Search results for: contact surface
Commenced in January 2007
Frequency: Monthly
Edition: International

Search results for: contact surface

Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing

Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed

Abstract:

It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.

Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC

Procedia PDF Downloads 195
Thickness-Tunable Optical, Magnetic, and Dielectric Response of Lithium Ferrite Thin Film Synthesized by Pulsed Laser Deposition

Authors: Prajna Paramita Mohapatra, Pamu Dobbidi

Abstract:

Lithium ferrite (LiFe5O8) has potential applications as a component of microwave magnetic devices such as circulators and monolithic integrated circuits. For efficient device applications, spinel ferrites in the form of thin films are highly required. It is necessary to improve their magnetic and dielectric behavior by optimizing the processing parameters during deposition. The lithium ferrite thin films are deposited on Pt/Si substrate using the pulsed laser deposition technique (PLD). As controlling the film thickness is the easiest parameter to tailor the strain, we deposited the thin films having different film thicknesses (160 nm, 200 nm, 240 nm) at oxygen partial pressure of 0.001 mbar. The formation of single phase with spinel structure (space group - P4132) is confirmed by the XRD pattern and the Rietveld analysis. The optical bandgap is decreased with the increase in thickness. FESEM confirmed the formation of uniform grains having well separated grain boundaries. Further, the film growth and the roughness are analyzed by AFM. The root-mean-square (RMS) surface roughness is decreased from 13.52 nm (160 nm) to 9.34 nm (240 nm). The room temperature magnetization is measured with a maximum field of 10 kOe. The saturation magnetization is enhanced monotonically with an increase in thickness. The magnetic resonance linewidth is obtained in the range of 450 – 780 Oe. The dielectric response is measured in the frequency range of 104 – 106 Hz and in the temperature range of 303 – 473 K. With an increase in frequency, the dielectric constant and the loss tangent of all the samples decreased continuously, which is a typical behavior of conventional dielectric material. The real part of the dielectric constant and the dielectric loss is increased with an increase in thickness. The contribution of grain and grain boundaries is also analyzed by employing the equivalent circuit model. The highest dielectric constant is obtained for the film having a thickness of 240 nm at 104 Hz. The obtained results demonstrate that desired response can be obtained by tailoring the film thickness for the microwave magnetic devices.

Keywords: PLD, optical response, thin films, magnetic response, dielectric response

Procedia PDF Downloads 103
In vitro Modeling of Aniridia-Related Keratopathy by the Use of Crispr/Cas9 on Limbal Epithelial Cells and Rescue

Authors: Daniel Aberdam

Abstract:

Haploinsufficiency of PAX6 in humans is the main cause of congenital aniridia, a rare eye disease characterized by reduced visual acuity. Patients have also progressive disorders including cataract, glaucoma and corneal abnormalities making their condition very challenging to manage. Aniridia-related keratopathy (ARK), caused by a combination of factors including limbal stem-cell deficiency, impaired healing response, abnormal differentiation, and infiltration of conjunctival cells onto the corneal surface, affects up to 95% of patients. It usually begins in the first decade of life resulting in recurrent corneal erosions, sub-epithelial fibrosis with corneal decompensation and opacification. Unfortunately, current treatment options for aniridia patients are currently limited. Although animal models partially recapitulate this disease, there is no in vitro cellular model of AKT needed for drug/therapeutic tools screening and validation. We used genome editing (CRISPR/Cas9 technology) to introduce a nonsense mutation found in patients into one allele of the PAX6 gene into limbal stem cells. Resulting mutated clones, expressing half of the amount of PAX6 protein and thus representative of haploinsufficiency were further characterized. Sequencing analysis showed that no off-target mutations were induced. The mutated cells displayed reduced cell proliferation and cell migration but enhanced cell adhesion. Known PAX6 targets expression was also reduced. Remarkably, addition of soluble recombinant PAX6 protein into the culture medium was sufficient to activate endogenous PAX6 gene and, as a consequence, rescue the phenotype. It strongly suggests that our in vitro model recapitulates well the epithelial defect and becomes a powerful tool to identify drugs that could rescue the corneal defect in patients. Furthermore, we demonstrate that the homeotic transcription factor Pax6 is able to be uptake naturally by recipient cells to function into the nucleus.

Keywords: Pax6, crispr/cas9, limbal stem cells, aniridia, gene therapy

Procedia PDF Downloads 211
Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China

Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li

Abstract:

Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.

Keywords: heterogeneity, homogeneous unit, multiscale, shale

Procedia PDF Downloads 457
Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 222
Collagen Gel in Hip Cartilage Repair: in vivo Preliminary Study

Authors: A. Bajek, J. Skopinska-Wisniewska, A. Rynkiewicz, A. Jundzill, M. Bodnar, A. Marszalek, T. Drewa

Abstract:

Traumatic injury and age-related degenerative diseases associated with cartilage are major health problems worldwide. The articular cartilage is comprised of a relatively small number of cells, which have a relatively slow rate of turnover. Therefore, damaged articular cartilage has a limited capacity for self-repair. New clinical methods have been designed to achieve better repair of injured cartilage. However, there is no treatment that enables full restoration of it. The aim of this study was to evaluate how collagen gel with bone marrow mesenchymal stem cells (MSCs) and collagen gel alone will influence on the hip cartilage repair after injury. Collagen type I was isolated from rats’ tails and cross-linked with N-hydroxysuccinimide in 24-hour process. MSCs were isolated from rats’ bone marrow. The experiments were conducted according to the guidelines for animal experiments of Ethics Committee. Fifteen 8-week-old Wistar rats were used in this study. All animals received hip joint surgery with a total of 30 created cartilage defects. Then, animals were randomly divided into three groups and filled, respectively, with collagen gel (group 1), collagen gel cultured with MSCs (group II) or left untreated as a control (control group). Immunohistochemy and radiological evaluation was carried out 11 weeks post implantation. It has been proved that the surface of the matrix is non-toxic, and its porosity promotes cell adhesion and growth. However, the in vivo regeneration process was poor. We observed the low integration rate of biomaterial. Immunohistochemical evaluation of cartilage after 11 weeks of treatment showed low II and high X collagen expression in two tested groups in comparison to the control one, in which we observed the high II collagen expression. What is more, after radiological analysis, we observed the best regeneration process in control group. The biomaterial construct and mesenchymal stem cells, as well as the use of the biomaterial itself was not sufficient to regenerate the hip cartilage surfaces. These results suggest that the collagen gel based biomaterials, even with MSCs, are not satisfactory in repar of hip cartilage defect. However, additional evaluation is needed to confirm these results.

Keywords: collafen gel, MSCs, cartilage repair, hip cartilage

Procedia PDF Downloads 460
Identification and Correlation of Structural Parameters and Gas Accumulation Capacity of Shales From Poland

Authors: Anna Pajdak, Mateusz Kudasik, Aleksandra Gajda, Katarzyna Kozieł

Abstract:

Shales are a type of fine-grained sedimentary rocks, which are composed of small grains of several to several dozen μm in size and consist of a variable mixture of clay minerals, quartz, feldspars, carbonates, sulphides, amorphous material and organic matter. The study involved an analysis of the basic physical properties of shale rocks from several research wells in Poland. The structural, sorption and seepage parameters of these rocks were determined. The total porosity of granular rock samples reached several percent, including the share of closed pores up to half a percent. The volume and distribution of pores, which are of significant importance in the context of the mechanisms of methane binding to the rock matrix and methods of stimulating its desorption and the possibility of CO₂ storage, were determined. The BET surface area of the samples ranged from a few to a dozen or so m²/g, and the share of micropores was dominant. In order to determine the interaction of rocks with gases, the sorption capacity in relation to CO₂ and CH₄ was determined at a pressure of 0-1.4 MPa. Sorption capacities, sorption isotherms and diffusion coefficients were also determined. Studies of competitive sorption of CO₂/CH₄ on shales showed a preference for CO₂ sorption over CH₄, and the selectivity of CO₂/CH₄ sorption decreased with increasing pressure. In addition to the pore structure, the adsorption capacity of gases in shale rocks is significantly influenced by the carbon content in their organic matter. The sorbed gas can constitute from 20% to 80% of the total gas contained in the shales. With the increasing depth of shale gas occurrence, the share of free gas to sorbed gas increases, among others, due to the increase in temperature and surrounding pressure. Determining the share of free gas to sorbed gas in shale, depending on the depth of its deposition, is one of the key elements of recognizing the gas/sorption exchange processes of CO₂/CH₄, which are the basis of CO₂-ESGR technology. The main objective of the work was to identify the correlation between different forms of gas occurrence in rocks and the parameters describing the pore space of shales.

Keywords: shale, CH₄, CO₂, shale gas, CO₂ -ESGR, pores structure

Procedia PDF Downloads 20
Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 141
Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice

Authors: Chiling Chen, Chiaoying Chou, Siyang Wu

Abstract:

Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.

Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy

Procedia PDF Downloads 303
Biocompatible Beta Titanium Alloy Ti36Nb6Ta as a Suitable Material for Bone Regeneration

Authors: Vera Lukasova, Eva Filova, Jana Dankova, Vera Sovkova, Matej Daniel, Michala Rampichova

Abstract:

Proper bone implants should promote fast adhesion of cells, stimulate cell differentiation and support the formation of bone tissue. Nowadays titanium is used as a biocompatible material capable of bone tissue integration. This study was focused on comparison of bioactive properties of two titanium alloys - beta titanium alloy Ti36Nb6Ta and standard medical titanium alloy Ti6A14V. The advantage of beta titanium alloy Ti36Nb6Ta is mainly that this material does not contain adverse elements like vanadium or aluminium. Titanium alloys were sterilized in ethanol, placed into 48 well plates and seeded with porcine mesenchymal stem cells. Cells were cultivated for 14 days in standard growth cultivation media with osteogenic supplements. Cell metabolic activity was quantified using MTS assay (Promega). Cell adhesion on day 1 and cell proliferation on further days were verified immunohistochemically using beta-actin monoclonal antibody and secondary antibody conjugated with AlexaFluor®488. Differentiation of cells was evaluated using alkaline phosphatase assay. Additionally, gene expression of collagen I was measured by qRT-PCR. Porcine mesenchymal stem cells adhered and spread well on beta titanium alloy Ti36Nb6Ta on day 1. During the 14 days’ time period the cells were spread confluently on the surface of the beta titanium alloy Ti36Nb6Ta. The metabolic activity of cells increased during the whole cultivation period. In comparison to standard medical titanium alloy Ti6A14V, we did not observe any differences. Moreover, the expression of collagen I gene revealed no statistical differences between both titanium alloys. Therefore, a beta titanium alloy Ti36Nb6Ta promotes cell adhesion, metabolic activity, proliferation and collagen I expression equally to standard medical titanium alloy Ti6A14V. Thus, beta titanium is a suitable material that provides sufficient biocompatible properties. This project was supported by the Czech Science Foundation: grant No. 16-14758S.

Keywords: beta titanium alloy, biocompatibility, differentiation, mesenchymal stem cells

Procedia PDF Downloads 499
Fatty Acids in Female's Gonads of the Red Sea Fish Rhabdosargus Sarba During the Spawning Season

Authors: Suhaila Qari, Samia Moharram, Safaa Alowaidi

Abstract:

Objectives: To determine the fatty acids profiles in female fish, R. sarba from the Red Sea during the spawning season. Methods: Monthly individual Rhabdosargus sarba were obtained from Bangalah market in Jeddah, Red Sea and transported to the laboratory in ice aquarium. The total length, standard length and weight were measured, fishes were dissected. Ovaries were removed, weighed and 10 ml of concentrated hydrochloric acid were added to 10g of the ovary in a conical flask and immersed in boiling water until the sample was dissolved and the fat was seen to collect on the surface. The conical was cooled and the fat was extracted by shaking with 30 ml of diethyl ether. The extract was bowled after allowing the layers to separate into a weighed flask. The extraction was repeated three times more and distilled off the solvent then the fat dried at 100oC, cooled and weighed. Then 50 mg of lipid was put in a tube, 5 ml of methanolic sulphuric acid was added and 2 ml of benzene, the tube well closed and placed in water bath at 90oC for an hour and half. After cooling, 8 ml water and 5 ml petroleum was added shacked strongly and the ethereal layer was separated in a dry tube, evaporated to dryness. The fatty acid methyl esters were analyzed using a Hewlett Packard (HP 6890) chromatography, asplit /splitless injector and flame ionization detector (FID). Results: In female Rhabdosargus sarba, a total of 29 fatty acids detected in ovaries throughout the spawning season. The main fatty acid group in total lipid was saturated fatty acid (SFA, 28.9%), followed by 23.5% of polyunsaturated fatty acids (PUFA) and 12.9% of monounsaturated fatty acids (MUFA). The dominant SFA were palmitic and stearic, the major MUFA were palmitoleic and oleic, and the major PUFA were C18:2 and C22:2. During spawning stages no significant differences in total SFA, MUFA and PUFA, the highest value of SFA was in late spawning (36.78%). However, the highest value of MUFA and PUFA was in spawning (16.70% and 24.96% respectively). During spawning season there were a significant differences in total SFA between March (late spawning stage) and December (nearly ripe stage), (P < 0.05).

Keywords: sparidae, Rhabdosargus sarba, fish, fatty acids, spawning, gonads, red sea

Procedia PDF Downloads 806
A Decadal Flood Assessment Using Time-Series Satellite Data in Cambodia

Authors: Nguyen-Thanh Son

Abstract:

Flood is among the most frequent and costliest natural hazards. The flood disasters especially affect the poor people in rural areas, who are heavily dependent on agriculture and have lower incomes. Cambodia is identified as one of the most climate-vulnerable countries in the world, ranked 13th out of 181 countries most affected by the impacts of climate change. Flood monitoring is thus a strategic priority at national and regional levels because policymakers need reliable spatial and temporal information on flood-prone areas to form successful monitoring programs to reduce possible impacts on the country’s economy and people’s likelihood. This study aims to develop methods for flood mapping and assessment from MODIS data in Cambodia. We processed the data for the period from 2000 to 2017, following three main steps: (1) data pre-processing to construct smooth time-series vegetation and water surface indices, (2) delineation of flood-prone areas, and (3) accuracy assessment. The results of flood mapping were verified with the ground reference data, indicating the overall accuracy of 88.7% and a Kappa coefficient of 0.77, respectively. These results were reaffirmed by close agreement between the flood-mapping area and ground reference data, with the correlation coefficient of determination (R²) of 0.94. The seasonally flooded areas observed for 2010, 2015, and 2016 were remarkably smaller than other years, mainly attributed to the El Niño weather phenomenon exacerbated by impacts of climate change. Eventually, although several sources potentially lowered the mapping accuracy of flood-prone areas, including image cloud contamination, mixed-pixel issues, and low-resolution bias between the mapping results and ground reference data, our methods indicated the satisfactory results for delineating spatiotemporal evolutions of floods. The results in the form of quantitative information on spatiotemporal flood distributions could be beneficial to policymakers in evaluating their management strategies for mitigating the negative effects of floods on agriculture and people’s likelihood in the country.

Keywords: MODIS, flood, mapping, Cambodia

Procedia PDF Downloads 132
TiO2 Solar Light Photocatalysis a Promising Treatment Method of Wastewater with Trinitrotoluene Content

Authors: Ines Nitoi, Petruta Oancea, Lucian Constantin, Laurentiu Dinu, Maria Crisan, Malina Raileanu, Ionut Cristea

Abstract:

2,4,6-Trinitrotoluene (TNT) is the most common pollutant identified in wastewater generated from munitions plants where this explosive is synthesized or handled (munitions load, assembly and pack operations). Due to their toxic and suspected carcinogenic characteristics, nitroaromatic compounds like TNT are included on the list of prioritary pollutants and strictly regulated in EU countries. Since their presence in water bodies is risky for human health and aquatic life, development of powerful, modern treatment methods like photocatalysis are needed in order to assures environmental pollution mitigation. The photocatalytic degradation of TNT was carried out at pH=7.8, in aqueous TiO2 based catalyst suspension, under sunlight irradiation. The enhanced photo activity of catalyst in visible domain was assured by 0.5% Fe doping. TNT degradation experiments were performed using a tubular collector type solar photoreactor (26 UV permeable silica glass tubes series connected), plug in a total recycle loops. The influence of substrate concentration and catalyst dose on the pollutant degradation and mineralization by-products (NO2-, NO3-, NH4+) formation efficiencies was studied. In order to compare the experimental results obtained in various working conditions, the pollutant and mineralization by-products measured concentrations have been considered as functions of irradiation time and cumulative photonic energy Qhν incident on the reactor surface (kJ/L). In the tested experimental conditions, at tens mg/L pollutant concentration, increase of 0,5%-TiO2 dose up to 200mg/L leads to the enhancement of CB degradation efficiency. Since, doubling of TNT content has a negative effect on pollutant degradation efficiency, in similar experimental condition, prolonged irradiation time from 360 to 480 min was necessary in order to assures the compliance of treated effluent with limits imposed by EU legislation (TNT ≤ 10µg/L).

Keywords: wastewater treatment, TNT, photocatalysis, environmental engineering

Procedia PDF Downloads 362
CFD Simulation of the Pressure Distribution in the Upper Airway of an Obstructive Sleep Apnea Patient

Authors: Christina Hagen, Pragathi Kamale Gurmurthy, Thorsten M. Buzug

Abstract:

CFD simulations are performed in the upper airway of a patient suffering from obstructive sleep apnea (OSA) that is a sleep related breathing disorder characterized by repetitive partial or complete closures of the upper airways. The simulations are aimed at getting a better understanding of the pathophysiological flow patterns in an OSA patient. The simulation is compared to medical data of a sleep endoscopic examination under sedation. A digital model consisting of surface triangles of the upper airway is extracted from the MR images by a region growing segmentation process and is followed by a careful manual refinement. The computational domain includes the nasal cavity with the nostrils as the inlet areas and the pharyngeal volume with an outlet underneath the larynx. At the nostrils a flat inflow velocity profile is prescribed by choosing the velocity such that a volume flow rate of 150 ml/s is reached. Behind the larynx at the outlet a pressure of -10 Pa is prescribed. The stationary incompressible Navier-Stokes equations are numerically solved using finite elements. A grid convergence study has been performed. The results show an amplification of the maximal velocity of about 2.5 times the inlet velocity at a constriction of the pharyngeal volume in the area of the tongue. It is the same region that also shows the highest pressure drop from about 5 Pa. This is in agreement with the sleep endoscopic examinations of the same patient under sedation showing complete contractions in the area of the tongue. CFD simulations can become a useful tool in the diagnosis and therapy of obstructive sleep apnea by giving insight into the patient’s individual fluid dynamical situation in the upper airways giving a better understanding of the disease where experimental measurements are not feasible. Within this study, it could been shown on one hand that constriction areas within the upper airway lead to a significant pressure drop and on the other hand a good agreement of the area of pressure drop and the area of contraction could be shown.

Keywords: biomedical engineering, obstructive sleep apnea, pharynx, upper airways

Procedia PDF Downloads 308
Reinforced Concrete Bridge Deck Condition Assessment Methods Using Ground Penetrating Radar and Infrared Thermography

Authors: Nicole M. Martino

Abstract:

Reinforced concrete bridge deck condition assessments primarily use visual inspection methods, where an inspector looks for and records locations of cracks, potholes, efflorescence and other signs of probable deterioration. Sounding is another technique used to diagnose the condition of a bridge deck, however this method listens for damage within the subsurface as the surface is struck with a hammer or chain. Even though extensive procedures are in place for using these inspection techniques, neither one provides the inspector with a comprehensive understanding of the internal condition of a bridge deck – the location where damage originates from.  In order to make accurate estimates of repair locations and quantities, in addition to allocating the necessary funding, a total understanding of the deck’s deteriorated state is key. The research presented in this paper collected infrared thermography and ground penetrating radar data from reinforced concrete bridge decks without an asphalt overlay. These decks were of various ages and their condition varied from brand new, to in need of replacement. The goals of this work were to first verify that these nondestructive evaluation methods could identify similar areas of healthy and damaged concrete, and then to see if combining the results of both methods would provide a higher confidence than if the condition assessment was completed using only one method. The results from each method were presented as plan view color contour plots. The results from one of the decks assessed as a part of this research, including these plan view plots, are presented in this paper. Furthermore, in order to answer the interest of transportation agencies throughout the United States, this research developed a step-by-step guide which demonstrates how to collect and assess a bridge deck using these nondestructive evaluation methods. This guide addresses setup procedures on the deck during the day of data collection, system setups and settings for different bridge decks, data post-processing for each method, and data visualization and quantification.

Keywords: bridge deck deterioration, ground penetrating radar, infrared thermography, NDT of bridge decks

Procedia PDF Downloads 158
Ph-Triggered Cationic Solid Lipid Nanoparticles Mitigated Colitis in Mice

Authors: Muhammad Naeem, Juho Lee, Jin-Wook Yoo

Abstract:

In this study, we hypothesized that prolonged gastrointestinal transit at the inflamed colon conferred by a pH-triggered mucoadhesive smart nanoparticulate drug delivery system aids in achieving selective and sustained levels of the drug within the inflamed colon for the treatment of ulcerative colitis. We developed budesonide-loaded pH-sensitive charge-reversal solid lipid nanoparticles (SLNs) using a hot homogenization method. Polyetylenimine (PEI) was used to render SLNs cationic (PEI-SLNs). Eudragit S100 (ES) was coated on PEI-SLNs for pH-trigger charge-reversal SLNs (ES-PEI-SLNs). Therapeutic potential of the prepared SNLs formulation was evaluated in ulcerative colitis in mice. The transmission electron microscopy, zeta size and zeta potential data showed the successful formation of SLNs formulations. SLNs and PEI-SLNs showed burst drug release in acidic pH condition mimicking stomach and early small intestine environment which limiting their application as oral delivery systems. However, ES-PEI-SLNs prevented a burst drug release in acidic pH conditions and showed sustained release at a colonic pH. Most importantly, the surface charge of ES-PEI-SLNs switched from negative to positive in colonic conditions by pH-triggered removal of ES coating and accumulated selectively in inflamed colon. Furthermore, a charge reversal ES-PEI-SLNs showed a superior mitigation of dextran sulfate sodium (DSS)-induced acute colitis in mice as compared to SLNs and PEI-SLNs treated groups. Moreover, histopathological analysis of distal colon sections stained with hematoxylin/eosin and E-cadherin immunostaining revealed attenuated inflammation in an ES-PEI-SLNs-treated group. We also found that ES-PEI-SLNs markedly reduced the myeloperoxidase level and expression of TNF-alpha in colon tissue. Our results suggest that the pH-triggered charge reversal SLNs presented in this study would be a promising approach for ulcerative colitis therapy.

Keywords: solid lipid nanoparticles, stimuli-triggered charge-reversal, ulcerative colitis, methacrylate copolymer, budesonide

Procedia PDF Downloads 253
Comparative Morphometric Analysis of Yelganga-Shivbhadra and Kohilla River Sub-Basins in Aurangabad District Maharashtra India

Authors: Chandrakant Gurav, Md Babar, Ajaykumar Asode

Abstract:

Morphometric analysis is the first stage of any basin analysis. By using these morphometric parameters we give indirect information about the nature and relations of stream with other streams, Geology of the area, groundwater condition and tectonic history of the basin. In the present study, Yelganga, Shivbhadra and Kohilla rivers, tributaries of the Godavari River in Aurangabad district, Maharashtra, India are considered to compare and study their morphometric characters. The linear, areal and relief morphometric aspects of the sub-basins have been assessed and evaluated in GIS environment. For this study, ArcGIS 10.1 software has been used for delineating, digitizing and generating different thematic maps. The Survey of India (SOI) toposheets maps and Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) on resolution 30 m downloaded from United States Geological Survey (USGS) have been used for preparation of map and data generation. Geologically, the study area is covered by Central Deccan Volcanic Province (CDVP). It mainly consists of ‘aa’ type of basaltic lava flows of Late (upper) Cretaceous to Early (lower) Eocene age. The total geographical area of Yelganga, Shivbhadra and Kohilla river sub-basins are 185.5 sq. km., 142.6 sq. km and 122.3 sq. km. respectively The stream ordering method as suggested by the Strahler has been employed for present study and found that all the sub-basins are of 5th order streams. The average bifurcation ratio value of the sub-basins is below 5, indicates that there appears to be no strong structural control on drainage development, homogeneous nature of lithology and drainage network is in well-developed stage of erosion. The drainage density of Yelganga, Shivbhadra and Kohilla Sub-basins is 1.79 km/km2, 1.48 km/km2 and 1.89 km/km2 respectively and stream frequency is 1.94 streams/km2, 1.19 streams/km2 and 1.68 streams/km2 respectively, indicating semi-permeable sub-surface. Based on textural ratio values it indicates that the sub-basins have coarse texture. Shape parameters such as form factor ratio, circularity ratio and elongation ratio values shows that all three sub- basins are elongated in shape.

Keywords: GIS, Kohilla, morphometry, Shivbhadra, Yelganga

Procedia PDF Downloads 161
Physics-Based Earthquake Source Models for Seismic Engineering: Analysis and Validation for Dip-Slip Faults

Authors: Percy Galvez, Anatoly Petukhin, Paul Somerville, Ken Miyakoshi, Kojiro Irikura, Daniel Peter

Abstract:

Physics-based dynamic rupture modelling is necessary for estimating parameters such as rupture velocity and slip rate function that are important for ground motion simulation, but poorly resolved by observations, e.g. by seismic source inversion. In order to generate a large number of physically self-consistent rupture models, whose rupture process is consistent with the spatio-temporal heterogeneity of past earthquakes, we use multicycle simulations under the heterogeneous rate-and-state (RS) friction law for a 45deg dip-slip fault. We performed a parametrization study by fully dynamic rupture modeling, and then, a set of spontaneous source models was generated in a large magnitude range (Mw > 7.0). In order to validate rupture models, we compare the source scaling relations vs. seismic moment Mo for the modeled rupture area S, as well as average slip Dave and the slip asperity area Sa, with similar scaling relations from the source inversions. Ground motions were also computed from our models. Their peak ground velocities (PGV) agree well with the GMPE values. We obtained good agreement of the permanent surface offset values with empirical relations. From the heterogeneous rupture models, we analyzed parameters, which are critical for ground motion simulations, i.e. distributions of slip, slip rate, rupture initiation points, rupture velocities, and source time functions. We studied cross-correlations between them and with the friction weakening distance Dc value, the only initial heterogeneity parameter in our modeling. The main findings are: (1) high slip-rate areas coincide with or are located on an outer edge of the large slip areas, (2) ruptures have a tendency to initiate in small Dc areas, and (3) high slip-rate areas correlate with areas of small Dc, large rupture velocity and short rise-time.

Keywords: earthquake dynamics, strong ground motion prediction, seismic engineering, source characterization

Procedia PDF Downloads 147
The Concentration of Selected Cosmogenic and Anthropogenic Radionuclides in the Ground Layer of the Atmosphere (Polar and Mid-Latitudes Regions)

Authors: A. Burakowska, M. Piotrowski, M. Kubicki, H. Trzaskowska, R. Sosnowiec, B. Myslek-Laurikainen

Abstract:

The most important source of atmospheric radioactivity are radionuclides generated as a result of the impact of primary and secondary cosmic radiation, with the nuclei of nitrogen oxygen and carbon in the upper troposphere and lower stratosphere. This creates about thirty radioisotopes of more than twenty elements. For organisms, the four of them are most important: ³H, ⁷Be, ²²Na, ¹⁴C. The natural radionuclides, which are present in Earth crust, also settle on dust and particles of water vapor. By this means, the derivatives of uranium and thorium, and long-life 40K get into the air. ¹³⁷Cs is the most widespread isotope, that is implemented by humans into the environment. To determine the concentration of radionuclides in the atmosphere, high volume air samplers were used, where the aerosol collection took place on a special filter fabric (Petrianov filter tissue FPP-15-1.5). In 2002 the high volume air sampler AZA-1000 was installed at the Polish Polar Observatory of the Polish Academy of Science in Hornsund, Spitsbergen (77°00’N, 15°33’E), designed to operate in all weather conditions of the cold polar region. Since 1991 (with short breaks) the ASS-500 air sampler has been working, which is located in Swider at the Kalinowski Geophysical Observatory of Geophysics Institute of the Polish Academy of Science (52°07’N, 21°15’E). The following results of radionuclides concentrations were obtained from both stations using gamma spectroscopy analysis: ⁷Be, ¹³⁷Cs, ¹³⁴Cs, ²¹⁰Pb, ⁴⁰K. For gamma spectroscopy analysis HPGe (High Purity Germanium) detector were used. These data were compared with each other. The preliminary results gave evidence that radioactivity measured in aerosols is not proportional to the amount of dust for both studied regions. Furthermore, the results indicate annual variability (seasonal fluctuations) as well as a decrease in the average activity of ⁷Be with increasing latitude. The content of ⁷Be in surface air also indicates the relationship with solar activity cycles.

Keywords: aerosols, air filters, atmospheric beryllium, environmental radionuclides, gamma spectroscopy, mid-latitude regions radionuclides, polar regions radionuclides, solar cycles

Procedia PDF Downloads 148
Determination of Influence Lines for Train Crossings on a Tied Arch Bridge to Optimize the Construction of the Hangers

Authors: Martin Mensinger, Marjolaine Pfaffinger, Matthias Haslbeck

Abstract:

The maintenance and expansion of the railway network represents a central task for transport planning in the future. In addition to the ultimate limit states, the aspects of resource conservation and sustainability are increasingly more necessary to include in the basic engineering. Therefore, as part of the AiF research project, ‘Integrated assessment of steel and composite railway bridges in accordance with sustainability criteria’, the entire lifecycle of engineering structures is involved in planning and evaluation, offering a way to optimize the design of steel bridges. In order to reduce the life cycle costs and increase the profitability of steel structures, it is particularly necessary to consider the demands on hanger connections resulting from fatigue. In order for accurate analysis, a number simulations were conducted as part of the research project on a finite element model of a reference bridge, which gives an indication of the internal forces of the individual structural components of a tied arch bridge, depending on the stress incurred by various types of trains. The calculations were carried out on a detailed FE-model, which allows an extraordinarily accurate modeling of the stiffness of all parts of the constructions as it is made up surface elements. The results point to a large impact of the formation of details on fatigue-related changes in stress, on the one hand, and on the other, they could depict construction-specific specifics over the course of adding stress. Comparative calculations with varied axle-stress distribution also provide information about the sensitivity of the results compared to the imposition of stress and axel distribution on the stress-resultant development. The calculated diagrams help to achieve an optimized hanger connection design through improved durability, which helps to reduce the maintenance costs of rail networks and to give practical application notes for the formation of details.

Keywords: fatigue, influence line, life cycle, tied arch bridge

Procedia PDF Downloads 334
Experimental Investigation of the Out-of-Plane Dynamic Behavior of Adhesively Bonded Composite Joints at High Strain Rates

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Ben Yahia

Abstract:

In this investigation, an experimental technique in which the dynamic response, damage kinetic and heat dissipation are measured simultaneously during high strain rates on adhesively bonded joints materials. The material used in this study is widely used in the design of structures for military applications. It was composed of a 45° Bi-axial fiber-glass mat of 0.286 mm thickness in a Polyester resin matrix. In adhesive bonding, a NORPOL Polyvinylester of 1 mm thickness was used to assemble the composite substrate. The experimental setup consists of a compression Split Hopkinson Pressure Bar (SHPB), a high-speed infrared camera and a high-speed Fastcam rapid camera. For the dynamic compression tests, 13 mm x 13 mm x 9 mm samples for out-of-plane tests were considered from 372 to 1030 s-1. Specimen surface is controlled and monitored in situ and in real time using the high-speed camera which acquires the damage progressive in specimens and with the infrared camera which provides thermal images in time sequence. Preliminary compressive stress-strain vs. strain rates data obtained show that the dynamic material strength increases with increasing strain rates. Damage investigations have revealed that the failure mainly occurred in the adhesive/adherent interface because of the brittle nature of the polymeric adhesive. Results have shown the dependency of the dynamic parameters on strain rates. Significant temperature rise was observed in dynamic compression tests. Experimental results show that the temperature change depending on the strain rate and the damage mode and their maximum exceed 100 °C. The dependence of these results on strain rate indicates that there exists a strong correlation between damage rate sensitivity and heat dissipation, which might be useful when developing damage models under dynamic loading tacking into account the effect of the energy balance of adhesively bonded joints.

Keywords: adhesive bonded joints, Hopkinson bars, out-of-plane tests, dynamic compression properties, damage mechanisms, heat dissipation

Procedia PDF Downloads 216
Ficus Microcarpa Fruit Derived Iron Oxide Nanomaterials and Its Anti-bacterial, Antioxidant and Anticancer Efficacy

Authors: Fuad Abdullah Alatawi

Abstract:

Microbial infections-based diseases are a significant public health issue around the world, mainly when antibiotic-resistant bacterium types evolve. In this research, we explored the anti-bacterial and anti-cancer potency of iron-oxide (Fe₂O₃) nanoparticles prepared from F. macrocarpa fruit extract. The chemical composition of F. macrocarpa fruit extract was used as a reducing and capping agent for nanoparticles’ synthesis was examined by GC-MS/MS analysis. Then, the prepared nanoparticles were confirmed by various biophysical techniques, including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis Spectroscopy, and Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDAX), and Dynamic Light Scattering (DLS). Also, the antioxidant capacity of fruit extract was determined through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Fluorescence Recovery After Photobleaching (FRAP), Superoxide Dismutase (SOD) assays. Furthermore, the cytotoxicity activities of Fe₂O₃ NPs were determined using the (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) test on MCF-7 cells. In the antibacterial assay, lethal doses of the Fe₂O₃NPs effectively inhibited the growth of gram-negative and gram-positive bacteria. The surface damage, ROS production, and protein leakage are the antibacterial mechanisms of Fe₂O₃NPs. Concerning antioxidant activity, the fruit extracts of F. macrocarpa had strong antioxidant properties, which were confirmed by DPPH, ABTS, FRAP, and SOD assays. In addition, the F. microcarpa-derived iron oxide nanomaterials greatly reduced the cell viability of (MCF-7). The GC-MS/MS analysis revealed the presence of 25 main bioactive compounds in the F. microcarpa extract. Overall, the finding of this research revealed that F. microcarpa-derived Fe₂O₃ nanoparticles could be employed as an alternative therapeutic agent to cure microbial infection and breast cancer in humans.

Keywords: ficus microcarpa, iron oxide, antibacterial activity, cytotoxicity

Procedia PDF Downloads 127
Environmental Conditions Simulation Device for Evaluating Fungal Growth on Wooden Surfaces

Authors: Riccardo Cacciotti, Jiri Frankl, Benjamin Wolf, Michael Machacek

Abstract:

Moisture fluctuations govern the occurrence of fungi-related problems in buildings, which may impose significant health risks for users and even lead to structural failures. Several numerical engineering models attempt to capture the complexity of mold growth on building materials. From real life observations, in cases with suppressed daily variations of boundary conditions, e.g. in crawlspaces, mold growth model predictions well correspond with the observed mold growth. On the other hand, in cases with substantial diurnal variations of boundary conditions, e.g. in the ventilated cavity of a cold flat roof, mold growth predicted by the models is significantly overestimated. This study, founded by the Grant Agency of the Czech Republic (GAČR 20-12941S), aims at gaining a better understanding of mold growth behavior on solid wood, under varying boundary conditions. In particular, the experimental investigation focuses on the response of mold to changing conditions in the boundary layer and its influence on heat and moisture transfer across the surface. The main results include the design and construction at the facilities of ITAM (Prague, Czech Republic) of an innovative device allowing for the simulation of changing environmental conditions in buildings. It consists of a square section closed circuit with rough dimensions 200 × 180 cm and cross section roughly 30 × 30 cm. The circuit is thermally insulated and equipped with an electric fan to control air flow inside the tunnel, a heat and humidity exchange unit to control the internal RH and variations in temperature. Several measuring points, including an anemometer, temperature and humidity sensor, a loading cell in the test section for recording mass changes, are provided to monitor the variations of parameters during the experiments. The research is ongoing and it is expected to provide the final results of the experimental investigation at the end of 2022.

Keywords: moisture, mold growth, testing, wood

Procedia PDF Downloads 136
Alteration of Placental Development and Vascular Dysfunction in Gestational Diabetes Mellitus Has Impact on Maternal and Infant Health

Authors: Sadia Munir

Abstract:

The aim of this study is to investigate changes in placental development and vascular dysfunction which subsequently affect feto-maternal health in pregnancies complicated by gestational diabetes mellitus (GDM). Fetal and postnatal adverse health outcomes of GDM are shown to be associated with disturbances in placental structure and function. Children of women with GDM are more likely to be obese and diabetic in childhood and adulthood. GDM also increases the risk of adverse pregnancy outcomes, including preeclampsia, birth injuries, macrosomia and neonatal hypoglycemia, respiratory distress syndrome, neonatal cardiac dysfunction and stillbirth. Incidences of type 2 diabetes in the MENA region are growing at an alarming rate which is estimated to become more than double by 2030. Five of the top 10 countries for diabetes prevalence in 2010 were in the Gulf region. GDM also increases the risk of development of type 2 diabetes. Interestingly, more than half of the women with GDM develop diabetes later in their life. The human placenta is a temporary organ located at the interface between mother and fetal blood circulation. Placenta has a central role as both a producer as well as a target of several molecules that are involved in placental development and function. We have investigated performed a Pubmed search with key words placenta, GDM, placental villi, vascularization, cytokines, growth factors, inflammation, hypoxia, oxidative stress and pathophysiology. We have investigated differences in the development and vascularization of placenta, their underlying causes and impact on feto-maternal health through literature review. We have also identified gaps in the literature and research questions that need to be answered to completely understand the central role of placenta in the GDM. This study is important in understanding the pathophysiology of placenta due to changes in the vascularization of villi, surface area and diameter of villous capillaries in pregnancies complicated by GDM. It is necessary to understand these mechanisms in order to develop treatments to reverse their effects on placental malfunctioning, which in turn, will result in improved mother and child health.

Keywords: gestational diabetes mellitus, placenta, vasculature, villi

Procedia PDF Downloads 321
The Influence of Partial Replacement of Hydrated Lime by Pozzolans on Properties of Lime Mortars

Authors: Przemyslaw Brzyski, Stanislaw Fic

Abstract:

Hydrated lime, because of the life cycle (return to its natural form as a result of the setting and hardening) has a positive environmental impact. The lime binder is used in mortars. Lime is a slow setting binder with low mechanical properties. The aim of the study was to evaluate the possibility of improving the properties of the lime binder by using different pozzolanic materials as partial replacement of hydrated lime binder. Pozzolan materials are the natural or industrial waste, so do not affect the environmental impact of the lime binder. The following laboratory tests were performed: the analysis of the physical characteristics of the tested samples of lime mortars (bulk density, porosity), flexural and compressive strength, water absorption and the capillary rise of samples and consistency of fresh mortars. As a partial replacement of hydrated lime (in the amount of 10%, 20%, 30% by weight of lime) a metakaolin, silica fume, and zeolite were used. The shortest setting and hardening time showed mortars with the addition of metakaolin. All additives noticeably improved strength characteristic of lime mortars. With the increase in the amount of additive, the increase in strength was also observed. The highest flexural strength was obtained by using the addition of metakaolin in an amount of 20% by weight of lime (2.08 MPa). The highest compressive strength was obtained by using also the addition of metakaolin but in an amount of 30% by weight of lime (9.43 MPa). The addition of pozzolan caused an increase in the mortar tightness which contributed to the limitation of absorbability. Due to the different surface area, pozzolanic additives affected the consistency of fresh mortars. Initial consistency was assumed as plastic. Only the addition of silica fume an amount of 20 and 30% by weight of lime changed the consistency to the thick-plastic. The conducted study demonstrated the possibility of applying lime mortar with satisfactory properties. The features of lime mortars do not differ significantly from cement-based mortar properties and show a lower environmental impact due to CO₂ absorption during lime hardening. Taking into consideration the setting time, strength and consistency, the best results can be obtained with metakaolin addition to the lime mortar.

Keywords: lime, binder, mortar, pozzolan, properties

Procedia PDF Downloads 197
Techno-Functional Characteristics, Mineral Composition and Antioxidant Potential of Dietary Fiber Extracted by Sonication from Different Oat Cultivars (Avena sativa)

Authors: Muhammad Suhail Ibrahim, Muhammad Nadeem, Muhammad Sultan, Uzair Sajjad, Khalid Hamid, Tahir Mahmood Qureshi, Sadaf Javaria

Abstract:

Metabolic disorders, including hypertension, diabetes, cardiovascular disease etc., are major threats to public health and economy. Management and prevention of alarmingly increasing disorders have attracted researchers to explore natural barriers against these disorders. The objective of this study was to explore oats as a potential source of dietary fiber. Extraction of dietary was optimized by response surface methodology, and five indigenous oat cultivars, including SGD2011, Avon, SGD81, PD2LV65, and S2000, were also characterized for techno-functional characteristics, mineral composition and phytochemical quantification. These cultivars varied significantly (p < 0.05) for oil holding capacity, water saturation, and water holding capacity, respectively. SGD81 showed the highest oil-holding capacity, water-holding capacity, and water saturation due to the highest fraction of dietary fiber. The highest values of total phenolic contents, total flavonoid contents, total flavonol contents, 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging activity, and anthocyanin were shown by SGD81, and SGD2011, respectively. All cultivars varied significantly (P<0.05) with respect to phytochemical quantification. Oat cultivars SGD81 and SGD2011 showed the best phenolic acid profile and can be effectively used as a source of nutraceuticals. Beyond the nutritional properties of oats, these also contribute and emerged as potential sources of dietary fiber and have gained attention as nutraceutical cereal crops. This approach offers oats as a natural means of dietary fiber to protect humans from alarmingly increasing metabolic disorders, and its extraction by sonication has made it a sustainable and eco-friendly strategy.

Keywords: oat cultivars, dietary fibers, mineral profile, antioxidant activity, color properties

Procedia PDF Downloads 49
Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design

Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian

Abstract:

Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.

Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.

Procedia PDF Downloads 286
Evaluation of the Effectiveness of Barriers for the Control of Rats in Rice Plantation Field

Authors: Melina, Jumardi Jumardi, Erwin Erwin, Sri Nuraminah, Andi Nasruddin

Abstract:

The rice field rat (Rattus argentiventer Robinson and Kloss) is a pest causing the greatest yield loss of rice plants, especially in lowland agroecosystems with intensive cropping patterns (2-3 plantings per year). Field mice damage rice plants at all stages of growth, from seedling to harvest, even in storage warehouses. Severe damage with yield loss of up to 100% occurs if rats attack rice at the generative stage because the plants are no longer able to recover by forming new tillers. Farmers mainly use rodenticides in the form of poisoned baits or as fumigants, which are applied to rat burrow holes. This practice is generally less effective because mice are able to avoid the poison or become resistant after several exposures to it. In addition, excessive use of rodenticides can have negative impacts on the environment and non-target organisms. For this reason, this research was conducted to evaluate the effectiveness of fences as an environmentally friendly mechanical control method in reducing rice yield losses due to rat attacks. This study used a factorial randomized block design. The first factor was the fence material, namely galvanized zinc plate and plastic. The second factor was the height of the fence, namely 25, 50, 75, and 100 cm from the ground level. Each treatment combination was repeated five times. Data shows that zinc fences with a height of 75 and 100 cm are able to provide full protection to plants from rat infestations throughout the planting season. However, zinc fences with a height of 25 and 50 cm failed to prevent rat attacks. Plastic fences with a height of 25 and 50 cm failed to prevent rat attacks during the planting season, whereas 75 and 100 cm were able to prevent rat attacks until all the crops outside of the fence had been eaten by rats. The rat managed to get into the fence by biting the plastic fence close to the ground. Thus, the research results show that fences made of zinc plate with a height of at least 75 cm from the ground surface are effective in preventing plant damage caused by rats. To our knowledge, this research is the first to quantify the effectiveness of fences as a control of field rodents.

Keywords: rice field rat, Rattus argentiventer, fence, rice

Procedia PDF Downloads 47
Application of Groundwater Level Data Mining in Aquifer Identification

Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen

Abstract:

Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.

Keywords: aquifer identification, decision tree, groundwater, Fourier transform

Procedia PDF Downloads 160
Laser - Ultrasonic Method for the Measurement of Residual Stresses in Metals

Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya

Abstract:

The theoretical analysis is carried out to get the relation between the ultrasonic wave velocity and the value of residual stresses. The laser-ultrasonic method is developed to evaluate the residual stresses and subsurface defects in metals. The method is based on the laser thermooptical excitation of longitudinal ultrasonic wave sand their detection by a broadband piezoelectric detector. A laser pulse with the time duration of 8 ns of the full width at half of maximum and with the energy of 300 µJ is absorbed in a thin layer of the special generator that is inclined relative to the object under study. The non-uniform heating of the generator causes the formation of a broadband powerful pulse of longitudinal ultrasonic waves. It is shown that the temporal profile of this pulse is the convolution of the temporal envelope of the laser pulse and the profile of the in-depth distribution of the heat sources. The ultrasonic waves reach the surface of the object through the prism that serves as an acoustic duct. At the interface ‚laser-ultrasonic transducer-object‘ the conversion of the most part of the longitudinal wave energy takes place into the shear, subsurface longitudinal and Rayleigh waves. They spread within the subsurface layer of the studied object and are detected by the piezoelectric detector. The electrical signal that corresponds to the detected acoustic signal is acquired by an analog-to-digital converter and when is mathematically processed and visualized with a personal computer. The distance between the generator and the piezodetector as well as the spread times of acoustic waves in the acoustic ducts are the characteristic parameters of the laser-ultrasonic transducer and are determined using the calibration samples. There lative precision of the measurement of the velocity of longitudinal ultrasonic waves is 0.05% that corresponds to approximately ±3 m/s for the steels of conventional quality. This precision allows one to determine the mechanical stress in the steel samples with the minimal detection threshold of approximately 22.7 MPa. The results are presented for the measured dependencies of the velocity of longitudinal ultrasonic waves in the samples on the values of the applied compression stress in the range of 20-100 MPa.

Keywords: laser-ultrasonic method, longitudinal ultrasonic waves, metals, residual stresses

Procedia PDF Downloads 328