Search results for: sustainable structural design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18964

Search results for: sustainable structural design

18304 The Effect of Nutrition Education on Adherence to the Mediterranean Diet and Sustainable Healthy Eating Behaviors in University Students

Authors: Tuba Tekin, Nurcan Baglam, Emine Dincer

Abstract:

This study aimed to examine the effects of nutrition education received by university students on sustainable healthy eating behaviors and adherence to the Mediterranean diet. The 2nd, 3rd, and 4th-grade university students studying at the Faculty of Health Sciences, Nutrition and Dietetics, Midwifery, Nursing, Physical Therapy, and Rehabilitation departments of universities in Turkey were included in the study. Students' adherence to the Mediterranean diet was evaluated using the Mediterranean Diet Adherence Scale, and their sustainable and healthy eating behaviors were evaluated using the Sustainable and Healthy Eating Behaviors Scale. In addition, the body weight and height of the students were measured by the researchers, and the Body Mass Index (BMI) value was calculated. A total of 181 students, 85 of whom were studying in the Department of Nutrition and Dietetics and 96 of whom were educated in other departments, were included in the study. 75.7% of the students in the sample are female, while 24.3% are male. The average body weight of the students was 61.17±10.87 kg, and the average BMI was 22.04±3.40 kg/m2. While the mean score of the Mediterranean Diet Adherence Scale was 6.72±1.84, in the evaluation of adherence to the Mediterranean diet, it was determined that 25.4% of the students had poor adherence and 66.9% needed improvement. When the adherence scores of students who received and did not receive nutrition education were compared, it was discovered that the students who received nutrition education had a higher score (p<0.05). Students who received nutrition education had a higher total score on the Sustainable and Healthy Eating Behaviors scale (p<0.05). A moderately positive correlation was found between the Sustainable and Healthy Eating Behaviors scale total score and the Mediterranean Diet Adherence scores (p<0.05). As a result of the linear regression analysis, it was revealed that a 1-unit increase in the Mediterranean diet adherence score would result in a 1.3-point increase in the total score of the Sustainable and Healthy Eating Behaviors scale. Sustainable and healthy diets are important for improving and developing health and the prevention of diseases. The Mediterranean diet is defined as a sustainable diet model. The findings revealed the relationship between the Mediterranean diet and sustainable nutrition and showed that nutrition education increased knowledge and awareness about sustainable nutrition and increased adherence to the Mediterranean diet. For this reason, courses or seminars on sustainable nutrition can be organized during educational periods.

Keywords: healthy eating, Mediterranean diet, nutrition education, sustainable nutrition

Procedia PDF Downloads 72
18303 Research on the Landscape Reconstruction of Old Industrial Plant Area from the Perspective of Communication Studies

Authors: Minghao Liu

Abstract:

This paper uses the theory of communication in the context of mass communication, from the construction of communication symbols, communication flow organization, communication experience perception of the three levels of the old industrial factory landscape transformation research and analysis, summarizes the old industrial factory landscape in the communication process to create strategies and design methods for the old industrial factories carried by the urban culture of how to enter the public's life more widely in the existing environment and be familiar with the significance of the exploration, to provide a new idea for the renewal of the urban stock, and ultimately to achieve the sustainable development of the city.

Keywords: communication, old industrial factor, urban renewal, landscape design

Procedia PDF Downloads 79
18302 Exploring the Dualistic Nature of Design: Integrative Perspectives and Methodological Approaches in Design Research

Authors: Joni Agung Sudarmanto

Abstract:

The concept of design has historically been elusive and characterized by its fluidity, leading to divergent viewpoints on its fundamental nature. Guy Julier views design as inherent in material culture, while Sanders sees it as a collective endeavor focusing on the outcome. Design's dualistic nature, procedural and outcome-oriented, spans various domains, including objects, individuals, and the environment. This comprehensive view of design challenges the notion that design practice is distinct from research, highlighting their shared exploratory nature. The article explores methodological techniques in design research and the three prevalent approaches: "into design," "through design," and "for design." The contradictory meanings of design arise from its etymology and its duality as both process and result, leading to its integrative nature across objects, humans, and the environment. The parallels between design and research activities, underscoring their exploratory and knowledge-generating nature, are situated within creative research, challenging the perception of design practice as separate from research endeavors. The "into design" approach encourages interdisciplinary collaboration, enriching design research with diverse perspectives. The "through design" approach bridges theory and practice, producing more practical outcomes. The "for design" approach supports specific design solutions, providing designers with valuable guidance.

Keywords: dualistic nature of design, integrative perspectives, methodological approaches, design research

Procedia PDF Downloads 64
18301 Climate Adaptive Building Shells for Plus-Energy-Buildings, Designed on Bionic Principles

Authors: Andreas Hammer

Abstract:

Six peculiar architecture designs from the Frankfurt University will be discussed within this paper and their future potential of the adaptable and solar thin-film sheets implemented facades will be shown acting and reacting on climate/solar changes of their specific sites. The different aspects, as well as limitations with regard to technical and functional restrictions, will be named. The design process for a “multi-purpose building”, a “high-rise building refurbishment” and a “biker’s lodge” on the river Rheine valley, has been critically outlined and developed step by step from an international studentship towards an overall energy strategy, that firstly had to push the design to a plus-energy building and secondly had to incorporate bionic aspects into the building skins design. Both main parameters needed to be reviewed and refined during the whole design process. Various basic bionic approaches have been given [e.g. solar ivyᵀᴹ, flectofinᵀᴹ or hygroskinᵀᴹ, which were to experiment with, regarding the use of bendable photovoltaic thin film elements being parts of a hybrid, kinetic façade system.

Keywords: bionic and bioclimatic design, climate adaptive building shells [CABS], energy-strategy, harvesting façade, high-efficiency building skin, photovoltaic in building skins, plus-energy-buildings, solar gain, sustainable building concept

Procedia PDF Downloads 419
18300 Regularities of Changes in the Fractal Dimension of Acoustic Emission Signals in the Stages Close to the Destruction of Structural Materials When Exposed to Low-Cycle Loaded

Authors: Phyo Wai Aung, Sysoev Oleg Evgenevich, Boris Necolavet Maryin

Abstract:

The article deals with theoretical problems of correlation of processes of microstructure changes of structural materials under cyclic loading and acoustic emission. The ways of the evolution of a microstructure under the influence of cyclic loading are shown depending on the structure of the initial crystal structure of the material. The spectra of the frequency characteristics of acoustic emission signals are experimentally obtained when testing titanium samples for cyclic loads. Changes in the fractal dimension of the acoustic emission signals in the selected frequency bands during the evolution of the microstructure of structural materials from the action of cyclic loads, as well as in the destruction of samples, are studied. The experimental samples were made of VT-20 structural material widely used in aircraft and rocket engineering. The article shows the striving of structural materials for synergistic stability and reduction of the fractal dimension of acoustic emission signals, in accordance with the degradation of the microstructure, which occurs as a result of fatigue processes from the action of low cycle loads. As a result of the research, the frequency range of acoustic emission signals of 100-270 kHz is determined, in which the fractal dimension of the signals, it is possible to most reliably predict the durability of structural materials.

Keywords: cyclic loadings, material structure changing, acoustic emission, fractal dimension

Procedia PDF Downloads 252
18299 Healthy and Smart Building Projects

Authors: Ali A. Karakhan

Abstract:

Stakeholders in the architecture, engineering, and construction (AEC) industry have been always searching for strategies to develop, design, and construct healthy and smart building projects. Healthy and smart building projects require that the building process including design and construction be altered and carefully implemented in order to bring about sustainable outcomes throughout the facility lifecycle. Healthy and smart building projects are expected to positively influence organizational success and facility performance across the project lifecycle leading to superior outcomes in terms of people, economy, and the environment. The present study aims to identify potential strategies that AEC organizations can implement to achieve healthy and smart building projects. Drivers and barriers for healthy and smart building features are also examined. The study findings indicate that there are three strategies to advance the development of healthy and smart building projects: (1) the incorporation of high-quality products and low chemical-emitting materials, (2) the integration of innovative designs, methods, and practices, and (3) the adoption of smart technology throughout the facility lifecycle. Satisfying external demands, achievement of a third-party certification, obtaining financial incentives, and a desire to fulfill professional duty are identified as the key drivers for developing healthy and smart building features; whereas, lack of knowledge and training, time/cost constrains, preference for/adherence to customary practices, and unclear business case for why healthy buildings are advantageous are recognized as the primary barriers toward a wider diffusion of healthy and smart building projects. The present study grounded in previous engineering, medical, and public health research provides valuable technical and practical recommendations for facility owners and industry professionals interested in pursuing sustainable, yet healthy and smart building projects.

Keywords: healthy buildings, smart construction, innovative designs, sustainable projects

Procedia PDF Downloads 149
18298 The Importance of Adopting Sustainable Practices in Power Projects

Authors: Sikander Ali Abbassi, Wazir Muhmmad Laghari, Bashir Ahmed Laghari

Abstract:

Attaining sustainable development is one of the greatest challenges facing Pakistan today. A challenge that can only be met by developing and deploying confidence among the people. Transparency in project activities at all stages and other measures will also enhance its social and economic growth. Adopting sustainable practices and sensible policies, we mean that project activity should be economically viable, socially acceptable and environment friendly. In order to achieve this objective, there must be a continued commitment to encourage and ensure the public participation in development of power projects. Since Pakistan is an energy deficient country, it has to initiate power projects on a large scale in the near future. Therefore, it is the need of the hour to tackle these projects in a sustainable way, so that it can be benefited to the maximum possible level and have the least adverse effects on people and the environment. In order to get desirable results, careful planning, efficient implementation, standardized operational practices and community participation are the key parameters which ensure the positive impacts on economy, prosperity and the well being of our people. This paper pinpoints the potential environmental hazards due to project activity and emphasizes to adopt sustainable approaches in power projects.

Keywords: environmental hazards, sustainable practices, environment friendly, power projects

Procedia PDF Downloads 375
18297 Evaluation of Earthquake Induced Cost for Mid-Rise Buildings

Authors: Gulsah Olgun, Ozgur Bozdag, Yildirim Ertutar

Abstract:

This paper mainly focuses on performance assessment of buildings by associating the damage level with the damage cost. For this purpose a methodology is explained and applied to the representative mid-rise concrete building residing in Izmir. In order to consider uncertainties in occurrence of earthquakes, the structural analyses are conducted for all possible earthquakes in the region through the hazard curve. By means of the analyses, probability of the structural response being in different limit states are obtained and used to calculate expected damage cost. The expected damage cost comprises diverse cost components related to earthquake such as cost of casualties, replacement or repair cost of building etc. In this study, inter-story drift is used as an effective response variable to associate expected damage cost with different damage levels. The structural analysis methods performed to obtain inter story drifts are response spectrum method as a linear one, accurate push-over and time history methods to demonstrate the nonlinear effects on loss estimation. Comparison of the results indicates that each method provides similar values of expected damage cost. To sum up, this paper explains an approach which enables to minimize the expected damage cost of buildings and relate performance level to damage cost.

Keywords: expected damage cost, limit states, loss estimation, performance based design

Procedia PDF Downloads 259
18296 Using Shape Memory Alloys for Structural Engineering Applications

Authors: Donatello Cardone

Abstract:

Shape memory alloys (SMAs) have great potential for use in the field of civil engineering. The author of this manuscript has been involved, since 1996, in several experimental and theoretical studies on the application of SMAs in structural engineering, within national and international research projects. This paper provides an overview of the main results achieved, including the conceptual design, implementation, and testing of different SMA-based devices, namely: (i) energy-dissipating braces for RC buildings, (ii) seismic isolation devices for buildings and bridges, (iii) smart tie-rods for arches and vaults and (iv) seismic restrainers for bridges. The main advantages of using SMA-based devices in the seismic protection of structures derive from the double-flag shape of their hysteresis loops, which implies three favourable features, i.e., self-centering capability, good energy dissipation capability, and high stiffness for small displacements. The main advantages of SMA-based units for steel tie-rods are associated with the thermal behaviour of superelastic SMAs, which is antagonistic compared to that of steel. This implies a strong reduction of force changes due to air temperature variations. Finally, SMA-based seismic restrainers proved to be effective in preventing bridge deck unseating and pounding.

Keywords: seismic protection of structures, shape memory alloys, structural engineering, steel tie-rods, seismic restrainers for bridges

Procedia PDF Downloads 91
18295 Breaking Stress Criterion that Changes Everything We Know About Materials Failure

Authors: Ali Nour El Hajj

Abstract:

Background: The perennial deficiencies of the failure models in the materials field have profoundly and significantly impacted all associated technical fields that depend on accurate failure predictions. Many preeminent and well-known scientists from an earlier era of groundbreaking discoveries attempted to solve the issue of material failure. However, a thorough understanding of material failure has been frustratingly elusive. Objective: The heart of this study is the presentation of a methodology that identifies a newly derived one-parameter criterion as the only general failure theory for noncompressible, homogeneous, and isotropic materials subjected to multiaxial states of stress and various boundary conditions, providing the solution to this longstanding problem. This theory is the counterpart and companion piece to the theory of elasticity and is in a formalism that is suitable for broad application. Methods: Utilizing advanced finite-element analysis, the maximum internal breaking stress corresponding to the maximum applied external force is identified as a unified and universal material failure criterion for determining the structural capacity of any system, regardless of its geometry or architecture. Results: A comparison between the proposed criterion and methodology against design codes reveals that current provisions may underestimate the structural capacity by 2.17 times or overestimate the capacity by 2.096 times. It also shows that existing standards may underestimate the structural capacity by 1.4 times or overestimate the capacity by 2.49 times. Conclusion: The proposed failure criterion and methodology will pave the way for a new era in designing unconventional structural systems composed of unconventional materials.

Keywords: failure criteria, strength theory, failure mechanics, materials mechanics, rock mechanics, concrete strength, finite-element analysis, mechanical engineering, aeronautical engineering, civil engineering

Procedia PDF Downloads 72
18294 Optimization of Reinforced Concrete Buildings According to the Algerian Seismic Code

Authors: Nesreddine Djafar Henni, Nassim Djedoui, Rachid Chebili

Abstract:

Recent decades have witnessed significant efforts being made to optimize different types of structures and components. The concept of cost optimization in reinforced concrete structures, which aims at minimizing financial resources while ensuring maximum building safety, comprises multiple materials, and the objective function for their optimal design is derived from the construction cost of the steel as well as concrete that significantly contribute to the overall weight of reinforced concrete (RC) structures. To achieve this objective, this work has been devoted to optimizing the structural design of 3D RC frame buildings which integrates, for the first time, the Algerian regulations. Three different test examples were investigated to assess the efficiency of our work in optimizing RC frame buildings. The hybrid GWOPSO algorithm is used, and 30000 generations are made. The cost of the building is reduced by iteration each time. Concrete and reinforcement bars are used in the building cost. As a result, the cost of a reinforced concrete structure is reduced by 30% compared with the initial design. This result means that the 3D cost-design optimization of the framed structure is successfully achieved.

Keywords: optimization, automation, API, Malab, RC structures

Procedia PDF Downloads 39
18293 Floor Response Spectra of RC Frames: Influence of the Infills on the Seismic Demand on Non-Structural Components

Authors: Gianni Blasi, Daniele Perrone, Maria Antonietta Aiello

Abstract:

The seismic vulnerability of non-structural components is nowadays recognized to be a key issue in performance-based earthquake engineering. Recent loss estimation studies, as well as the damage observed during past earthquakes, evidenced how non-structural damage represents the highest rate of economic loss in a building and can be in many cases crucial in a life-safety view during the post-earthquake emergency. The procedures developed to evaluate the seismic demand on non-structural components have been constantly improved and recent studies demonstrated how the existing formulations provided by main Standards generally ignore features which have a sensible influence on the definition of the seismic acceleration/displacements subjecting non-structural components. Since the influence of the infills on the dynamic behaviour of RC structures has already been evidenced by many authors, it is worth to be noted that the evaluation of the seismic demand on non-structural components should consider the presence of the infills as well as their mechanical properties. This study focuses on the evaluation of time-history floor acceleration in RC buildings; which is a useful mean to perform seismic vulnerability analyses of non-structural components through the well-known cascade method. Dynamic analyses are performed on an 8-storey RC frame, taking into account the presence of the infills; the influence of the elastic modulus of the panel on the results is investigated as well as the presence of openings. Floor accelerations obtained from the analyses are used to evaluate the floor response spectra, in order to define the demand on non-structural components depending on the properties of the infills. Finally, the results are compared with formulations provided by main International Standards, in order to assess the accuracy and eventually define the improvements required according to the results of the present research work.

Keywords: floor spectra, infilled RC frames, non-structural components, seismic demand

Procedia PDF Downloads 319
18292 Design of Semi-Autonomous Street Cleaning Vehicle

Authors: Khouloud Safa Azoud, Süleyman Baştürk

Abstract:

In the pursuit of cleaner and more sustainable urban environments, advanced technologies play a critical role in evolving sanitation systems. This paper presents two distinct advancements in automated cleaning machines designed to improve urban sanitation. The first advancement is a semi-automatic road surface cleaning machine that integrates human labor with solar energy to enhance environmental sustainability and adaptability, especially in regions with limited access to electricity. By reducing carbon emissions and increasing operational efficiency, this approach offers significant potential for urban sanitation enhancement. The second advancement is a multifunctional semi-automatic street cleaning machine equipped with a camera, Arduino programming, and GPS for an autonomous operation aimed at addressing cost barriers in developing countries. Prioritizing low energy consumption and cost-effectiveness, this machine provides versatile cleaning solutions adaptable to various environmental conditions. By integrating solar energy with autonomous operating systems and careful design, these developments represent substantial progress in sustainable urban sanitation, particularly in developing regions.

Keywords: automated cleaning machines, solar energy integration, operational efficiency, urban sanitation systems

Procedia PDF Downloads 7
18291 Structural Health Monitoring of Buildings and Infrastructure

Authors: Mojtaba Valinejadshoubi, Ashutosh Bagchi, Osama Moselhi

Abstract:

Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating.

Keywords: structural health monitoring, natural frequency, modal analysis, finite element model updating

Procedia PDF Downloads 330
18290 Local and Global Sustainability: the Case-Study of Beja Municipality Local Agenda 21 Operationalization Challenges

Authors: Maria Inês Faria, João Miguel Simão

Abstract:

Frequently, the Sustainable Development paradigm is considered the contemporary societies flag and is has been assuming different nuances on local and global dialogues. This reveals the ambivalent character associated to its implementation due, namely, to the kind of synergies that political institutions, social organizations and citizenry can actually create. The Sustainable Development concept needs further discussion so that it can be useful in decision-making processes. In fact, the polysemic nature of this concept has consistently undermined its credibility leading, among other factors, to the talk and action gap, as well as to misappropriations of this notion. The present study focuses on the importance in questioning the sustainable development operationalization, "To walk the talk", and intends, in a broad sense, identify prospects and the elements of sustainability that are included in strategic plans (global, national and local) and, in the strict sense, confront discourse and practice in the context of local public policies for sustainable development, in particular with regard to the implementation of Local Agenda 21 in the municipality of Beja (Portugal) in order to analyze at what extent the strategies adopted and implemented are aligned with the paradigm of sustainable development. The method is based on critical analysis of literature and official documentation, using three complementary approaches: a) exploratory review of literature in order to identify publications on sustainability and sustainable development; b) this second approach complements the first, focused on the official documentation for the adoption and implementation of sustainable development, which is produced in the global plan, regional, national and local levels; c) and the approach which is focused on official documentation that expresses the policy options, the strategic lines and actions for sustainable development implementation Beja´s Municipality. The main results of this study highlight the type of alignment of the Beja´s Municipality sustainable policies, concerning the officially stipulated for the promotion of sustainable development on the international agenda, stressing the potentialities, constraints and challenges of Agenda 21 Local implementation.

Keywords: sustainable development, Local Agenda 21, sustainable local public policies, Beja

Procedia PDF Downloads 269
18289 725 Arcadia Street in Pretoria: A Pretoria Case Study Focusing on Urban Acupuncture

Authors: Konrad Steyn, Jacques Laubscher

Abstract:

South African urban design solutions are mostly aligned with European and North American models that are often not appropriate in addressing some of this country’s challenges such as multiculturalism and decaying urban areas. Sustainable urban redevelopment in South Africa should be comprehensive in nature, sensitive in its manifestation, and should be robust and inclusive in order to achieve social relevance. This paper argues that the success of an urban design intervention is largely dependent on the public’s perceptions and expectations, and the way people participate in shaping their environments. The concept of sustainable urbanism is thus more comprehensive than – yet should undoubtedly include – methods of construction, material usage and climate control principles. The case study is a central element of this research paper. 725 Arcadia Street in Pretoria, was originally commissioned as a food market structure. A starkly contrasting existing modernist adjacent building forms the morphological background. Built in 1969, it is a valuable part of Pretoria’s modernist fabric. It was realised early on that the project should not be a mere localised architectural intervention, but rather an occasion to revitalise the neighbourhood through urban regeneration. Because of the complex and comprehensive nature of the site and rich cultural diversity of the area, a multi-faceted approach seemed the most appropriate response. The methodology for collating data consisted of a combination of literature reviews (regarding the historic original fauna and flora and current plants, observation (frequent site visits) and physical surveying on the neighbourhood level (physical location, connectivity to surrounding landmarks as well as movement systems and pedestrian flows). This was followed by an exploratory design phase, culminating in the present redevelopment proposal. Since built environment interventions are increasingly based on generalised normative guidelines, an approach focusing of urban acupuncture could serve as an alternative. Celebrating the specific urban condition, urban acupuncture offers an opportunity to influence the surrounding urban fabric and achieve urban renewal through physical, social and cultural mediation.

Keywords: neighbourhood, urban renewal, South African urban design solutions, sustainable urban redevelopment

Procedia PDF Downloads 479
18288 Role of Music Education as a Pillar in Sustainable Development of India

Authors: Rohit Rutka

Abstract:

The aim of the present paper is to reveal the importance of music as an indispensable aspect in education of art, with regard to every single culture which serves as indisputable support to sustainable development in India. Indian system of education is one of the oldest systems of the world. Both secular and sacred education was handed over systematically by formalizing the system of education. We have found significant growth in the system of education in our country since ancient times. It is a veritable avenue which enables societies to transmit music and musical skills from one generation to the upcoming ones. The research is based on a comprehensive literature review on the impact of music to sustainable development. This paper contextualized that music education is imperative to Sustainable Development, to the adult. It is a vital force of self-expression, communication and empowerment economically, in growing children, involvement in music education will promote their creative ability, thereby contribute to the full development of intellectual capacities, apt emotional development that gives the right values and feelings to various events and happenings, music helps to develop skills, innate and instinctive talent in human being and recommend that the informal music teaching should be incorporated into school system so as to transmit and preserve the cultural music and that the study of music should be made compulsory at all levels of the Indian educational system.

Keywords: sustainable development, music education, culture, music as a pillar to sustainable development

Procedia PDF Downloads 340
18287 Smart Architecture and Sustainability in the Built Environment for the Hatay Refugee Camp

Authors: Ali Mohammed Ali Lmbash

Abstract:

The global refugee crisis points to the vital need for sustainable and resistant solutions to different kinds of problems for displaced persons all over the world. Among the myriads of sustainable concerns, however, there are diverse considerations including energy consumption, waste management, water access, and resiliency of structures. Our research aims to develop distinct ideas for sustainable architecture given the exigent problems in disaster-threatened areas starting with the Hatay Refugee camp in Turkey where the majority of the camp dwellers are Syrian refugees. Commencing community-based participatory research which focuses on the socio-environmental issues of displaced populations, this study will apply two approaches with a specific focus on the Hatay region. The initial experiment uses Richter's predictive model and simulations to forecast earthquake outcomes in refugee campers. The result could be useful in implementing architectural design tactics that enhance structural reliability and ensure the security and safety of shelters through earthquakes. In the second experiment a model is generated which helps us in predicting the quality of the existing water sources and since we understand how greatly water is vital for the well-being of humans, we do it. This research aims to enable camp administrators to employ forward-looking practices while managing water resources and thus minimizing health risks as well as building resilience of the refugees in the Hatay area. On the other side, this research assesses other sustainability problems of Hatay Refugee Camp as well. As energy consumption becomes the major issue, housing developers are required to consider energy-efficient designs as well as feasible integration of renewable energy technologies to minimize the environmental impact and improve the long-term sustainability of housing projects. Waste management is given special attention in this case by imposing recycling initiatives and waste reduction measures to reduce the pace of environmental degradation in the camp's land area. As well, study gives an insight into the social and economic reality of the camp, investigating the contribution of initiatives such as urban agriculture or vocational training to the enhancement of livelihood and community empowerment. In a similar fashion, this study combines the latest research with practical experience in order to contribute to the continuing discussion on sustainable architecture during disaster relief, providing recommendations and info that can be adapted on every scale worldwide. Through collaborative efforts and a dedicated sustainability approach, we can jointly get to the root of the cause and work towards a far more robust and equitable society.

Keywords: smart architecture, Hatay Camp, sustainability, machine learning.

Procedia PDF Downloads 34
18286 Generativism in Language Design and Their Effects on String of Constructions

Authors: Christian Uchechukwu Gilbert

Abstract:

Generativism in language design investigates the framework on which varying sentence structures are built in the English language. Propounded by Noam Chomsky in 1965, the theory transforms sentences from an active structure to a passive one by the application of established rules of the theory. Resident in the body of syntax, the rules include movement, insertion, substitution, and deletion rules. Using the movement rule, the analysis is armed with the qualitative research method, on which the works of scholars were duly consulted for more insight and in line with the academic practice in research activities. The investigation showed that the rules of competent grammar explain the formulation of sentences in a language and how transformation takes place among sentences from a deep structure to a surface structure with accurate results. The structural differences that could be got through dative movement and the deletion of the preposition; passivisation got from an active sentence by the insertion of the preposition “by” a “be verb” and the aspect tense marker “–en”, held as the creative aspect of language vocabulary and the subject-auxiliary inversion that exchanges the auxiliary of a sentence with the subject of the same sentence thereby transforming a kennel sentence to a polar question, viewed as an external argument under θ-theory. Generativism in language design, therefore, changes available types of sentences and relates one form of linguistic category with others in language design.

Keywords: language, generate, transformation, structure, design

Procedia PDF Downloads 44
18285 Feasibility of Building Structure Due to Decreased Concrete Quality of School Building in Banda Aceh City 19 Years after Tsunami

Authors: Rifqi Irvansyah, Abdullah Abdullah, Yunita Idris, Bunga Raihanda

Abstract:

Banda Aceh is particularly susceptible to heightened vulnerability during natural disasters due to its concentrated exposure to multi-hazard risks. Despite urgent priorities during the aftermath of natural disasters, such as the 2004 Indian Ocean earthquake and tsunami, several public facilities, including school buildings, sustained damage yet continued operations without adequate repairs, even though they were submerged by the tsunami. This research aims to evaluate the consequences of column damage induced by tsunami inundation on the structural integrity of buildings. The investigation employs interaction diagrams for columns to assess their capacity, taking into account factors such as rebar deterioration and corrosion. The analysis result shows that one-fourth of the K1 columns on the first floor fall outside of the column interaction diagram, indicating that the column structure cannot handle the load above it, as evidenced by the presence of Pu and Mu, which are greater than the column's design strength. This suggests that the five columns of K1 should be cause for concern, as the column's capacity is decreasing. These results indicate that the structure of the building cannot sustain the applied load because the column cross-section has deteriorated. In contrast, all K2 columns meet the design strength, indicating that the column structure can withstand the structural loads.

Keywords: tsunami inundation, column damage, column interaction diagram, mitigation effort

Procedia PDF Downloads 58
18284 Vibration Energy Harvesting from Aircraft Structure Using Piezoelectric Transduction

Authors: M. Saifudin Ahmed Atique, Santosh Paudyal, Caixia Yang

Abstract:

In an aircraft, a great portion of energy is wasted due to its inflight structural vibration. Structural components vibrate due to aeroelastic instabilities, gust perturbations and engine rotation at very high rpm. Energy losses due to mechanical vibration can be utilized by harvesting energy from aircraft structure as electrical energy. This harvested energy can be stored in battery panels built into aircraft fuselage and can be used to power inflight auxiliary accessories i.e., lighting and entertainment systems. Moreover, this power can be used for wireless Structural Health Monitoring System (SHM) for aircraft and as an excellent replacement of aircraft Ground Power Unit (GPU)/Auxiliary Power Unit (APU) during passenger onboard time to power aircraft cabin accessories to reduce aircraft ground operation cost significantly. In this paper, we propose the design of a noble aircraft wing in which Piezoelectric panels placed under the composite skin of aircraft wing will generate electrical charges from any inflight aerodynamics or mechanical vibration and store it into battery to power auxiliary inflight systems/accessories as per requirement. Experimental results show that a well-engineered piezoelectric energy harvester based aircraft wing can produce adequate energy to support in-flight lighting and auxiliary cabin accessories.

Keywords: vibration energy, aircraft wing, piezoelectric material, inflight accessories

Procedia PDF Downloads 148
18283 Quality Assurance in Software Design Patterns

Authors: Rabbia Tariq, Hannan Sajjad, Mehreen Sirshar

Abstract:

Design patterns are widely used to make the process of development easier as they greatly help the developers to develop the software. Different design patterns have been introduced till now but the behavior of same design pattern may differ in different domains that can lead to the wrong selection of the design pattern. The paper aims to discover the design patterns that suits best with respect to their domain thereby helping the developers to choose an effective design pattern. It presents the comprehensive analysis of design patterns based on different methodologies that include simulation, case study and comparison of various algorithms. Due to the difference of the domain the methodology used in one domain may be inapplicable to the other domain. The paper draws a conclusion based on strength and limitation of each design pattern in their respective domain.

Keywords: design patterns, evaluation, quality assurance, software domains

Procedia PDF Downloads 509
18282 Conceptual Understanding for the Adoption of Energy Assessment Methods in the United Arab Emirates Built Environment

Authors: Amna I. Shibeika, Batoul Y. Hittini, Tasneem B. Abd Bakri

Abstract:

Regulation and integration of public policy, economy, insurance industry, education, and construction stakeholders are the main contributors to achieve sustainable development. Building environmental assessment methods were introduced in the field to address issues such as global warming and conservation of natural resources. In the UAE, Estidama framework with its associated Pearl Building Rating System (PBRS) has been introduced in 2010 to address and spread sustainability practices within the country’s fast-growing built environment. Based on literature review of relevant studies investigating different project characteristics that influence sustainability outcomes, this paper presents a conceptual framework for understanding the adoption of PBRS in UAE projects. The framework also draws on Diffusion of Innovations theory to address the questions of how the assessment method is chosen in the first place and what is the impact of PBRS on the multi-disciplinary design and construction processes. The study highlights the mandatory nature of the adoption of PBRS for government buildings as well as imbedding Estidama principles within Abu Dhabi building codes as key factors for raising awareness about sustainable practices. Moreover, several project-related elements are addressed to understand their relationship with the adoption process, including project team collaboration; communication and coordination; levels of commitment and engagement; and the involvement of key actors as sustainability champions. This conceptualization of the adoption of PBRS in UAE projects contributes to the growing literature on the adoption of energy assessment tools and addresses the UAE vision is to be at the forefront of innovative sustainable development by 2021.

Keywords: adoption, building assessment, design management, innovation, sustainability

Procedia PDF Downloads 139
18281 Numerical Study of Leisure Home Chassis under Various Loads by Using Finite Element Analysis

Authors: Asem Alhnity, Nicholas Pickett

Abstract:

The leisure home industry is experiencing an increase in sales due to the rise in popularity of staycations. However, there is also a demand for improvements in thermal and structural behaviour from customers. Existing standards and codes of practice outline the requirements for leisure home design. However, there is a lack of expertise in applying Finite Element Analysis (FEA) to complex structures in this industry. As a result, manufacturers rely on standardized design approaches, which often lead to excessively engineered or inadequately designed products. This study aims to address this issue by investigating the impact of the habitation structure on chassis performance in leisure homes. The aim of this research is to comprehensively analyse the impact of the habitation structure on chassis performance in leisure homes. By employing FEA on the entire unit, including both the habitation structure and the chassis, this study seeks to develop a novel framework for designing and analysing leisure homes. The objectives include material reduction, enhancing structural stability, resolving existing design issues, and developing innovative modular and wooden chassis designs. The methodology used in this research is quantitative in nature. The study utilizes FEA to analyse the performance of leisure home chassis under various loads. The analysis procedures involve running the FEA simulations on the numerical model of the leisure home chassis. Different load scenarios are applied to assess the stress and deflection performance of the chassis under various conditions. FEA is a numerical method that allows for accurate analysis of complex systems. The research utilizes flexible mesh sizing to calculate small deflections around doors and windows, with large meshes used for macro deflections. This approach aims to minimize run-time while providing meaningful stresses and deflections. Moreover, it aims to investigate the limitations and drawbacks of the popular approach of applying FEA only to the chassis and replacing the habitation structure with a distributed load. The findings of this study indicate that the popular approach of applying FEA only to the chassis and replacing the habitation structure with a distributed load overlooks the strengthening generated from the habitation structure. By employing FEA on the entire unit, it is possible to optimize stress and deflection performance while achieving material reduction and enhanced structural stability. The study also introduces innovative modular and wooden chassis designs, which show promising weight reduction compared to the existing heavily fabricated lattice chassis. In conclusion, this research provides valuable insights into the impact of the habitation structure on chassis performance in leisure homes. By employing FEA on the entire unit, the study demonstrates the importance of considering the strengthening generated from the habitation structure in chassis design. The research findings contribute to advancements in material reduction, structural stability, and overall performance optimization. The novel framework developed in this study promotes sustainability, cost-efficiency, and innovation in leisure home design.

Keywords: static homes, caravans, motor homes, holiday homes, finite element analysis (FEA)

Procedia PDF Downloads 87
18280 Reducing the Urban Heat Island Effect by Urban Design Strategies: Case Study of Aksaray Square in Istanbul

Authors: Busra Ekinci

Abstract:

Urban heat island term becomes one of the most important problem in urban areas as a reflection of global warming in local scale last years. Many communities and governments are taking action to reduce heat island effects on urban areas where the half of the world's population live today. At this point, urban design turned out to be an important practice and research area for providing an environmentally sensitive urban development. In this study, mitigating strategies of urban heat island effects by urban design are investigated in Aksaray Square and surroundings in Istanbul. Aksaray is an important historical and commercial center of Istanbul, which has an increasing density due to be the node of urban transportation. Also, Istanbul Metropolitan Municipality prepared an urban design project to respond the needs of growing population in the area for 2018. The purpose of the study is emphasizing the importance of urban design objectives and strategies that are developed to reduce the heat island effects on urban areas. Depending on this, the urban heat island effect of the area was examined based on the albedo (reflectivity) parameter which is the most effective parameter in the formation of the heat island effect in urban areas. Albedo values were calculated by Albedo Viewer web application model that was developed by Energy and Environmental Engineering Department of Kyushu University in Japan. Albedo parameter had examined for the present situation and the planned situation with urban design project. The results show that, the current area has urban heat island potential. With the Aksaray Square Project, the heat island effect on the area can be reduced, but would not be completely prevented. Therefore, urban design strategies had been developed to reduce the island effect in addition to the urban design project of the area. This study proves that urban design objectives and strategies are quite effective to reduce the heat island effects, which negatively affect the social environment and quality of life in urban areas.

Keywords: Albedo, urban design, urban heat island, sustainable design

Procedia PDF Downloads 569
18279 A Comprehensive Overview of Solar and Vertical Axis Wind Turbine Integration Micro-Grid

Authors: Adnan Kedir Jarso, Mesfin Megra Rorisa, Haftom Gebreslassie Gebregwergis, Frie Ayalew Yimam, Seada Hussen Adem

Abstract:

A microgrid is a small-scale power grid that can operate independently or in conjunction with the main power grid. It is a promising solution for providing reliable and sustainable energy to remote areas. The integration of solar and vertical axis wind turbines (VAWTs) in a microgrid can provide a stable and efficient source of renewable energy. This paper provides a comprehensive overview of the integration of solar and VAWTs in a microgrid. The paper discusses the design, operation, and control of a microgrid that integrates solar and VAWTs. The paper also examines the performance of the microgrid in terms of efficiency, reliability, and cost-effectiveness. The paper highlights the advantages and disadvantages of using solar and VAWTs in a microgrid. The paper concludes that the integration of solar and VAWTs in a microgrid is a promising solution for providing reliable and sustainable energy to remote areas. The paper recommends further research to optimize the design and operation of a microgrid that integrates solar and VAWTs. The paper also recommends the development of policies and regulations that promote the use of microgrids that integrate solar and VAWTs. In conclusion, the integration of solar and VAWTs in a microgrid is a promising solution for providing reliable and sustainable energy to remote areas. The paper provides a comprehensive overview of the integration of solar and VAWTs in a microgrid and highlights the advantages and disadvantages of using solar and VAWTs in a microgrid. The paper recommends further research and the development of policies and regulations that promote the use of microgrids that integrate solar and VAWTs.

Keywords: hybrid generation, intermittent power, optimization, photovoltaic, vertical axis wind turbine

Procedia PDF Downloads 81
18278 Advancing Sustainable Futures: A Study on Low Carbon Ventures

Authors: Gaurav Kumar Sinha

Abstract:

As the world grapples with climate challenges, this study highlights the instrumental role of AWS services in amplifying the impact of LCVs. Their ability to harness the cloud, data analytics, and scalable infrastructure offered by AWS empowers LCVs to innovate, scale, and drive meaningful change in the quest for a sustainable future. This study serves as a rallying cry, urging stakeholders to recognize, embrace, and maximize the potential of AWS-powered solutions in advancing sustainable and resilient global initiatives.

Keywords: low carbon ventures, sustainability solutions, AWS services, data analytics

Procedia PDF Downloads 59
18277 Design and Analysis of Formula One Car Halo

Authors: Indira priyadarshini, B. Tulja Lal, K. Anusha, P. Sai Varun

Abstract:

Formula One cars are the fastest road course racing cars in the world, owing to very high cornering speeds achieved through the generation of large amounts of aerodynamic downforce. The main intentions and goals of this paper are to reduce the accidents and improving the safety without affecting the visibility of the driver by redesigning Halo that was developed by Mercedes in conjunction with the FIA to deflect flying debris, such as a loose wheel, away from a driver’s head while the hinged locking mechanism can quickly be removed for easy access. Halo design has been modified in order to reduce the weight without affecting the aerodynamics of the car. CFD simulation is carried out to observe the flow over the Halo. The velocity profile and pressure contours were analyzed. Halo is designed using SOLIDWORKS Furthermore, using the software ANSYS FLUENT 3D simulation of the airflow contour around the Halo in order to make changes in the geometry to improve the design by reducing air resistance and improving aerodynamics. According to our assumption, new 3D Halo model has better aerodynamic properties in order to analyse possible improvements compared to the initial design. Structural analysis is also done by using ANSYS by making an F1 tire colliding with Halo at 225 kmph in order to know the deflections in the structure.

Keywords: aerodynamics, Halo, safety, visibility

Procedia PDF Downloads 356
18276 Urban Sustainability and Sustainable Mobility, Lessons Learned from the Case of Chile

Authors: Jorge Urrutia-Mosquera, Luz Flórez-Calderón, Yasna Cortés

Abstract:

We assessed the state of progress in terms of urban sustainability indicators and studied the impact of current land use conditions and the level of spatial accessibility to basic urban amenities on travel patterns and sustainable mobility in Santiago de Chile. We determined the spatial impact of urban facilities on sustainable travel patterns through the statistical analysis, data visualisation, and weighted regression models. The results show a need to diversify land use in more than 60% of the communes, although in 85% of the communes, accessibility to public spaces is guaranteed. The findings also suggest improving access to early education facilities, as only 26% of the communes meet the sustainability standard, negatively impacting travel in sustainable modes. It is also observed that the level of access to urban facilities generates spatial heterogeneity in the city, which negatively affects travel patterns in terms of time over 60 minutes and modes of travel in private vehicles. The results obtained allow us to identify opportunities for public policy intervention to promote and adopt sustainable mobility.

Keywords: land use, urban sustainability, travel patterns, spatial heterogeneity, GWR model, sustainable mobility

Procedia PDF Downloads 68
18275 The Effect of Social Structural Change on the Traditional Turkish Houses Becoming Unusable

Authors: Gamze Fahriye Pehlivan, Tulay Canitez

Abstract:

The traditional Turkish houses becoming unusable are a result of the deterioration of the balanced interaction between users and house (human and house) continuing during the history. Especially depending upon the change in social structure, the houses becoming neglected do not meet the desires of the users and do not have the meaning but the shelter are becoming unusable and are being destroyed. A conservation policy should be developed and renovations should be made in order to pass the traditional houses carrying the quality of a cultural and historical document presenting the social structure, the lifestyle and the traditions of its own age to the next generations and to keep them alive.

Keywords: house, social structural change, social structural, traditional Turkish houses

Procedia PDF Downloads 282