Search results for: three-parameter sine curve fitting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1409

Search results for: three-parameter sine curve fitting

749 Rheology and Structural Arrest of Dense Dairy Suspensions: A Soft Matter Approach

Authors: Marjan Javanmard

Abstract:

The rheological properties of dairy products critically depend on the underlying organisation of proteins at multiple length scales. When heated and acidified, milk proteins form particle gel that is viscoelastic, solvent rich, ‘soft’ material. In this work recent developments on the rheology of soft particles suspensions were used to interpret and potentially define the properties of dairy gel structures. It is discovered that at volume fractions below random close packing (RCP), the Maron-Pierce-Quemada (MPQ) model accurately predicts the viscosity of the dairy gel suspensions without fitting parameters; the MPQ model has been shown previously to provide reasonable predictions of the viscosity of hard sphere suspensions from the volume fraction, solvent viscosity and RCP. This surprising finding demonstrates that up to RCP, the dairy gel system behaves as a hard sphere suspension and that the structural aggregates behave as discrete particulates akin to what is observed for microgel suspensions. At effective phase volumes well above RCP, the system is a soft solid. In this region, it is discovered that the storage modulus of the sheared AMG scales with the storage modulus of the set gel. The storage modulus in this regime is reasonably well described as a function of effective phase volume by the Evans and Lips model. Findings of this work has potential to aid in rational design and control of dairy food structure-properties.

Keywords: dairy suspensions, rheology-structure, Maron-Pierce-Quemada Model, Evans and Lips Model

Procedia PDF Downloads 220
748 Management and Evaluation of Developing Medical Device Software in Compliance with Rules

Authors: Arash Sepehri bonab

Abstract:

One of the regions of critical development in medical devices has been the part of the software - as an indispensable component of a therapeutic device, as a standalone device, and more as of late, as applications on portable gadgets. The chance related to a breakdown of the standalone computer program utilized inside healthcare is in itself not a model for its capability or not as a medical device. It is, subsequently, fundamental to clarify a few criteria for the capability of a stand-alone computer program as a medical device. The number of computer program items and therapeutic apps is persistently expanding and so as well is used in wellbeing education (e. g., in clinics and doctors' surgeries) for determination and treatment. Within the last decade, the use of information innovation in healthcare has taken a developing part. In reality, the appropriation of an expanding number of computer devices has driven several benefits related to the method of quiet care and permitted simpler get to social and health care assets. At the same time, this drift gave rise to modern challenges related to the usage of these modern innovations. The program utilized in healthcare can be classified as therapeutic gadgets depending on the way they are utilized and on their useful characteristics. In the event that they are classified as therapeutic gadgets, they must fulfill particular directions. The point of this work is to show a computer program improvement system that can permit the generation of secure and tall, quality restorative gadget computer programs and to highlight the correspondence between each program advancement stage and the fitting standard and/or regulation.

Keywords: medical devices, regulation, software, development, healthcare

Procedia PDF Downloads 108
747 Estimating of Groundwater Recharge Value for Al-Najaf City, Iraq

Authors: Hayder H. Kareem

Abstract:

Groundwater recharge is a crucial parameter for any groundwater management system. The variability of the recharge rates and the difficulty in estimating this factor in many processes by direct observation leads to the complexity of estimating the recharge value. Various methods are existing to estimate the groundwater recharge, with some limitations for each method to be able for application. This paper focuses particularly on a real study area, Al-Najaf City, Iraq. In this city, there are few groundwater aquifers, but the aquifer which is considered in this study is the closest one to the ground surface, the Dibdibba aquifer. According to the Aridity Index, which is estimated in the paper, Al-Najaf City is classified as a region located in an arid climate, and this identified that the most appropriate method to estimate the groundwater recharge is Thornthwaite's formula or Thornthwaite's method. From the calculations, the estimated average groundwater recharge over the period 1980-2014 for Al-Najaf City is 40.32 mm/year. Groundwater recharge is completely affected the groundwater table level (groundwater head). Therefore, to make sure that this value of recharge is true, the MODFLOW program has been used to apply this value through finding the relationship between the calculated and observed heads where a groundwater model for the Al-Najaf City study area has been built by MODFLOW to simulate this area for different purposes, one of these purposes is to simulate the groundwater recharge. MODFLOW results show that this value of groundwater recharge is extremely high and needs to be reduced. Therefore, a further sensitivity test has been carried out for the Al-Najaf City study area by the MODFLOW program through changing the recharge value and found that the best estimation of groundwater recharge value for this city is 16.5 mm/year where this value gives the best fitting between the calculated and observed heads with minimum values of RMSE % (13.175) and RSS m² (1454).

Keywords: Al-Najaf City, groundwater modelling, recharge estimation, visual MODFLOW

Procedia PDF Downloads 135
746 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model

Authors: Nureni O. Adeboye, Dawud A. Agunbiade

Abstract:

This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.

Keywords: audit fee lagrange multiplier test, heteroscedasticity, lagrange multiplier test, Monte-Carlo scheme, periodicity

Procedia PDF Downloads 142
745 Decomposition of the Discount Function Into Impatience and Uncertainty Aversion. How Neurofinance Can Help to Understand Behavioral Anomalies

Authors: Roberta Martino, Viviana Ventre

Abstract:

Intertemporal choices are choices under conditions of uncertainty in which the consequences are distributed over time. The Discounted Utility Model is the essential reference for describing the individual in the context of intertemporal choice. The model is based on the idea that the individual selects the alternative with the highest utility, which is calculated by multiplying the cardinal utility of the outcome, as if the reception were instantaneous, by the discount function that determines a decrease in the utility value according to how the actual reception of the outcome is far away from the moment the choice is made. Initially, the discount function was assumed to have an exponential trend, whose decrease over time is constant, in line with a profile of a rational investor described by classical economics. Instead, empirical evidence called for the formulation of alternative, hyperbolic models that better represented the actual actions of the investor. Attitudes that do not comply with the principles of classical rationality are termed anomalous, i.e., difficult to rationalize and describe through normative models. The development of behavioral finance, which describes investor behavior through cognitive psychology, has shown that deviations from rationality are due to the limited rationality condition of human beings. What this means is that when a choice is made in a very difficult and information-rich environment, the brain does a compromise job between the cognitive effort required and the selection of an alternative. Moreover, the evaluation and selection phase of the alternative, the collection and processing of information, are dynamics conditioned by systematic distortions of the decision-making process that are the behavioral biases involving the individual's emotional and cognitive system. In this paper we present an original decomposition of the discount function to investigate the psychological principles of hyperbolic discounting. It is possible to decompose the curve into two components: the first component is responsible for the smaller decrease in the outcome as time increases and is related to the individual's impatience; the second component relates to the change in the direction of the tangent vector to the curve and indicates how much the individual perceives the indeterminacy of the future indicating his or her aversion to uncertainty. This decomposition allows interesting conclusions to be drawn with respect to the concept of impatience and the emotional drives involved in decision-making. The contribution that neuroscience can make to decision theory and inter-temporal choice theory is vast as it would allow the description of the decision-making process as the relationship between the individual's emotional and cognitive factors. Neurofinance is a discipline that uses a multidisciplinary approach to investigate how the brain influences decision-making. Indeed, considering that the decision-making process is linked to the activity of the prefrontal cortex and amygdala, neurofinance can help determine the extent to which abnormal attitudes respect the principles of rationality.

Keywords: impatience, intertemporal choice, neurofinance, rationality, uncertainty

Procedia PDF Downloads 130
744 Groundwater Recharge Suitability Mapping Using Analytical Hierarchy Process Based-Approach

Authors: Aziza Barrek, Mohamed Haythem Msaddek, Ismail Chenini

Abstract:

Excessive groundwater pumping due to the increasing water demand, especially in the agricultural sector, causes groundwater scarcity. Groundwater recharge is the most important process that contributes to the water's durability. This paper is based on the Analytic Hierarchy Process multicriteria analysis to establish a groundwater recharge susceptibility map. To delineate aquifer suitability for groundwater recharge, eight parameters were used: soil type, land cover, drainage density, lithology, NDVI, slope, transmissivity, and rainfall. The impact of each factor was weighted. This method was applied to the El Fahs plain shallow aquifer. Results suggest that 37% of the aquifer area has very good and good recharge suitability. The results have been validated by the Receiver Operating Characteristics curve. The accuracy of the prediction obtained was 89.3%.

Keywords: AHP, El Fahs aquifer, empirical formula, groundwater recharge zone, remote sensing, semi-arid region

Procedia PDF Downloads 123
743 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging

Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi

Abstract:

Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.

Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA

Procedia PDF Downloads 281
742 Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic

Authors: Nasser Mohamed Ramli, Mohamad Syafiq Mohamad

Abstract:

Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of differential equations into S-function using MATLAB. The reactor model and S-function are developed using m.file. After developing the S-function of CSTR model, User-Defined functions are used to link to SIMULINK file. Results that are obtained from simulation and temperature control were better when using Fuzzy logic control compared to PID control.

Keywords: CSTR, temperature, PID, fuzzy logic

Procedia PDF Downloads 460
741 Quick Covering Machine for Grain Drying Pavement

Authors: Fatima S. Rodriguez, Victorino T. Taylan, Manolito C. Bulaong, Helen F. Gavino, Vitaliana U. Malamug

Abstract:

In sundrying, the quality of the grains are greatly reduced when paddy grains were caught by the rain unsacked and unstored resulting to reduced profit. The objectives of this study were to design and fabricate a quick covering machine for grain drying pavement to test and evaluate the operating characteristics of the machine according to its deployment speed, recovery speed, deployment time, recovery time, power consumption, aesthetics of laminated sack, conducting partial budget, and cost curve analysis. The machine was able to cover the grains in a 12.8 m x 22.5 m grain drying pavement at an average time of 17.13 s. It consumed 0 .53 W-hr for the deployment and recovery of the cover. The machine entailed an investment cost of $1,344.40 and an annual cost charge of $647.32. Moreover, the savings per year using the quick covering machine was $101.83.

Keywords: quick, covering machine, grain, drying pavement

Procedia PDF Downloads 375
740 Biogas Separation, Alcohol Amine Solutions

Authors: Jingxiao Liang, David Rooneyman

Abstract:

Biogas, which is a valuable renewable energy source, can be produced by anaerobic fermentation of agricultural waste, manure, municipal waste, plant material, sewage, green waste, or food waste. It is composed of methane (CH4) and carbon dioxide (CO2) but also contains significant quantities of undesirable compounds such as hydrogen sulfide (H2S), ammonia (NH3), and siloxanes. Since typical raw biogas contains 25–45% CO2, The requirements for biogas quality depend on its further application. Before biogas is being used more efficiently, CO2 should be removed. One of the existing options for biogas separation technologies is based on chemical absorbents, in particular, mono-, di- and tri-alcohol amine solutions. Such amine solutions have been applied as highly efficient CO2 capturing agents. The benchmark in this experiment is N-methyldiethanolamine (MDEA) with piperazine (PZ) as an activator, from CO2 absorption Isotherm curve, optimization conditions are collected, such as activator percentage, temperature etc. This experiment makes new alcohol amines, which could have the same CO2 absorbing ability as activated MDEA, using glycidol as one of reactant, the result is quite satisfying.

Keywords: biogas, CO2, MDEA, separation

Procedia PDF Downloads 636
739 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 28
738 Soil Macronutrients Sensing for Precision Agriculture Purpose Using Fourier Transform Infrared Spectroscopy

Authors: Hossein Navid, Maryam Adeli Khadem, Shahin Oustan, Mahmoud Zareie

Abstract:

Among the nutrients needed by the plants, three elements containing nitrate, phosphorus and potassium are more important. The objective of this research was measuring these nutrient amounts in soil using Fourier transform infrared spectroscopy in range of 400- 4000 cm-1. Soil samples for different soil types (sandy, clay and loam) were collected from different areas of East Azerbaijan. Three types of fertilizers in conventional farming (urea, triple superphosphate, potassium sulphate) were used for soil treatment. Each specimen was divided into two categories: The first group was used in the laboratory (direct measurement) to extract nitrate, phosphorus and potassium uptake by colorimetric method of Olsen and ammonium acetate. The second group was used to measure drug absorption spectrometry. In spectrometry, the small amount of soil samples mixed with KBr and was taken in a small pill form. For the tests, the pills were put in the center of infrared spectrometer and graphs were obtained. Analysis of data was done using MINITAB and PLSR software. The data obtained from spectrometry method were compared with amount of soil nutrients obtained from direct drug absorption using EXCEL software. There were good fitting between these two data series. For nitrate, phosphorus and potassium R2 was 79.5%, 92.0% and 81.9%, respectively. Also, results showed that the range of MIR (mid-infrared) is appropriate for determine the amount of soil nitrate and potassium and can be used in future research to obtain detailed maps of land in agricultural use.

Keywords: nitrate, phosphorus, potassium, soil nutrients, spectroscopy

Procedia PDF Downloads 403
737 Dy³+/Eu³+ Co-Activated Gadolinium Aluminate Borate Phosphor: Enhanced Luminescence and Color Output Tuning

Authors: Osama Madkhali

Abstract:

GdAl₃(BO₃)₄ phosphors, incorporating Dy³+ and Dy³+/Eu³+ activators, were successfully synthesized via the gel combustion method. Powder X-ray diffraction (XRD) was utilized to ascertain phase purity and assess the impact of dopant concentration on the crystallographic structure. Photoluminescence (PL) measurements revealed that luminescence properties' intensity and lifetime varied with Dy³+ and Eu³+ ion concentrations. The relationship between luminescence intensity and doping concentration was explored in the context of the energy transfer process between Eu³+ and Dy³+ ions. An increase in Eu³+ co-doping concentrations resulted in a decrease in luminescence lifetime. Energy transfer efficiency was significantly enhanced from 26% to 84% with Eu³+ co-doping, as evidenced by decay curve analysis. These findings position GdAl₃(BO₃)4: Dy³+, Eu³+ phosphors as promising candidates for LED applications in solid-state lighting and displays.

Keywords: GdAl₃(BO₃)₄ phosphors, Dy³+/Eu³+ co-doping, photoluminescence (PL) measurements, luminescence properties, LED applications, solid-state lighting

Procedia PDF Downloads 56
736 Using Multi-Level Analysis to Identify Future Trends in Small Device Digital Communication Examinations

Authors: Mark A. Spooner

Abstract:

The growth of technological advances in the digital communications industry has dictated the way forensic examination laboratories receive, analyze, and report on digital evidence. This study looks at the trends in a medium sized digital forensics lab that examines small communications devices (i.e., cellular telephones, tablets, thumb drives, etc.) over the past five years. As law enforcement and homeland security organizations budgets shrink, many agencies are being asked to perform more examinations with less resources available. Using multi-level statistical analysis using five years of examination data, this research shows the increasing technological demand trend. The research then extrapolates the current data into the model created and finds a continued exponential growth curve of said demands is well within the parameters defined earlier on in the research.

Keywords: digital forensics, forensic examination, small device, trends

Procedia PDF Downloads 199
735 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance

Authors: Xiaoyong He

Abstract:

The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.

Keywords: graphene, metamaterials, terahertz, tunable

Procedia PDF Downloads 345
734 Non-Linear Static Pushover Analysis of 15 Storied Reinforced Concrete Building Structure with Shear Wall

Authors: Hamid Nikzad, Shinta Yoshitomi

Abstract:

In this paper, nonlinear static pushover analysis is performed on 15 storied RC building structure with a shear wall to evaluate the seismic performance of the building. Section sizes of the members are obtained based on structural optimization method utilizing MATLAB frame optimizer, then the structure is simulated and designed in ETABS program conforming ACI 318-14 design code. The pushover curve has been generated by pushing the top node of the structure to the limited target displacement. Members failure due to the formation of plastic hinges, considering shear wall-frame structure was observed and the result of this study is presented based on current regulation of FEMA356, ASCE7-10, and ACI 318-14 design criteria

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures

Procedia PDF Downloads 162
733 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels

Authors: Tal Remez, Or Litany, Alex Bronstein

Abstract:

The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.

Keywords: binary pixels, maximum likelihood, neural networks, sparse coding

Procedia PDF Downloads 204
732 Determination of Effect Factor for Effective Parameter on Saccharification of Lignocellulosic Material by Concentrated Acid

Authors: Sina Aghili, Ali Arasteh Nodeh

Abstract:

Tamarisk usage as a new group of lignocelluloses material to produce fermentable sugars in bio-ethanol process was studied. The overall aim of this work was to establish the optimum condition for acid hydrolysis of this new material and a mathematical model predicting glucose release as a function of operation variable. Sulfuric acid concentration in the range of 20 to 60%(w/w), process temperature between 60 to 95oC, hydrolysis time from 120 to 240 min and solid content 5,10,15%(w/w) were used as hydrolysis conditions. HPLC was used to analysis of the product. This analysis indicated that glucose was the main fermentable sugar and was increased with time, temperature and solid content and acid concentration was a parabola influence in glucose production.The process was modeled by a quadratic equation. Curve study and model were found that 42% acid concentration, 15 % solid content and 90oC were in optimum condition.

Keywords: fermentable sugar, saccharification, wood, hydrolysis

Procedia PDF Downloads 335
731 Parametric Analysis of Water Lily Shaped Split Ring Resonator Loaded Fractal Monopole Antenna for Multiband Applications

Authors: C. Elavarasi, T. Shanmuganantham

Abstract:

A coplanar waveguide (CPW) feed is presented, and comprising a split ring resonator (SRR) loaded fractal with water lily shape is used for multi band applications. The impedance matching of the antenna is determined by the number of Koch curve fractal unit cells. The antenna is designed on a FR4 substrate with a permittivity of εr = 4.4 and size of 14 x 16 x 1.6 mm3 to generate multi resonant mode at 3.8 GHz covering S band, 8.68 GHz at X band, 13.96 GHz at Ku band, and 19.74 GHz at K band with reflection coefficient better than -10 dB. Simulation results show that the antenna exhibits the desired voltage standing wave ratio (VSWR) level and radiation patterns across the wide frequency range. The fundamental parameters of the antenna such as return loss, VSWR, good radiation pattern with reasonable gain across the operating bands are obtained.

Keywords: fractal, metamaterial, split ring resonator, waterlily shape

Procedia PDF Downloads 275
730 Design and Biomechanical Analysis of a Transtibial Prosthesis for Cyclists of the Colombian Team Paralympic

Authors: Jhonnatan Eduardo Zamudio Palacios, Oscar Leonardo Mosquera Dussan, Daniel Guzman Perez, Daniel Alfonso Botero Rosas, Oscar Fabian Rubiano Espinosa, Jose Antonio Garcia Torres, Ivan Dario Chavarro, Ivan Ramiro Rodriguez Camacho, Jaime Orlando Rodriguez

Abstract:

The training of cilsitas with some type of disability finds in the technological development an indispensable ally, generating every day advances to contribute to the quality of life allowing to maximize the capacities of the athletes. The performance of a cyclist depends on physiological and biomechanical factors, such as aerodynamic profile, bicycle measurements, connecting rod length, pedaling systems, type of competition, among others. This study particularly focuses on the description of the dynamic model of a transtibial prosthesis for Paralympic cyclists. To make the model, two points are chosen: in the radius centers of rotation of the plate and pinion of the track bicycle. The parametric scheme of the track bike represents a model of 6 degrees of freedom due to the displacement in X - Y of each of the reference points of the angles of the curve profile β, cant of the velodrome α and the angle of rotation of the connecting rod φ. The force exerted on the crank of the bicycle varies according to the angles of the curve profile β, the velodrome cant of α and the angle of rotation of the crank φ. The behavior is analyzed through the Matlab R2015a software. The average strength that a cyclist exerts on the cranks of a bicycle is 1,607.1 N, the Paralympic cyclist must perform a force on each crank about 803.6 N. Once the maximum force associated with the movement has been determined, it is continued to the dynamic modeling of the transtibial prosthesis that represents a model of 6 degrees of freedom with displacement in X - Y in relation to the angles of rotation of the hip π, knee γ and ankle λ. Subsequently, an analysis of the kinematic behavior of the prosthesis was carried out by means of SolidWorks 2017 and Matlab R2015a, which was used to model and analyze the variation of the hip angles π, knee γ and ankle of the λ prosthesis. The reaction forces generated in the prosthesis were performed on the ankle of the prosthesis, performing the summation of forces on the X and Y axes. The same analysis was then applied to the tibia of the prosthesis and the socket. The reaction force of the parts of the prosthesis varies according to the hip angles π, knee γ and ankle of the prosthesis λ. Therefore, it can be deduced that the maximum forces experienced by the ankle of the prosthesis is 933.6 N on the X axis and 2.160.5 N on the Y axis. Finally, it is calculated that the maximum forces experienced by the tibia and the socket of the transtibial prosthesis in high performance competitions is 3.266 N on the X axis and 1.357 N on the Y axis. In conclusion, it can be said that the performance of the cyclist depends on several physiological factors, linked to biomechanics of training. The influence of biomechanical factors such as aerodynamics, bicycle measurements, connecting rod length, or non-circular pedaling systems on the cyclist performance.

Keywords: biomechanics, dynamic model, paralympic cyclist, transtibial prosthesis

Procedia PDF Downloads 344
729 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 264
728 Electrical Performance Analysis of Single Junction Amorphous Silicon Solar (a-Si:H) Modules Using IV Tracer (PVPM)

Authors: Gilbert Omorodion Osayemwenre, Edson Meyer, R. T. Taziwa

Abstract:

The electrical analysis of single junction amorphous silicon solar modules is carried out using outdoor monitoring technique. Like crystalline silicon PV modules, the electrical characterisation and performance of single junction amorphous silicon modules are best described by its current-voltage (IV) characteristic. However, IV curve has a direct dependence on the type of PV technology and material properties used. The analysis reveals discrepancies in the modules performance parameter even though they are of similar technology. The aim of this work is to compare the electrical performance output of each module, using electrical parameters with the aid of PVPM 100040C IV tracer. These results demonstrated the relevance of standardising the performance parameter for effective degradation analysis of a-Si:H.

Keywords: PVPM 100040C IV tracer, SolarWatt part, single junction amorphous silicon module (a-Si:H), Staebler-Wronski (S-W) degradation effect

Procedia PDF Downloads 321
727 Numerical Investigation of Flow and Heat Transfer Characteristics of a Natural Refrigerant within a Vortex Tube

Authors: Mirza Popovac

Abstract:

This paper investigates the application of the vortex tubes towards increasing the efficiency of high temperature heat pumps based on natural refrigerants, by recovering a part of the expansion work within the refrigerant cycle. To this purpose the 3D Navier-Stokes solver is used to perform a set of numerical simulations, investigating the vortex tube performance. Firstly, the fluid flow and heat transfer characteristics are analyzed for standard configurations of vortex tubes, and the obtained results are validated against the experimental and numerical data available in literature. Subsequently, different geometry specifications are analyzed, as well as the interplay between relevant heat pump operating conditions and the properties of natural refrigerants. Finally, the characteristic curve of performance will be derived for investigated vortex tubes specifications when used within high temperature heat pumps.

Keywords: heat pump, vortex tube, CFD, natural refrigerant

Procedia PDF Downloads 142
726 An Assessment of Different Blade Tip Timing (BTT) Algorithms Using an Experimentally Validated Finite Element Model Simulator

Authors: Mohamed Mohamed, Philip Bonello, Peter Russhard

Abstract:

Blade Tip Timing (BTT) is a technology concerned with the estimation of both frequency and amplitude of rotating blades. A BTT system comprises two main parts: (a) the arrival time measurement system, and (b) the analysis algorithms. Simulators play an important role in the development of the analysis algorithms since they generate blade tip displacement data from the simulated blade vibration under controlled conditions. This enables an assessment of the performance of the different algorithms with respect to their ability to accurately reproduce the original simulated vibration. Such an assessment is usually not possible with real engine data since there is no practical alternative to BTT for blade vibration measurement. Most simulators used in the literature are based on a simple spring-mass-damper model to determine the vibration. In this work, a more realistic experimentally validated simulator based on the Finite Element (FE) model of a bladed disc (blisk) is first presented. It is then used to generate the necessary data for the assessment of different BTT algorithms. The FE modelling is validated using both a hammer test and two firewire cameras for the mode shapes. A number of autoregressive methods, fitting methods and state-of-the-art inverse methods (i.e. Russhard) are compared. All methods are compared with respect to both synchronous and asynchronous excitations with both single and simultaneous frequencies. The study assesses the applicability of each method for different conditions of vibration, amount of sampling data, and testing facilities, according to its performance and efficiency under these conditions.

Keywords: blade tip timing, blisk, finite element, vibration measurement

Procedia PDF Downloads 312
725 Electrochemical Studies of Si, Si-Ge- and Ge-Air Batteries

Authors: R. C. Sharma, Rishabh Bansal, Prajwal Menon, Manoj K. Sharma

Abstract:

Silicon-air battery is highly promising for electric vehicles due to its high theoretical energy density (8470 Whkg⁻¹) and its discharge products are non-toxic. For the first time, pure silicon and germanium powders are used as anode material. Nickel wire meshes embedded with charcoal and manganese dioxide powder as cathode and concentrated potassium hydroxide is used as electrolyte. Voltage-time curves have been presented in this study for pure silicon and germanium powder and 5% and 10% germanium with silicon powder. Silicon powder cell assembly gives a stable voltage of 0.88 V for ~20 minutes while Si-Ge provides cell voltage of 0.80-0.76 V for ~10-12 minutes, and pure germanium cell provides cell voltage 0.80-0.76 V for ~30 minutes. The cell voltage is higher for concentrated (10%) sodium hydroxide solution (1.08 V) and it is stable for ~40 minutes. A sharp decrease in cell voltage beyond 40 min may be due to rapid corrosion.

Keywords: Silicon-air battery, Germanium-air battery, voltage-time curve, open circuit voltage, Anodic corrosion

Procedia PDF Downloads 238
724 Mathematical Model for Progressive Phase Distribution of Ku-band Reflectarray Antennas

Authors: M. Y. Ismail, M. Inam, A. F. M. Zain, N. Misran

Abstract:

Progressive phase distribution is an important consideration in reflect array antenna design which is required to form a planar wave in front of the reflect array aperture. This paper presents a detailed mathematical model in order to determine the required reflection phase values from individual element of a reflect array designed in Ku-band frequency range. The proposed technique of obtaining reflection phase can be applied for any geometrical design of elements and is independent of number of array elements. Moreover the model also deals with the solution of reflect array antenna design with both centre and off-set feed configurations. The theoretical modeling has also been implemented for reflect arrays constructed on 0.508 mm thickness of different dielectric substrates. The results show an increase in the slope of the phase curve from 4.61°/mm to 22.35°/mm by varying the material properties.

Keywords: mathematical modeling, progressive phase distribution, reflect array antenna, reflection phase

Procedia PDF Downloads 383
723 A Theoretical Overview of Thermoluminescence

Authors: Sadhana Agrawal, Tarkeshwari Verma, Shmbhavi Katyayan

Abstract:

The magnificently accentuating phenomenon of luminescence has gathered a lot of attentions from last few decades. Probably defined as the one involving emission of light from certain kinds of substances on absorbing various energies in the form of external stimulus, the phenomenon claims a versatile pertinence. First observed and reported in an extract of Ligrium Nephriticum by Monards, the phenomenon involves turning of crystal clear water into colorful fluid when comes in contact with the special wood. In words of Sir G.G. Stokes, the phenomenon actually involves three different techniques – absorption, excitation and emission. With variance in external stimulus, the corresponding luminescence phenomenon is obtained. Here, this paper gives a concise discussion of thermoluminescence which is one of the types of luminescence obtained when the external stimulus is given in form of heat energy. A deep insight of thermoluminescence put forward a qualitative analysis of various parameters such as glow curves peaks, trap depth, frequency factors and order of kinetics.

Keywords: frequency factor, glow curve peaks, thermoluminescence, trap depth

Procedia PDF Downloads 399
722 Efficient Internal Generator Based on Random Selection of an Elliptic Curve

Authors: Mustapha Benssalah, Mustapha Djeddou, Karim Drouiche

Abstract:

The random number generation (RNG) presents a significant importance for the security and the privacy of numerous applications, such as RFID technology and smart cards. Since, the quality of the generated bit sequences is paramount that a weak internal generator for example, can directly cause the entire application to be insecure, and thus it makes no sense to employ strong algorithms for the application. In this paper, we propose a new pseudo random number generator (PRNG), suitable for cryptosystems ECC-based, constructed by randomly selecting points from several elliptic curves randomly selected. The main contribution of this work is the increasing of the generator internal states by extending the set of its output realizations to several curves auto-selected. The quality and the statistical characteristics of the proposed PRNG are validated using the Chi-square goodness of fit test and the empirical Special Publication 800-22 statistical test suite issued by NIST.

Keywords: PRNG, security, cryptosystem, ECC

Procedia PDF Downloads 445
721 Chemical Fingerprinting of Complex Samples With the Aid of Parallel Outlet Flow Chromatography

Authors: Xavier A. Conlan

Abstract:

Speed of analysis is a significant limitation to current high-performance liquid chromatography/mass spectrometry (HPLC/MS) and ultra-high-pressure liquid chromatography (UHPLC)/MS systems both of which are used in many forensic investigations. The flow rate limitations of MS detection require a compromise in the chromatographic flow rate, which in turn reduces throughput, and when using modern columns, a reduction in separation efficiency. Commonly, this restriction is combated through the post-column splitting of flow prior to entry into the mass spectrometer. However, this results in a loss of sensitivity and a loss in efficiency due to the post-extra column dead volume. A new chromatographic column format known as 'parallel segmented flow' involves the splitting of eluent flow within the column outlet end fitting, and in this study we present its application in order to interrogate the provenience of methamphetamine samples with mass spectrometry detection. Using parallel segmented flow, column flow rates as high as 3 mL/min were employed in the analysis of amino acids without post-column splitting to the mass spectrometer. Furthermore, when parallel segmented flow chromatography columns were employed, the sensitivity was more than twice that of conventional systems with post-column splitting when the same volume of mobile phase was passed through the detector. These finding suggest that this type of column technology will particularly enhance the capabilities of modern LC/MS enabling both high-throughput and sensitive mass spectral detection.

Keywords: chromatography, mass spectrometry methamphetamine, parallel segmented outlet flow column, forensic sciences

Procedia PDF Downloads 492
720 Predictors of Non-Alcoholic Fatty Liver Disease in Egyptian Obese Adolescents

Authors: Moushira Zaki, Wafaa Ezzat, Yasser Elhosary, Omnia Saleh

Abstract:

Nonalcoholic fatty liver disease (NAFLD) has increased in conjunction with obesity. The accuracy of risk factors for detecting NAFLD in obese adolescents has not undergone a formal evaluation. The aim of this study was to evaluate predictors of NAFLD among Egyptian female obese adolescents. The study included 162 obese female adolescents. All were subjected to anthropometry, biochemical analysis and abdominal ultrasongraphic assessment. Metabolic syndrome (MS) was diagnosed according to the IDF criteria. Significant association between presence of MS and NAFLD was observed. Obese adolescents with NAFLD had significantly higher levels of ALT, triglycerides, fasting glucose, insulin, blood pressure and HOMA-IR, whereas decreased HDL-C levels as compared with obese cases without NAFLD. Receiver–operating characteristic (ROC) curve analysis shows that ALT is a sensitive predictor for NAFLD, confirming that ALT can be used as a marker of NAFLD.

Keywords: obesity, NAFLD, predictors, adolescents, Egyptians, risk factors, prevalence

Procedia PDF Downloads 390