Search results for: inverse third power force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8680

Search results for: inverse third power force

1780 Data Driven Infrastructure Planning for Offshore Wind farms

Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree

Abstract:

The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.

Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data

Procedia PDF Downloads 87
1779 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN

Procedia PDF Downloads 300
1778 Omani Community in Digital Age: A Study of Omani Women Using Back Channel Media to Empower Themselves for Frontline Entrepreneurship

Authors: Sangeeta Tripathi, Muna Al Shahri

Abstract:

This research article presents the changing role and status of women in Oman. Transformation of women’s status started with the regime of His Majesty Sultan Qaboos Bin Said in 1970. It is always desired by the Sultan to enable women in all the ways for the balance growth of the country. Forbidding full face veil for women in public offices is one of the best efforts for their empowerment. Women education is also increasing rapidly. They are getting friendly with new information communication technology and using different social media applications such as WhatsApp, Instagram and Facebook for interaction and economic growth. Though there are some traditional and tribal boundaries, women are infused with courage and enjoying fair treatment and equal opportunities in different career positions. The study will try to explore changing mindset of young Omani women towards these traditional tribal boundaries, cultural heritage, business and career: ‘How are young Omani women making balance between work and social prestige?’, ‘How are they preserving their cultural values, embracing new technologies and approaching social network to enhance their economic power.’ This paper will discover their hurdles while using internet for their new entrepreneur. It will also examine the prospects of online business in Oman. The mixed research methodology is applied to find out the result.

Keywords: advertising, business, entrepreneurship, tribal barrier

Procedia PDF Downloads 307
1777 Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios

Authors: S. Sakthivel

Abstract:

Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness.

Keywords: green hydrogen, cost analysis, break-even analysis, renewables, electrolyzer

Procedia PDF Downloads 143
1776 The Impact of Economic Status on Health Status in the Context of Bangladesh

Authors: Md. S. Sabuz

Abstract:

Bangladesh, a South Asian developing country, has achieved a remarkable breakthrough in health indicators during the last four decades despite immense income inequality. This phenomenon results in the mystical exclusion of marginalized people from obtaining health care facilities. However, the persistence of exclusion of the disadvantaged remains troubling. Exclusion occurs from occupational inferiority, pay and wage differences, educational backwardness, gender disparity to urban-rural complexity and eliminate the unprivileged from seeking and availing the health services. Evidence from Bangladesh shows that many sick people prefer to die at home without securing medical services because in previous times they were not treated well, not because the medical facilities were inadequate or antediluvian but the socio-economic class allows them to receive obdurate treatment. Furthermore, government and policymakers have given enormous emphasis on infrastructural development and achieving health indicators instead of ensuring quality services and inclusiveness of people from all spheres. Therefore, it is high time to address the issues concerning this and highlight the impact of economic status on health status in a sociological perspective. The objective of this study is to consider ways of assessing and exploring the impact of economic status for instance: occupational status, pay and wage variable, on health status in the context of Bangladesh. The hypotheses are that there are a significant number of factors affecting economic status which are impactful for health status eventually, but acute income inequality is a prominent factor. Illiteracy, gender disparity, remoteness, incredibility on services, superior costs, superstition etc. are the dominant indicators behind the economic factors influencing the health status. The chosen methodologies are a qualitative and quantitative approaches to accomplish the research objectives. Secondary sources of data will be used to conduct the study. Surveys will be conducted on the people who have ever been through the health care facilities and people from the different socio-economic and cultural backgrounds. Focus group discussions will be conducted to acquire the data from different cultural and regional citizens. The findings show that 48% of people who are from disadvantaged communities have been deprived of proper health care facilities. The general reasons behind this are the higher cost of medicines and other equipment. A significant number of people are unaware of the appropriate facilities. It was found that the socio-economic variables are the main influential factors that work as the driving force for both economic dimension and health status. Above all regional variables and gender, dimensions have an enormous effect on determining the health status of an individual or community. Amidst many positive achievements for example decrease in the child mortality rate, an increase in the immunization programs of the child etc., the inclusiveness of all classes of people in health care facilities has been overshadowed in Bangladesh. However, this phenomenon along with the socio-economic and cultural phenomena significantly demolishes the quality and inclusiveness of the health status of people.

Keywords: cultural context of health, economic status, gender and health, rural health care

Procedia PDF Downloads 213
1775 Striking a Balance between Certainty and Flexibility: The Role of Ubuntu in South African Contract Law

Authors: Yeukai Mupangavanhu

Abstract:

The paper examines the concept of ubuntu and the extent to which it can play a role in ensuring fairness and justice in contractual relationships. Courts are expected to balance sanctity of contract and fairness. Public policy is currently a mechanism which is used by courts when balancing the above two competing interests. It, however, generally favours the freedom and sanctity of contract. The question which is addressed in this paper is whether the concept of ubuntu is an alternative mechanism that may be used to mitigate the sometimes harsh and unfair consequences of the doctrine of freedom and sanctity of contract. A comparative study and case analysis is the methodology that is used in this article. Unfairness in contracts is generally related to the problem of inequality in bargaining power underscored by deeply entrenched social and economic inequalities that are a consequence of apartheid and patriarchy. The transformative nature of the constitution demands the inclusion of African legal ideas and values in the legal order. There is a need for the harmonisation of western ideals which are based on the classical model of law of contract with relevant African principles. In order to attain a transformative legal order that promotes a societal transformation and enhances the lives of everyone courts cannot continue to frown upon African values. Ubuntu has the potential of steering the law of contract in a more equitable direction. The substantive rules of contract law undoubtedly need to be infused with the notion of ubuntu. The reconciliation of Western and African values is at the heart of legal transformation.

Keywords: fairness, sanctity of contract, contractual justice, transformative constitutionalism

Procedia PDF Downloads 254
1774 Great Powers’ Proxy Wars in Middle East and Difficulty in Transition from Cold War to Cold Peace

Authors: Arash Sharghi, Irina Dotu

Abstract:

The developments in the Middle East region have activated the involvement of a numerous diverse state and non-state actors in the regional affairs. The goals, positions, ideologies, different, and even contrast policy behaviors had procured the spreading and continuity of crisis. Non-state actors varying from Islamic organizations to takfiri-terrorist movements on one hand and regional and trans- regional actors, from another side, seek to reach their interests in the power struggle. Here, a research worthy question comes on the agenda: taking into consideration actors’ contradictory interests and constraints what are the regional peace and stability perspectives? Therein, different actors’ aims definition, their actions and behaviors, which affect instability, can be regarded as independent variables; whereas, on the contrary, Middle East peace and stability perspective analysis is a dependent variable. Though, this regional peace and war theory based research admits the significant influence of trans-regional actors, it asserts the roots of violence to derive from region itself. Consequently, hot war and conflict prevention and hot peace assurance in the Middle East region cannot be attained only by demands and approaches of trans-regional actors. Moreover, capacity of trans-regional actors is sufficient only for a cold war or cold peace to be reached in the region. Furthermore, within the framework of current conflict (struggle) between regional actors it seems to be difficult and even impossible to turn the cold war into a cold peace in the region.

Keywords: cold peace, cold war, hot war, Middle East, non-state actors, regional and Great powers, war theory

Procedia PDF Downloads 276
1773 Upconversion Nanoparticles for Imaging and Controlled Photothermal Release of Anticancer Drug in Breast Cancer

Authors: Rishav Shrestha, Yong Zhang

Abstract:

The Anti-Stoke upconversion process has been used extensively for bioimaging and is recently being used for photoactivated therapy in cancer utilizing upconversion nanoparticles (UCNs). The UCNs have an excitation band at 980nm; 980nm laser excitation used to produce UV/Visible emissions also produce a heating effect. Light-to-heat conversion has been observed in nanoparticles(NPs) doped with neodymium(Nd) or ytterbium(Yb)/erbium(Er) ions. Despite laser-induced heating in Rare-earth doped NPs being proven to be a relatively efficient process, only few attempts to use them as photothermal agents in biosystems have been made up to now. Gold nanoparticles and carbon nanotubes are the most researched and developed for photothermal applications. Both have large heating efficiency and outstanding biocompatibility. However, they show weak fluorescence which makes them harder to track in vivo. In that regard, UCNs are attractive due to their excellent optical features in addition to their light-to-heat conversion and excitation by NIR, for imaging and spatiotemporally releasing drugs. In this work, we have utilized a simple method to coat Nd doped UCNs with thermoresponsive polymer PNIPAM on which 4-Hydroxytamoxifen (4-OH-T) is loaded. Such UCNs demonstrate a high loading efficiency and low leakage of 4-OH-T. Encouragingly, the release of 4-OH-T can be modulated by varying the power and duration of the NIR. Such UCNs were then used to demonstrate imaging and controlled photothermal release of 4-OH-T in MCF-7 breast cancer cells.

Keywords: cancer therapy, controlled release, photothermal release, upconversion nanoparticles

Procedia PDF Downloads 422
1772 Geometrical Fluid Model for Blood Rheology and Pulsatile Flow in Stenosed Arteries

Authors: Karan Kamboj, Vikramjeet Singh, Vinod Kumar

Abstract:

Considering blood to be a non-Newtonian Carreau liquid, this indirect numerical model investigates the pulsatile blood flow in a constricted restricted conduit that has numerous gentle stenosis inside the view of an increasing body speed. Asymptotic answers are obtained for the flow rate, pressure inclination, speed profile, sheer divider pressure, and longitudinal impedance to stream after the use of the twofold irritation approach to the problem of the succeeding non-straight limit esteem. It has been observed that the speed of the blood increases when there is an increase in the point of tightening of the conduit, the body speed increase, and the power regulation file. However, this rheological manner of behaving changes to one of longitudinal impedance to stream and divider sheer pressure when each of the previously mentioned boundaries increases. It has also been seen that the sheer divider pressure in the bloodstream greatly increases when there is an increase in the maximum depth of the stenosis but that it significantly decreases when there is an increase in the pulsatile Reynolds number. This is an interesting phenomenon. The assessments of the amount of growth in the longitudinal resistance to flow increase overall with the increment of the maximum depth of the stenosis and the Weissenberg number. Additionally, it is noted that the average speed of blood increases noticeably with the growth of the point of tightening of the corridor, and body speed increases border. This is something that can be observed.

Keywords: geometry of artery, pulsatile blood flow, numerous stenosis

Procedia PDF Downloads 99
1771 The Need for Implementing Building Information Modelling (BIM) and Integrated Project Delivery (IPD) in the Construction Project: A Case Study in UAE

Authors: C. W. F. Che Wan Putra, M. Alshawi, M. S. Al Ahbabi, M. Jabakhanji

Abstract:

Much of the waste that is generated throughout the life-cycle of a building is mainly related to project stakeholders not having access to information that others have created. This results in waste and high costs. Over the past decade, however, the industry reacted to these challenges by adopting effective procurement approaches, such as partnering and design and build, to improve collaboration and communication among projects’ stakeholders. Most recently, there is a focus on creating and reusing digital project information of stakeholders throughout the life-cycle to facilitate the exchange of information among partners. This shift is based around BIM (Building Information Modelling) and collaborative environment (IPD). The power of collaborative BIM goes beyond improving efficiency. Sustainability, perhaps the most important challenge for the design and construction community, is at the intersection of BIM and collaborative project delivery, drawing strength from both. Due to these benefits, a research study has been carried out to investigate the need of BIM and IPD, on a large scale construction project which is procured on a traditional approach, i.e. design-bid-build. A qualitative research work including a semi-structured interview with project partners was conducted on a typical project in the UAE, whereby the selected project suffered from severe delays and cost overrun. This paper aims to bring about clear evidence to what most likely to happen to a typical construction project in spite of employing very good consultants, project manager and contractors and how these problems could have been avoided if BIM and IPD were deployed.

Keywords: building information modelling (BIM), integrated project delivery (IPD), collaborative environment, case study

Procedia PDF Downloads 399
1770 A Geographical Study of Vindhyanchal in Mirzapur City, U.P. India

Authors: Akhilendra Nath Tiwary

Abstract:

Vindhyanchal is a very famous pilgrimage and tourism site in the west of Mirzapur city of Uttar Pradesh State in India. The city in east is a commercial center for cotton, metal ware and carpets. Among the Hindu population, it is believed that the primordial creative forces of the GOD and the power of the GODDESS make respective triangles which superimpose opposite to each other as hexagram at a point or node (Bindu (point) +Vasini (located) or Vindhyavasini, located in a point/node). Mirzapur city has served as a natural connecting point between north and south India. Before independence of India from Britain in 1947, it was a flourishing commercial center. Post-independence, the negligence of planning authorities and nexus of bureaucrats and politicians started affecting its development. In the meantime, emergence of new industrial cities as Kanpur, Agra, Moradabad, etc., nearer to the capital city of Delhi, posed serious challenges to the development of this small city as many commercial and business activities along with the skilled workforce started shifting to these new cities or to the relatively bigger neighboring cities of Varanasi in east and Allahabad in west. In the present paper, the significant causes, issues and challenges in development of Vindhyanchal is discussed with geographical perspective. An attempt has been made to find out the ways to restore the lost glory of the city as a center of pilgrimage, tourism, and commerce.

Keywords: cultural node, pilgrimage, sacred, Vindhyan triangle, ommercial centre

Procedia PDF Downloads 443
1769 Influence of Aluminum Content on the Microstructural, Mechanical and Tribological Properties of TiAlN Coatings for Using in Dental and Surgical Instrumentation

Authors: Hernan D. Mejia, Gilberto B. Gaitan, Mauricio A. Franco

Abstract:

420 steel is normally used in the manufacture of dental and surgical instrumentation, as well as parts in the chemical, pharmaceutical, and food industries, among others, where they must withstand heavy loads and often be in contact with corrosive environments, which leads to wear and deterioration of these steels in relatively short times. In the case of medical applications, the instruments made of this steel also suffer wear and corrosion during the repetitive sterilization processes due to the relatively low achievable hardness of just 50 HRC and its hardly acceptable resistance to corrosion. In order to improve the wear resistance of 420 steel, TiAlN coatings were deposited, increasing the aluminum content in the alloy by varying the power applied to the aluminum target of 900, 1100, and 1300 W. Evaluations using XRD, Micro Raman, XPS, AFM, SEM, and TEM showed a columnar growth crystal structure with an average thickness of 2 microns and consisting of the TiN and TiAlN phases, whose roughness and grain size decrease with a higher Al content. The AlN phase also appears in the sample deposited at 1300W. The hardness, determined by nanoindentation, initially increases with the aluminum content from 9.7 GPa to 17.1 GPa, but then decreases to 15.4 GPa for the sample with the highest aluminum content due to the appearance of hexagonal AlN and a decrease of harder TiN and TiAlN phases. It was observed that the wear coefficient had a contrary behavior, which took values of 2.7; 1.7 and 6.6x10⁻⁶ mm³/N.m, respectively. All the coated samples significantly improved the wear resistance of the uncoated 420 steel.

Keywords: hard coatings, magnetron sputtering, TiAlN coatings, surgical instruments, wear resistance

Procedia PDF Downloads 125
1768 Application of NBR 14861: 2011 for the Design of Prestress Hollow Core Slabs Subjected to Shear

Authors: Alessandra Aparecida Vieira França, Adriana de Paula Lacerda Santos, Mauro Lacerda Santos Filho

Abstract:

The purpose of this research i to study the behavior of precast prestressed hollow core slabs subjected to shear. In order to achieve this goal, shear tests were performed using hollow core slabs 26,5cm thick, with and without a concrete cover of 5 cm, without cores filled, with two cores filled and three cores filled with concrete. The tests were performed according to the procedures recommended by FIP (1992), the EN 1168:2005 and following the method presented in Costa (2009). The ultimate shear strength obtained within the tests was compared with the values of theoretical resistant shear calculated in accordance with the codes, which are being used in Brazil, noted: NBR 6118:2003 and NBR 14861:2011. When calculating the shear resistance through the equations presented in NBR 14861:2011, it was found that provision is much more accurate for the calculation of the shear strength of hollow core slabs than the NBR 6118 code. Due to the large difference between the calculated results, even for slabs without cores filled, the authors consulted the committee that drafted the NBR 14861:2011 and found that there is an error in the text of the standard, because the coefficient that is suggested, actually presents the double value than the needed one! The ABNT, later on, soon issued an amendment of NBR 14861:2011 with the necessary corrections. During the tests for the present study, it was confirmed that the concrete filling the cores contributes to increase the shear strength of hollow core slabs. But in case of slabs 26,5 cm thick, the quantity should be limited to a maximum of two cores filled, because most of the results for slabs with three cores filled were smaller. This confirmed the recommendation of NBR 14861:2011which is consistent with standard practice. After analyzing the configuration of cracking and failure mechanisms of hollow core slabs during the shear tests, strut and tie models were developed representing the forces acting on the slab at the moment of rupture. Through these models the authors were able to calculate the tensile stress acting on the concrete ties (ribs) and scaled the geometry of these ties. The conclusions of the research performed are the experiments results have shown that the mechanism of failure of the hollow-core slabs can be predicted using the strut-and-tie procedure, within a good range of accuracy. In addition, the needed of the correction of the Brazilian standard to review the correction factor σcp duplicated (in NBR14861/2011), and the limitation of the number of cores (Holes) to be filled with concrete, to increase the strength of the slab for the shear resistance. It is also suggested the increasing the amount of test results with 26.5 cm thick, and a larger range of thickness slabs, in order to obtain results of shear tests with cores concreted after the release of prestressing force. Another set of shear tests on slabs must be performed in slabs with cores filled and cover concrete reinforced with welded steel mesh for comparison with results of theoretical values calculated by the new revision of the standard NBR 14861:2011.

Keywords: prestressed hollow core slabs, shear, strut, tie models

Procedia PDF Downloads 334
1767 Impact of Displacements Durations and Monetary Costs on the Labour Market within a City Consisting on Four Areas a Theoretical Approach

Authors: Aboulkacem El Mehdi

Abstract:

We develop a theoretical model at the crossroads of labour and urban economics, used for explaining the mechanism through which the duration of home-workplace trips and their monetary costs impact the labour demand and supply in a spatially scattered labour market and how they are impacted by a change in passenger transport infrastructures and services. The spatial disconnection between home and job opportunities is referred to as the spatial mismatch hypothesis (SMH). Its harmful impact on employment has been subject to numerous theoretical propositions. However, all the theoretical models proposed so far are patterned around the American context, which is particular as it is marked by racial discrimination against blacks in the housing and the labour markets. Therefore, it is only natural that most of these models are developed in order to reproduce a steady state characterized by agents carrying out their economic activities in a mono-centric city in which most unskilled jobs being created in the suburbs, far from the Blacks who dwell in the city-centre, generating a high unemployment rates for blacks, while the White population resides in the suburbs and has a low unemployment rate. Our model doesn't rely on any racial discrimination and doesn't aim at reproducing a steady state in which these stylized facts are replicated; it takes the main principle of the SMH -the spatial disconnection between homes and workplaces- as a starting point. One of the innovative aspects of the model consists in dealing with a SMH related issue at an aggregate level. We link the parameters of the passengers transport system to employment in the whole area of a city. We consider here a city that consists of four areas: two of them are residential areas with unemployed workers, the other two host firms looking for labour force. The workers compare the indirect utility of working in each area with the utility of unemployment and choose between submitting an application for the job that generate the highest indirect utility or not submitting. This arbitration takes account of the monetary and the time expenditures generated by the trips between the residency areas and the working areas. Each of these expenditures is clearly and explicitly formulated so that the impact of each of them can be studied separately than the impact of the other. The first findings show that the unemployed workers living in an area benefiting from good transport infrastructures and services have a better chance to prefer activity to unemployment and are more likely to supply a higher 'quantity' of labour than those who live in an area where the transport infrastructures and services are poorer. We also show that the firms located in the most accessible area receive much more applications and are more likely to hire the workers who provide the highest quantity of labour than the firms located in the less accessible area. Currently, we are working on the matching process between firms and job seekers and on how the equilibrium between the labour demand and supply occurs.

Keywords: labour market, passenger transport infrastructure, spatial mismatch hypothesis, urban economics

Procedia PDF Downloads 294
1766 Effect of Geometry on the Aerodynamic Performance of Darrieus H Yype Vertical Axis Wind Turbine

Authors: Belkheir Noura, Rabah Kerfah, Boumehani Abdellah

Abstract:

The influence of solidity variations on the aerodynamic performance of H type vertical axis wind turbine is studied in this paper. The wind turbine model used in this paper is the three-blade wind turbine with the symmetrical airfoil, NACA0021. The length of the chord is 0.265m. Numerical investigations were implemented for the different solidity by changing the radius and blade number. A two-dimensional model of the wind turbine is employed. The approach a Reynolds-Averaged Navier–Stokes equations, completed by the K- ώ SST turbulence model, is used. Motion mesh model capability of a computational fluid dynamics (CFD) solver is used. For each value of the solidity, the aerodynamics performances and the characteristics of the flow field are studied at several values of the tip speed ratio, λ = 0.5 to λ = 3, with an incoming wind speed of 8 m/s. The results show that increasing the number of blades will reduce the maximum value of the power coefficient of the wind turbine. Also, for the VAWT with a lower solidity can obtain the maximum Cp at a high tip speed ratio. The effects of changing the radius and blade number on aerodynamic performance are almost the same. Finally, for the validation, experimental data from the literature and computational results were compared. In conclusion, to study the influence of the solidity in the performances of the wind turbine is to provide the reference for the design of H type vertical axis wind turbines.

Keywords: wind energy, darrieus h type vertical axis wind turbine, computational fluid dynamic, solidity

Procedia PDF Downloads 98
1765 Investigation on Cost Reflective Network Pricing and Modified Cost Reflective Network Pricing Methods for Transmission Service Charges

Authors: K. Iskandar, N. H. Radzi, R. Aziz, M. S. Kamaruddin, M. N. Abdullah, S. A. Jumaat

Abstract:

Nowadays many developing countries have been undergoing a restructuring process in the power electricity industry. This process has involved disaggregating former state-owned monopoly utilities both vertically and horizontally and introduced competition. The restructuring process has been implemented by the Australian National Electricity Market (NEM) started from 13 December 1998, began operating as a wholesale market for supply of electricity to retailers and end-users in Queensland, New South Wales, the Australian Capital Territory, Victoria and South Australia. In this deregulated market, one of the important issues is the transmission pricing. Transmission pricing is a service that recovers existing and new cost of the transmission system. The regulation of the transmission pricing is important in determining whether the transmission service system is economically beneficial to both side of the users and utilities. Therefore, an efficient transmission pricing methodology plays an important role in the Australian NEM. In this paper, the transmission pricing methodologies that have been implemented by the Australian NEM which are the Cost Reflective Network Pricing (CRNP) and Modified Cost Reflective Network Pricing (MCRNP) methods are investigated for allocating the transmission service charges to the transmission users. A case study using 6-bus system is used in order to identify the best method that reflects a fair and equitable transmission service charge.

Keywords: cost-reflective network pricing method, modified cost-reflective network pricing method, restructuring process, transmission pricing

Procedia PDF Downloads 445
1764 World’s Fair (EXPO) Induced Heritage

Authors: Işılay Tiarnagh Sheridan

Abstract:

World EXPO, short version for the “exposition”, is a large universal public exhibition held since 1851. Within the 164 years, it was organized 34 times in 22 cities and as a result it has given birth to its very own culture unlike most of other international events. It has an outstanding power in transforming the places, in which it is held, into trademarks via changes in their urban tissues. For that, it is widely remembered with its cities instead of its countries. Within the scope of this change, some constructions were planned to be temporary, some planned to be permanent and some were thought to be temporary but kept afterwards becoming important monuments such as the Crystal Palace of London (though it was destroyed later by a fire) and the Eiffel Tower of Paris. These examples are the most prominent names upon considering World EXPOs. Yet, there are so many other legacies of these events within modern city fabric today that we don’t usually associate with its Expo history. Some of them are leading figures not only for the housing city but for other cities also, such as the first Metro line of Paris during 1900 World EXPO; some of them are listed as monuments of the cities such as Saint Louis Art Museum of 1904 World EXPO; some of them, like Melbourne Royal Exhibition Building of 1880 World’s EXPO, are among UNESCO World Heritage Sites and some of them are the masterpieces of modern architecture such as the famous Barcelona Pavilion, German pavilion of the 1929 World’s EXPO, of Ludwig Mies van der Rohe. Thus, the aim of this paper is to analyze the history of World’s EXPO and its eventual results in the birth of its own cultural heritage. Upon organizing these results, the paper aims to create a brief list of EXPO heritage monuments and sites so as to form a database for their further conservation needs.

Keywords: expo, heritage, world's fair, legacy

Procedia PDF Downloads 442
1763 Smart Energy Storage: W₁₈O₄₉ NW/Ti₃C₂Tₓ Composite-Enabled All Solid State Flexible Electrochromic Supercapacitors

Authors: Muhammad Hassan, Kemal Celebi

Abstract:

Developing a highly efficient electrochromic energy storage device with sufficient color fluctuation and significant electrochemical performance is highly desirable for practical energy-saving applications. Here, to achieve a highly stable material with a large electrochemical storage capacity, a W₁₈O₄₉ NW/Ti₃C₂Tₓ composite has been fabricated and deposited on a pre-assembled Ag and W₁₈O₄₉ NW conductive network by Langmuir-Blodgett technique. The resulting hybrid electrode composed of 15 layers of W₁₈O₄₉ NW/Ti₃C₂Tₓ exhibits an areal capacitance of 125 mF/cm², with a fast and reversible switching response. An optical modulation of 98.2% can be maintained at a current density of 5 mAcm⁻². Using this electrode, we fabricated a bifunctional symmetric electrochromic supercapacitor device having an energy density of 10.26 μWh/cm² and a power density of 0.605 mW/cm², with high capacity retention and full columbic efficiency over 4000 charge-discharge cycles. Meanwhile, the device displays remarkable electrochromic characteristics, including fast switching time (5 s for coloring and 7 s for bleaching) and a significant coloration efficiency of 116 cm²/C with good optical modulation stability. In addition, the device exhibits remarkable mechanical flexibility and fast switching while being stable over 100 bending cycles, which is promising for real-world applications.

Keywords: MXene, nanowires, supercapacitor, ion diffusion, electrochromic, coloration efficiency

Procedia PDF Downloads 81
1762 Comparison of Cu Nanoparticle Formation and Properties with and without Surrounding Dielectric

Authors: P. Dubcek, B. Pivac, J. Dasovic, V. Janicki, S. Bernstorff

Abstract:

When grown only to nanometric sizes, metallic particles (e.g. Ag, Au and Cu) exhibit specific optical properties caused by the presence of plasmon band. The plasmon band represents collective oscillation of the conduction electrons, and causes a narrow band absorption of light in the visible range. When the nanoparticles are embedded in a dielectric, they also cause modifications of dielectrics optical properties. This can be fine-tuned by tuning the particle size. We investigated Cu nanoparticle growth with and without surrounding dielectric (SiO2 capping layer). The morphology and crystallinity were investigated by GISAXS and GIWAXS, respectively. Samples were produced by high vacuum thermal evaporation of Cu onto monocrystalline silicon substrate held at room temperature, 100°C or 180°C. One series was in situ capped by 10nm SiO2 layer. Additionally, samples were annealed at different temperatures up to 550°C, also in high vacuum. The room temperature deposited samples annealed at lower temperatures exhibit continuous film structure: strong oscillations in the GISAXS intensity are present especially in the capped samples. At higher temperatures enhanced surface dewetting and Cu nanoparticles (nanoislands) formation partially destroy the flatness of the interface. Therefore the particle type of scattering is enhanced, while the film fringes are depleted. However, capping layer hinders particle formation, and continuous film structure is preserved up to higher annealing temperatures (visible as strong and persistent fringes in GISAXS), compared to the non- capped samples. According to GISAXS, lateral particle sizes are reduced at higher temperatures, while particle height is increasing. This is ascribed to close packing of the formed particles at lower temperatures, and GISAXS deduced sizes are partially the result of the particle agglomerate dimensions. Lateral maxima in GISAXS are an indication of good positional correlation, and the particle to particle distance is increased as the particles grow with temperature elevation. This coordination is much stronger in the capped and lower temperature deposited samples. The dewetting is much more vigorous in the non-capped sample, and since nanoparticles are formed in a range of sizes, correlation is receding both with deposition and annealing temperature. Surface topology was checked by atomic force microscopy (AFM). Capped sample's surfaces were smoother and lateral size of the surface features were larger compared to the non-capped samples. Altogether, AFM results suggest somewhat larger particles and wider size distribution, and this can be attributed to the difference in probe size. Finally, the plasmonic effect was monitored by UV-Vis reflectance spectroscopy, and relative weak plasmonic effect could be explained by uncomplete dewetting or partial interconnection of the formed particles.

Keywords: coper, GISAXS, nanoparticles, plasmonics

Procedia PDF Downloads 125
1761 Hair Symbolism and Changing Perspective of Women’s Role in Children’s and Young Adult Literature

Authors: Suchismita Dattagupta

Abstract:

Social rules and guidelines specify how a body should be clothed and how it should look. The social rules have made the body a space for expression, oppression and sexual 'commodification'. Being a malleable aspect of the human body, hair has always been worn in a number of ways and this characteristic of hair has made it an essential vehicle for conveying symbolic meaning. Hair, particularly women’s hair has always been considered to be associated with richness and beauty, apart from being associated with sexual power. Society has always had a preoccupation with hair bordering on obsession and has projected its moral and political supremacy by controlling and influencing how an individual wears their hair. Irrespective of the gender of the individual, society has tried to control an individual’s hair to express its control. However, with time, there has been a marked change in the way hair has been used by the individual. Hair has always been the focus of scholarly studies; not just aesthetically, but also in the cultural and social context. The fascination with hair rises from the fact that it is the only part of the human body that is always on display. Fetishization of hair is common in literature and goes ahead to reveal the character’s social and moral status. Modern authors for children and young adults have turned this concept on its head to point out how characters are breaking away from the mould and establishing their personal, moral and social boundaries. This paper will trace the change in hair symbolism in literature for children and young adults to understand how it has changed over the course of the time and what light it throws on the changing pattern of women’s position in society.

Keywords: gender, hair, social symbols, society, women's role

Procedia PDF Downloads 234
1760 From Ride-Hailing App to Diversified and Sustainable Platform Business Model

Authors: Ridwan Dewayanto Rusli

Abstract:

We show how prisoner's dilemma-type competition problems can be mitigated through rapid platform diversification and ecosystem expansion. We analyze a ride-hailing company in Southeast Asia, Gojek, whose network grew to more than 170 million users comprising consumers, partner drivers, merchants, and complementors within a few years and has already achieved higher contribution margins than ride-hailing peers Uber and Lyft. Its ecosystem integrates ride-hailing, food delivery and logistics, merchant solutions, e-commerce, marketplace and advertising, payments, and fintech offerings. The company continues growing its network of complementors and App developers, expanding content and gaining critical mass in consumer data analytics and advertising. We compare the company's growth and diversification trajectory with those of its main international rivals and peers. The company's rapid growth and future potential are analyzed using Cusumano's (2012) Staying Power and Six Principles, Hax and Wilde's (2003) and Hax's (2010) The Delta Model as well as Santos' (2016) home-market advantages frameworks. The recently announced multi-billion-dollar merger with one of Southeast Asia's largest e-commerce majors lends additional support to the above arguments.

Keywords: ride-hailing, prisoner's dilemma, platform and ecosystem strategy, digital applications, diversification, home market advantages, e-commerce

Procedia PDF Downloads 96
1759 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles

Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil

Abstract:

The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.

Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing

Procedia PDF Downloads 97
1758 Using Autoencoder as Feature Extractor for Malware Detection

Authors: Umm-E-Hani, Faiza Babar, Hanif Durad

Abstract:

Malware-detecting approaches suffer many limitations, due to which all anti-malware solutions have failed to be reliable enough for detecting zero-day malware. Signature-based solutions depend upon the signatures that can be generated only when malware surfaces at least once in the cyber world. Another approach that works by detecting the anomalies caused in the environment can easily be defeated by diligently and intelligently written malware. Solutions that have been trained to observe the behavior for detecting malicious files have failed to cater to the malware capable of detecting the sandboxed or protected environment. Machine learning and deep learning-based approaches greatly suffer in training their models with either an imbalanced dataset or an inadequate number of samples. AI-based anti-malware solutions that have been trained with enough samples targeted a selected feature vector, thus ignoring the input of leftover features in the maliciousness of malware just to cope with the lack of underlying hardware processing power. Our research focuses on producing an anti-malware solution for detecting malicious PE files by circumventing the earlier-mentioned shortcomings. Our proposed framework, which is based on automated feature engineering through autoencoders, trains the model over a fairly large dataset. It focuses on the visual patterns of malware samples to automatically extract the meaningful part of the visual pattern. Our experiment has successfully produced a state-of-the-art accuracy of 99.54 % over test data.

Keywords: malware, auto encoders, automated feature engineering, classification

Procedia PDF Downloads 74
1757 Ferulic Acid-Grafted Chitosan: Thermal Stability and Feasibility as an Antioxidant for Active Biodegradable Packaging Film

Authors: Sarekha Woranuch, Rangrong Yoksan

Abstract:

Active packaging has been developed based on the incorporation of certain additives, in particular antimicrobial and antioxidant agents, into packaging systems to maintain or extend product quality and shelf-life. Ferulic acid is one of the most effective natural phenolic antioxidants, which has been used in food, pharmaceutical and active packaging film applications. However, most phenolic compounds are sensitive to oxygen, light and heat; its activities are thus lost during product formulation and processing. Grafting ferulic acid onto polymer is an alternative to reduce its loss under thermal processes. Therefore, the objectives of the present research were to study the thermal stability of ferulic acid after grafting onto chitosan, and to investigate the possibility of using ferulic acid-grafted chitosan (FA-g-CTS) as an antioxidant for active biodegradable packaging film. FA-g-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperature up to 150 °C followed by blown film extrusion at temperature up to 175 °C. Although incorporating FA-g-CTS with a content of 0.02–0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the films showed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of the film containing FA-g-CTS with a content of 0.04% (w/w) were higher than that of the naked film about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by adding FA-g-CTS with a content of 0.02–0.08% (w/w). The results indicated that FA-g-CTS could be potentially used as an antioxidant for active packaging film.

Keywords: active packaging film, antioxidant activity, chitosan, ferulic acid

Procedia PDF Downloads 505
1756 Comparison of Isokinetic Powers (Flexion and Knee Extension) of Basketball and Football Players (Age 17–20)

Authors: Ugur Senturk, Ibrahım Erdemır, Faruk Guven, Cuma Ece

Abstract:

The objective of this study is to compare flexion and extension movements in knee-joint group by measuring isokinetic knee power of amateur basketball and football players. For this purpose, total 21 players were included, which consist of football players (n=12) and basketball players (n=9), within the age range of 17–20. After receiving the age, length, body weight, vertical jump, and BMI measurements of all subjects, the measurement of lower extremity knee-joint movement (Flexion-Extension) was made with isokinetic dynamometer (isomed 2000) at 60 o/sec. and 240 o/sec. angular velocity. After arrangement and grouping of collected information forms and knee flexion and extension parameters, all data were analyzed with SPSS for Windows. Descriptive analyses of the parameters were made. Non-parametric t test and Mann-Whitney U test were used to compare the parameters of football players and basketball players and to find the inter-group differences. The comparisons and relations in the range p<0.05 and p<0.01 between the groups were surveyed. As a conclusion, no statistical differences were found between isokinetic knee flexion and extension parameters of football and basketball players. However, it was found that the football players were older than the basketball players. In addition to this, the average values of the basketball players in the highest torque and the highest torque average curve were found higher than football players in comparisons of left knee extension. However, it was found that fat levels of the basketball players were found to be higher than the football players.

Keywords: isokinetic contraction, isokinetic dynamometer, peak torque, flexion, extension, football, basketball

Procedia PDF Downloads 531
1755 Bioethical Standards as a Tool for the Improvement of Human Relations Toward Health, Animals, and Plants: The Example of Three Croatian Mediterranean Local Communities

Authors: Toni Buterin, Robert Doričić

Abstract:

Mainstream bioethics, narrowed down mainly to human medicine and research, can hardly be expected to efficiently face modern challenges related to environmental issues. Departing from the interpretation of "European Bioethics" as a discipline considering ethical duties not only toward fellow humans, but to all living beings, this paper presents the results of a study conducted in three communities in Croatian Northern Adriatic region, selected for their recent experience of ecological threats (Labin – thermo-electric power plant; Bakar – cokery), or representing a highly-valuable and vulnerable natural insular pocket (Mali Lošinj – health tourism, dolphin wildlife refuge, fragrant gardens programme, etc.). After targeted workshops and interviews had been organised in those communities, the results of the obtained insights were combined with experts' opinion and a list of around hundred “bioethical standards” was formed. "Bioethical standards" represent a set of principles and measures of the correct attitude of people towards their own health, animals, plants, and the eco-system as a whole. "Bioethical standards" charter might improve the level of local community environmental consciousness, and provide direct guidance for its sustainable development (including its tourism-advertising ace card). The present paper discusses the standards' potential benefits and some implementational risks.

Keywords: bioethical standards, croatia, European bioethics, local communities

Procedia PDF Downloads 151
1754 Modelling and Optimization of Geothermal Energy in the Gulf of Suez

Authors: Amira Abdelhafez, Rufus Brunt

Abstract:

Geothermal energy in Egypt represents a significant untapped renewable resource that can reduce reliance on conventional power generation. Exploiting these geothermal resources depends on depth, temperature range, and geological characteristics. The intracontinental rift setting of the Gulf of Suez (GoS)-Red Sea rift is a favourable tectonic setting for convection-dominated geothermal plays. The geothermal gradient across the GoS ranges from 24.9 to 86.66 °C/km, with a heat flow of 31-127.2 mW/m². Surface expressions of convective heat loss emerge along the gulf flanks as hot springs (e.g., Hammam Faraun) accompanying deeper geothermal resources. These thermal anomalies are driven mainly by the local tectonic configuration. Characterizing the structural framework of major faults and their control on reservoir properties and subsurface hydrothermal fluid circulation is vital for geothermal applications in the gulf. The geothermal play systems of the GoS depend on structural and lithological properties that contribute to heat storage and vertical transport. Potential geothermal reservoirs include the Nubia sandstones, which, due to their thickness, continuity, and contact with hot basement rocks at a mean depth of 3 km, create an extensive reservoir for geothermal fluids. To develop these geothermal resources for energy production, defining the permeability anisotropy of the reservoir due to faults and facies variation is a crucial step in our study, particularly the evaluation of influence on thermal breakthrough and production rates.

Keywords: geothermal, October field, site specific study, reservoir modelling

Procedia PDF Downloads 21
1753 Root Cause Analysis of Excessive Vibration in a Feeder Pump of a Large Thermal Electric Power Plant: A Simulation Approach

Authors: Kavindan Balakrishnan

Abstract:

Root cause Identification of the Vibration phenomenon in a feedwater pumping station was the main objective of this research. First, the mode shapes of the pumping structure were investigated using numerical and analytical methods. Then the flow pressure and streamline distribution in the pump sump were examined using C.F.D. simulation, which was hypothesized can be a cause of vibration in the pumping station. As the problem specification of this research states, the vibration phenomenon in the pumping station, with four parallel pumps operating at the same time and heavy vibration recorded even after several maintenance steps. They also specified that a relatively large amplitude of vibration exited by pumps 1 and 4 while others remain normal. As a result, the focus of this research was on determining the cause of such a mode of vibration in the pump station with the assistance of Finite Element Analysis tools and Analytical methods. Major outcomes were observed in structural behavior which is favorable to the vibration pattern phenomenon in the pumping structure as a result of this research. Behaviors of the numerical and analytical models of the pump structure have similar characteristics in their mode shapes, particularly in their 2nd mode shape, which is considerably related to the exact cause of the research problem statement. Since this study reveals several possible points of flow visualization in the pump sump model that can be a favorable cause of vibration in the system, there is more room for improved investigation on flow conditions relating to pump vibrations.

Keywords: vibration, simulation, analysis, Ansys, Matlab, mode shapes, pressure distribution, structure

Procedia PDF Downloads 126
1752 Continuous-Time Analysis And Performance Assessment For Digital Control Of High-Frequency Switching Synchronous Dc-Dc Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Sakina Zerouali

Abstract:

This paper features a performance analysis and robustness assessment of a digitally controlled DC-DC three-cell buck converter associated in parallel, operating in continuous conduction mode (CCM), facing feeding parameters variation and loads disturbance. The control strategy relies on the continuous-time with an averaged modeling technique for high-frequency switching converter. The methodology is to modulate the complete design procedure, in regard to the existence of an instantaneous current operating point for designing the digital closed-loop, to the same continuous-time domain. Moreover, the adopted approach is to include a digital voltage control (DVC) technique, taking an account for digital control delays and sampling effects, which aims at improving efficiency and dynamic response and preventing generally undesired phenomena. The results obtained under load change, input change, and reference change clearly demonstrates an excellent dynamic response of the proposed technique, also as provide stability in any operating conditions, the effectiveness is fast with a smooth tracking of the specified output voltage. Simulations studies in MATLAB/Simulink environment are performed to verify the concept.

Keywords: continuous conduction mode, digital control, parallel multi-cells converter, performance analysis, power electronics

Procedia PDF Downloads 152
1751 Thermal Stress and Computational Fluid Dynamics Analysis of Coatings for High-Temperature Corrosion

Authors: Ali Kadir, O. Anwar Beg

Abstract:

Thermal barrier coatings are among the most popular methods for providing corrosion protection in high temperature applications including aircraft engine systems, external spacecraft structures, rocket chambers etc. Many different materials are available for such coatings, of which ceramics generally perform the best. Motivated by these applications, the current investigation presents detailed finite element simulations of coating stress analysis for a 3- dimensional, 3-layered model of a test sample representing a typical gas turbine component scenario. Structural steel is selected for the main inner layer, Titanium (Ti) alloy for the middle layer and Silicon Carbide (SiC) for the outermost layer. The model dimensions are 20 mm (width), 10 mm (height) and three 1mm deep layers. ANSYS software is employed to conduct three types of analysis- static structural, thermal stress analysis and also computational fluid dynamic erosion/corrosion analysis (via ANSYS FLUENT). The specified geometry which corresponds to corrosion test samples exactly is discretized using a body-sizing meshing approach, comprising mainly of tetrahedron cells. Refinements were concentrated at the connection points between the layers to shift the focus towards the static effects dissipated between them. A detailed grid independence study is conducted to confirm the accuracy of the selected mesh densities. To recreate gas turbine scenarios; in the stress analysis simulations, static loading and thermal environment conditions of up to 1000 N and 1000 degrees Kelvin are imposed. The default solver was used to set the controls for the simulation with the fixed support being set as one side of the model while subjecting the opposite side to a tabular force of 500 and 1000 Newtons. Equivalent elastic strain, total deformation, equivalent stress and strain energy were computed for all cases. Each analysis was duplicated twice to remove one of the layers each time, to allow testing of the static and thermal effects with each of the coatings. ANSYS FLUENT simulation was conducted to study the effect of corrosion on the model under similar thermal conditions. The momentum and energy equations were solved and the viscous heating option was applied to represent improved thermal physics of heat transfer between the layers of the structures. A Discrete Phase Model (DPM) in ANSYS FLUENT was employed which allows for the injection of continuous uniform air particles onto the model, thereby enabling an option for calculating the corrosion factor caused by hot air injection (particles prescribed 5 m/s velocity and 1273.15 K). Extensive visualization of results is provided. The simulations reveal interesting features associated with coating response to realistic gas turbine loading conditions including significantly different stress concentrations with different coatings.

Keywords: thermal coating, corrosion, ANSYS FEA, CFD

Procedia PDF Downloads 137