trap). Among the NOx reduction devices, urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea in front of monolith. Therefore, this study has focused on the mixing enhancement between urea and exhaust gases to enhance the efficiency of the SCR catalyst equipped in catalytic muffler by changing inlet gas temperature and spray conditions to improve the spray uniformity of the urea water solution. Finally, it can be found that various parameters such as inlet gas temperature and injector and injection angles significantly affect the evaporation and mixing of the urea water solution with exhaust gases, and therefore, optimization of these parameters are required.

Keywords: UWS (Urea-Water-Solution), selective catalytic reduction (SCR), evaporation, thermolysis, injection

Procedia PDF Downloads 381
9496 Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, K. R. K. Rao, Ravi Shankar, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper.

Keywords: agglomerate, blast furnace, permeability, softening-melting

Procedia PDF Downloads 238
9495 Morphology of the Acetabular Cartilage Surface in Elderly Cadavers Analyzing the Contact between the Acetabulum and Femoral Head

Authors: Keisuke Akiyama, Takashi Sakai, Junichiro Koyanagi, Hideki Yoshikawa, Kazuomi Sugamoto

Abstract:

The geometry of acetabular cartilage surface plays an important role in hip joint biomechanics. The aim of this study was to analyze the morphology of acetabular articular cartilage surface in elderly subjects using a 3D-digitizer. Twenty hemipelves from 12 subjects (mean ages 85 years) were scanned with 3D-digitizer. Each acetabular surface model was divided into four regions: anterosuperior (AS), anteroinferior (AI), posterosuperior (PS), and posteroinferior (PI). In the global acetabulum and each region, the acetabular sphere radius and the standard deviation (SD) of the distance from the acetabular sphere center to the acetabular cartilage surface were calculated. In the global acetabulum, the distance between the acetabular surface model and the maximum sphere which did not penetrate over the acetabular surface model was calculated as the inferred femoral head, and then the distribution was mapped at intervals of 0.5 mm. The SD in AS was significantly larger than that in AI (p = 0.006) and PI (p = 0.001). The SD in PS was significantly larger than that in PI (p = 0.005). The closest region (0-0.5 mm) tended to be distributed at anterior or posterosuperior acetabular edge. The contact between the femoral head and acetabulum might start at the periphery of the lunate surface, especially in the anterior or posterosuperior region. From viewpoint of acetabular morphology, the acetabular articular cartilage in the anterior or posterosuperior edge could be more vulnerable due to direct contact mechanism.

Keywords: acetabulum, cartilage, morphology, 3D-digitizer

Procedia PDF Downloads 335
9494 Nanoenergetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators

Authors: Sang Beom Kim, Kyung Ju Kim, Myung Hoon Cho, Ji Hoon Kim, Soo Hyung Kim

Abstract:

In this study, we systematically investigated the effect of nanoscale energetic materials in formulations of aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ~0.3 m/s. However, the addition of Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ~5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ~0.6 L/s, which was significantly increased to ~3.9 L/s by adding Al NPs to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were highly effective in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ~140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ~50 ms for airbag inflation.

Keywords: nanoenergetic materials, aluminum nanoparticles, copper oxide nanoparticles, gas generators

Procedia PDF Downloads 356
9493 Tribological Aspects of Advanced Roll Material in Cold Rolling of Stainless Steel

Authors: Mohammed Tahir, Jonas Lagergren

Abstract:

Vancron 40, a nitrided powder metallurgical tool Steel, is used in cold work applications where the predominant failure mechanisms are adhesive wear or galling. Typical applications of Vancron 40 are among others fine blanking, cold extrusion, deep drawing and cold work rolls for cluster mills. Vancron 40 positive results for cold work rolls for cluster mills and as a tool for some severe metal forming process makes it competitive compared to other type of work rolls that require higher precision, among others in cold rolling of thin stainless steel, which required high surface finish quality. In this project, three roll materials for cold rolling of stainless steel strip was examined, Vancron 40, Narva 12B (a high-carbon, high-chromium tool steel alloyed with tungsten) and Supra 3 (a Chromium-molybdenum tungsten-vanadium alloyed high speed steel). The purpose of this project was to study the depth profiles of the ironed stainless steel strips, emergence of galling and to study the lubrication performance used by steel industries. Laboratory experiments were conducted to examine scratch of the strip, galling and surface roughness of the roll materials under severe tribological conditions. The critical sliding length for onset of galling was estimated for stainless steel with four different lubricants. Laboratory experiments result of performance evaluation of resistance capability of rolls toward adhesive wear under severe conditions for low and high reductions. Vancron 40 in combination with cold rolling lubricant gave good surface quality, prevents galling of metal surfaces and good bearing capacity.

Keywords: Vancron 40, cold rolling, adhesive wear, galling, surface finish, lubricant, stainless steel

Procedia PDF Downloads 516
9492 Impedance Based Biosensor for Agricultural Pathogen Detection

Authors: Rhea Patel, Madhuri Vinchurkar, Rajul Patkar, Gopal Pranjale, Maryam Shojaei Baghini

Abstract:

One of the major limitations on food resources worldwide is the deterioration of plant products due to pathogenic infections. Early screening of plants for pathogenic infections can serve as a boon in the Agricultural sector. The standard microbiology techniques has not kept pace with the rapid enumeration and automated methods for bacteria detection. Electrochemical Impedance Spectroscopy (EIS) serves as a label free bio sensing technique to monitor pathogens in real time. The changes in the electrical impedance of a growing bacterial culture can be monitored to detect activity of microorganisms. In this study, we demonstrate development of a gold interdigitated electrode (gold IDE) based impedance biosensor to detect bacterial cells in real on-field crop samples. To calibrate our impedance measurement system, nutrient broth suspended Escherichia coli cells were used. We extended this calibrated protocol to identify the agricultural pathogens in real potato tuber samples. Distinct difference was seen in the impedance recorded for the healthy and infected potato samples. Our results support the potential application of this Impedance based biosensor in Agricultural pathogen detection.

Keywords: agriculture, biosensor, electrochemical impedance spectroscopy, microelectrode, pathogen detection

Procedia PDF Downloads 141
9491 Search for EEG Correlates of Mental States Using EEG Neurofeedback Paradigm

Authors: Cyril Kaplan

Abstract:

26 participants played 4 EEG neurofeedback (NF) games encouraged to find their strategies to control the specific NF parameter. Mixed method analysis of performance in the games and post-session interviews led to the identification of states of consciousness that correlated with success in the game. We found that increase in left frontal beta activity was facilitated by evoking interest in observed surroundings, by wondering what is happening behind the window or what lies in a drawer in front.

Keywords: EEG neurofeedback, states of consciousness, frontal beta activity, mixed methods

Procedia PDF Downloads 126
9490 An Ontology-Based Framework to Support Asset Integrity Modeling: Case Study of Offshore Riser Integrity

Authors: Mohammad Sheikhalishahi, Vahid Ebrahimipour, Amir Hossein Radman-Kian

Abstract:

This paper proposes an Ontology framework for knowledge modeling and representation of the equipment integrity process in a typical oil and gas production plant. Our aim is to construct a knowledge modeling that facilitates translation, interpretation, and conversion of human-readable integrity interpretation into computer-readable representation. The framework provides a function structure related to fault propagation using ISO 14224 and ISO 15926 OWL-Lite/ Resource Description Framework (RDF) to obtain a generic system-level model of asset integrity that can be utilized in the integrity engineering process during the equipment life cycle. It employs standard terminology developed by ISO 15926 and ISO 14224 to map textual descriptions of equipment failure and then convert it to a causality-driven logic by semantic interpretation and computer-based representation using Lite/RDF. The framework applied for an offshore gas riser. The result shows that the approach can cross-link the failure-related integrity words and domain-specific logic to obtain a representation structure of equipment integrity with causality inference based on semantic extraction of inspection report context.

Keywords: asset integrity modeling, interoperability, OWL, RDF/XML

Procedia PDF Downloads 171
9489 Radial Fuel Injection Computational Fluid Dynamics Model for a Compression Ignition Two-Stroke Opposed Piston Engine

Authors: Tytus Tulwin, Rafal Sochaczewski, Ksenia Siadkowska

Abstract:

Designing a new engine requires a large number of different cases to be considered. Especially different injector parameters and combustion chamber geometries. This is essential when developing an engine with unconventional build – compression ignition, two-stroke operating with direct side injection. Computational Fluid Dynamics modelling allows to test those different conditions and seek for the best conditions with correct combustion. This research presents the combustion results for different injector and combustion chamber cases. The shape of combustion chamber is different than for conventional engines as it requires side injection. This completely changes the optimal shape for the given condition compared to standard automotive heart shaped combustion chamber. Because the injection is not symmetrical there is a strong influence of cylinder swirl and piston motion on the injected fuel stream. The results present the fuel injection phenomena allowing to predict the right injection parameters for a maximum combustion efficiency and minimum piston heat loads. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: CFD, combustion, injection, opposed piston

Procedia PDF Downloads 260
9488 Optimum Design of Heat Exchanger in Diesel Engine Cold EGR for Pollutants Reduction

Authors: Nasser Ghassembaglou, Armin Rahmatfam, Faramarz Ranjbar

Abstract:

Using of cold EGR method with variable venturi and turbocharger has a very significant affection on the reduction of NOX and grime simultaneously. EGR cooler is one of the most important parts in the cold EGR circuit. In this paper optimum design of cooler for working in different percents of EGR and for determining of optimum temperature of exhausted gases, growth of efficiency, reduction of weight, reduction of dimension and expenditures, and reduction of sediment and optimum performance by using gas oil which has significant amounts of brimstone are investigated and optimized.

Keywords: cold EGR, NOX, cooler, gas oil

Procedia PDF Downloads 477
9487 Distribution of Maximum Loss of Fractional Brownian Motion with Drift

Authors: Ceren Vardar Acar, Mine Caglar

Abstract:

In finance, the price of a volatile asset can be modeled using fractional Brownian motion (fBm) with Hurst parameter H>1/2. The Black-Scholes model for the values of returns of an asset using fBm is given as, 〖Y_t=Y_0 e^((r+μ)t+σB)〗_t^H, 0≤t≤T where Y_0 is the initial value, r is constant interest rate, μ is constant drift and σ is constant diffusion coefficient of fBm, which is denoted by B_t^H where t≥0. Black-Scholes model can be constructed with some Markov processes such as Brownian motion. The advantage of modeling with fBm to Markov processes is its capability of exposing the dependence between returns. The real life data for a volatile asset display long-range dependence property. For this reason, using fBm is a more realistic model compared to Markov processes. Investors would be interested in any kind of information on the risk in order to manage it or hedge it. The maximum possible loss is one way to measure highest possible risk. Therefore, it is an important variable for investors. In our study, we give some theoretical bounds on the distribution of maximum possible loss of fBm. We provide both asymptotical and strong estimates for the tail probability of maximum loss of standard fBm and fBm with drift and diffusion coefficients. In the investment point of view, these results explain, how large values of possible loss behave and its bounds.

Keywords: maximum drawdown, maximum loss, fractional brownian motion, large deviation, Gaussian process

Procedia PDF Downloads 475
9486 A Validated UPLC-MS/MS Assay Using Negative Ionization Mode for High-Throughput Determination of Pomalidomide in Rat Plasma

Authors: Muzaffar Iqbal, Essam Ezzeldin, Khalid A. Al-Rashood

Abstract:

Pomalidomide is a second generation oral immunomodulatory agent, being used for the treatment of multiple myeloma in patients with disease refractory to lenalidomide and bortezomib. In this study, a sensitive UPLC-MS/MS assay was developed and validated for high-throughput determination of pomalidomide in rat plasma using celecoxib as an internal standard (IS). Liquid liquid extraction using dichloromethane as extracting agent was employed to extract pomalidomide and IS from 200 µL of plasma. Chromatographic separation was carried on Acquity BEHTM C18 column (50 × 2.1 mm, 1.7 µm) using an isocratic mobile phase of acetonitrile:10 mM ammonium acetate (80:20, v/v), at a flow rate of 0.250 mL/min. Both pomalidomide and IS were eluted at 0.66 ± 0.03 and 0.80 ± 0.03 min, respectively with a total run time of 1.5 min only. Detection was performed on a triple quadrupole tandem mass spectrometer using electrospray ionization in negative mode. The precursor to product ion transitions of m/z 272.01 → 160.89 for pomalidomide and m/z 380.08 → 316.01 for IS were used to quantify them respectively, using multiple reaction monitoring mode. The developed method was validated according to regulatory guideline for bioanalytical method validation. The linearity in plasma sample was achieved in the concentration range of 0.47–400 ng/mL (r2 ≥ 0.997). The intra and inter-day precision values were ≤ 11.1% (RSD, %) whereas accuracy values ranged from - 6.8 – 8.5% (RE, %). In addition, other validation results were within the acceptance criteria and the method was successfully applied in a pharmacokinetic study of pomalidomide in rats.

Keywords: pomalidomide, pharmacokinetics, LC-MS/MS, celecoxib

Procedia PDF Downloads 370