Search results for: steel column
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2328

Search results for: steel column

1668 Finite Element Analysis of Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel

Authors: Bijit Kalita, R. Jayaganthan

Abstract:

Additive manufacturing (AM) is a novel manufacturing method which provides more freedom in design, manufacturing near-net-shaped parts as per demand, lower cost of production, and expedition in delivery time to market. Among various metals, AM techniques, Laser Powder Bed Fusion (L-PBF) is the most prominent one that provides higher accuracy and powder proficiency in comparison to other methods. Particularly, 17-4 PH alloy is martensitic precipitation hardened (PH) stainless steel characterized by resistance to corrosion up to 300°C and tailorable strengthening by copper precipitates. Additively manufactured 17-4 PH stainless steel exhibited a dendritic/cellular solidification microstructure in the as-built condition. It is widely used as a structural material in marine environments, power plants, aerospace, and chemical industries. The excellent weldability of 17-4 PH stainless steel and its ability to be heat treated to improve mechanical properties make it a good material choice for L-PBF. In this study, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Mechanical properties of fabricated parts are studied through micro-hardness and tensile tests. Tensile tests are carried out under different strain rates at room temperature. In addition, the effect of process parameters and heat treatment conditions on mechanical properties is critically reviewed. These studies revealed the performance of L-PBF fabricated 17–4 PH stainless-steel parts under cyclic loading, and the results indicated that fatigue properties were more sensitive to the defects generated by L-PBF (e.g., porosity, microcracks), leading to the low fracture strains and stresses under cyclic loading. Rapid melting, solidification, and re-melting of powders during the process and different combinations of processing parameters result in a complex thermal history and heterogeneous microstructure and are necessary to better control the microstructures and properties of L-PBF PH stainless steels through high-efficiency and low-cost heat treatments.

Keywords: 17–4 PH stainless steel, laser powder bed fusion, selective laser melting, microstructure, additive manufacturing

Procedia PDF Downloads 112
1667 Biochar - A Multi-Beneficial and Cost-Effective Amendment to Clay Soil for Stormwater Runoff Treatment

Authors: Mohammad Khalid, Mariya Munir, Jacelyn Rice Boyaue

Abstract:

Highways are considered a major source of pollution to storm-water, and its runoff can introduce various contaminants, including nutrients, Indicator bacteria, heavy metals, chloride, and phosphorus compounds, which can have negative impacts on receiving waters. This study assessed the ability of biochar for contaminants removal and to improve the water holding capacity of soil biochar mixture. For this, ten commercially available biochar has been strategically selected. Lab scale batch testing was done at 3% and 6% by the weight of the soil to find the preliminary estimate of contaminants removal along with hydraulic conductivity and water retention capacity. Furthermore, from the above-conducted studies, six best performing candidate and an application rate of 6% has been selected for the column studies. Soil biochar mixture was filled in 7.62 cm assembled columns up to a fixed height of 76.2 cm based on hydraulic conductivity. A total of eight column experiments have been conducted for nutrient, heavy metal, and indicator bacteria analysis over a period of one year, which includes a drying as well as a deicing period. The saturated hydraulic conductivity was greatly improved, which is attributed to the high porosity of the biochar soil mixture. Initial data from the column testing shows that biochar may have the ability to significantly remove nutrients, indicator bacteria, and heavy metals. The overall study demonstrates that biochar could be efficiently applied with clay soil to improve the soil's hydraulic characteristics as well as remove the pollutants from the stormwater runoff.

Keywords: biochar, nutrients, indicator bacteria, storm-water treatment, sustainability

Procedia PDF Downloads 113
1666 Bridge Damage Detection and Stiffness Reduction Using Vibration Data: Experimental Investigation on a Small Scale Steel Bridge

Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti

Abstract:

The design of planning maintenance of civil structures often requires the evaluation of their level of safety in order to be able to choose which structure, and in which measure, it needs a structural retrofit. This work deals with the evaluation of the stiffness reduction of a scaled steel deck due to the presence of localized damages. The dynamic tests performed on it have shown the variability of its main frequencies linked to the gradual reduction of its rigidity. This deck consists in a steel grillage of four secondary beams and three main beams linked to a concrete slab. This steel deck is 6 m long and 3 m wide and it rests on two abutments made of concrete. By processing the signals of the accelerations due to a random excitation of the deck, the main natural frequencies of this bridge have been extracted. In order to assign more reliable parameters to the numerical model of the deck, some load tests have been performed and the mechanical property of the materials and the supports have been obtained. The two external beams have been cut at one third of their length and the structural strength has been restored by the design of a bolted plate. The gradual loss of the bolts and the plates removal have made the simulation of localized damage possible. In order to define the relationship between frequency variation and loss in stiffness, the identification of its natural frequencies has been performed, before and after the occurrence of the damage, corresponding to each step. The study of the relationship between stiffness losses and frequency shifts has been reported in this paper: the square of the frequency variation due to the presence of the damage is proportional to the ratio between the rigidities. This relationship can be used to quantify the loss in stiffness of a real scale bridge in an efficient way.

Keywords: damage detection, dynamic test, frequency shifts, operational modal analysis, steel bridge

Procedia PDF Downloads 157
1665 Mechanical Properties of Selective Laser Sintered 304L Stainless Steel Powders

Authors: Shijie Liu, Jehnming Lin

Abstract:

This study mainly discussed the mechanical properties of selective laser sintered 304L stainless steel powder specimen. According to a single layer specimen sintering, the microstructure and porosity were observed to find out the proper sintering parameters. A multi-layer sintering experiment was conducted. Based on the microstructure and the integration between layers, the suitable parameters were found out. Finally, the sintered specimens were examined by metallographical inspection, hardness test, tensile test, and surface morphology measurement. The structure of the molten powder coated with unmelted powder was found in metallographic test. The hardness of the sintered stainless steel powder is greater than the raw material. The tensile strength is less than the raw material, and it is corresponding to different scanning paths. The specimen will have different patterns of cracking. It was found that the helical scanning path specimen will have a warpage deformation at the edge of the specimen. The S-scan path specimen surface is relatively flat.

Keywords: laser sintering, sintering path, microstructure, mechanical properties

Procedia PDF Downloads 154
1664 Settlement Performance of Soft Clay Reinforced with Granular Columns

Authors: Muneerah Jeludin, V. Sivakumar

Abstract:

Numerous laboratory-based research studies on the behavior of ground improved with granular columns with respect to bearing capacity have been well-documented. However, information on its settlement performance is still scarce. Laboratory model study on the settlement behavior of soft clay reinforced with granular columns was conducted and results are presented. The investigation uses a soft kaolin clay sample of 300 mm in diameter and 400 mm in length. The clay samples were reinforced with single and multiple granular columns of various lengths using the displacement and replacement installation method. The results indicated that that no settlement reduction was achieved for a short single floating column. The settlement reduction factors reported for L/d ratios of 5.0, 7.5 and 10.0 are in the range of 1 to 2. The findings obtained in this research showed that the reduction factors are considerably less and that load-sharing mechanism between columns and surrounding clay is complex, particularly for column groups and is affected by other factors such as negative skin friction.

Keywords: ground improvement, model test, reinforced soil, settlement

Procedia PDF Downloads 459
1663 Numerical Investigation for External Strengthening of Dapped-End Beams

Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah

Abstract:

The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.

Keywords: dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation

Procedia PDF Downloads 110
1662 Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing

Authors: S. Bouhouche, R. Drai, J. Bast

Abstract:

This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement.

Keywords: Kalman filter, Markov chain Monte Carlo, x-ray fluorescence calibration and testing, steel content measurement, uncertainty measurement

Procedia PDF Downloads 278
1661 Effect of One-Period of SEAS Exercises on Some Spinal Biomechanical and Postural Parameters in the Students with Idiopathic Scoliosis

Authors: Zandi Ahmad, Sokhanguei Yahya, Saboonchi Reza

Abstract:

Objective: The new and modern lifestyle, especially in the twenty-first century and lack of movement in spinal structure have made patients and the physicians in the field of health and also other insurance companies in the developed and developing countries worry more than before about the abnormalities of spinal column- this great healthcare problem. The high prevalence of spinal column in all age groups -from children to adults- and in all professions have led the researchers to the idea of giving an opportunity to all those who worry about the dangers threatening the spinal column. Therefore, one of the corrective methods for these patients is using SEAS exercises. Materials and Methods: This study aims at investigating the effect of one-period of SEAS exercises on some spinal biomechanical and postural parameters in the students with idiopathic scoliosis. According to the nature of the study and research objectives as well as the data collection methods, the current research is a semi-empirical survey. The research population is comprised of students with idiopathic scoliosis. A total number of 30 students were selected using available sampling and divided into two groups of control and SEAS exercises. Scoliometer was used for data collection. Descriptive statistics were used to categorize the findings. Kolmogorov-Smirnov statistical models were used to confirm that the distribution of the data is normal and T-test was used for effectiveness. Hypothesis testing was done using SPSS21. Conclusion: Results show that SEAS exercises have a significant effect in Adam’s Test. Therefore, according to the obtained results, SEAS exercises can be used to recover idiopathic scoliosis among the students. Further studies in larger samples and treatment, periods as well as more follow-up investigations appear to be essential to prove these effects.

Keywords: SEAS exercises, idiopathic scoliosis, Adam’s test, exercise

Procedia PDF Downloads 279
1660 On a Determination of Residual Stresses and Wear Resistance of Thermally Sprayed Stainless Steel Coating

Authors: Merzak Laribi, Abdelmadjid Kasser

Abstract:

Thermal spraying processes are widely used to produce coatings on original constructions as well as in repair and maintenance of long standing structures. A lot of efforts forwarding to develop thermal spray coatings technology have been focused on improving mechanical characteristics, minimizing residual stress level and reducing porosity of the coatings. The specific aim of this paper is to determine either residual stresses distribution or wear resistance of stainless steel coating thermally sprayed on a carbon steel substrate. Internal stresses determination was performed using an extensometric method in combination with a simultaneous progressive electrolytic polishing. The procedure consists of measuring micro-deformations using a bi-directional extensometric gauges glued on the substrate side of the materials. Very thin layers of the deposits are removed by electrochemical polishing across the sample surface. Micro-deformations are instantaneously measured, leading to residual stresses calculation after each removal. Wear resistance of the coating has been determined using a ball-on-plate tribometer. Friction coefficient is instantaneously measured during the tribological test. Attention was particularly focused on the influence of a post-annealing at 850 °C for one hour in vacuum either on the residual stresses distribution or on the wear resistance behavior under specific wear and lubrication conditions. The obtained results showed that the microstructure of the obtained arc sprayed stainless steel coating is classical. It is homogeneous and contains un-melted particles, metallic oxides and also pores and micro-cracks. The internal stresses are in compression in the coating. They are more or less scattered between -50 and -270 MPa on the surface and decreased more at the interface. The value at the surface of the substrate is about –700 MPa, partially due to the molten particles impact with the substrate. The post annealing has reduced the residual stresses in both coating and surface of the steel substrate so that the hole material becomes more relaxed. Friction coefficient has an average value of 0.3 and 0.4 respectively for non annealed and annealed specimen. It is rather oil lubrication which is really benefit so that friction coefficient is decreased to about 0.06.

Keywords: residual stresses, wear resistance, stainless steel, coating, thermal spraying, annealing, lubrication

Procedia PDF Downloads 122
1659 Evaluation of Corrosion Behaviour of Austenitic Steel 08Cr18Ni10Ti Exposed to Supercritical Water

Authors: Monika Šípová, Daniela Marušáková, Claudia Aparicio

Abstract:

New sources and ways of producing energy are still seeking, and one of the sustainable ways is Generation IV nuclear reactors. The supercritical water-cooled reactor is one of the six nuclear reactors of Generation IV, and as a consequence of the development of light water, reactors seem to be the most perspective. Thus, materials usually used in light water reactors are also tested under the expected operating conditions of the supercritical water-cooled reactor. Austenitic stainless steel 08Cr18Ni10Ti is widely used in the eastern types of light water nuclear power plants. Therefore, specimens of 08Cr18Ni10Ti were exposed to conditions close to the pseudo-critical point of water and high-temperature supercritical water. The description and evaluation of the corrosion behaviour of austenitic stainless steel have been done based on the results of X-ray diffraction in combination with energy dispersive spectroscopy and electron backscatter diffraction. Thus, significant differences have been found in the structure and composition of oxides formed depending on the temperature of exposure. The high temperature of supercritical water resulted in localised form of corrosion in contrast to the thin oxide layer of 1 µm present on the surface of specimens exposed close to the pseudo-critical point of water. The obtained results are important for further research as the supercritical water can be successfully used as a coolant for small modular reactors, which are currently of interest.

Keywords: localised corrosion, supercritical water, stainless steel, electron backscatter diffraction

Procedia PDF Downloads 70
1658 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock

Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,

Abstract:

Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.

Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure

Procedia PDF Downloads 399
1657 Hot Cracking Susceptibility Evaluation of the Advanced UNS S31035 Austenitic Stainless Steel by Varestraint Weldability Testing

Authors: Mikael M. Johansson, Peter Stenvall, Leif Karlsson, Joel Andersson

Abstract:

Sandvik Sanicro 25, UNS S31035, is an advanced high temperature austenitic stainless steel that potentially can be used in super-heaters and reheaters in the next generation of advanced ultra-super critical power plants. The material possesses both high creep strength and good corrosion resistance at temperatures up to 700°C. Its high temperature properties are positioned between other commercially available high temperature austenitic stainless steels and nickel-based alloys. It is, however, well known that an austenitic solidification mode combined with a fully austenitic microstructure exacerbate susceptibility towards hot cracking. The problem increases even more for thick walled material in multipass welding and could compromise the integrity of the welded component. Varestraint weldability testing is commonly used to evaluate susceptibility towards hot cracking of materials. In this paper, Varestraint test results are evaluated for base material of both UNS S31035 steel and are compared to those of the well-known and well-characterized UNS S31008 grade. The more creep resistant alloy, UNS S31035, is metallurgically more complicated than the UNS S31008 grade and has additions of several alloying elements to improve its high temperature properties. It benefits from both solid solution hardening as well as precipitation hardening. This investigation therefore attempts, based on the Varestraint weldability test, to understand if there are any differences in cracking mechanisms between these two grades due to the additional alloying elements used in UNS S31035. Results from Varestraint testing and crack type investigations will be presented and discussed in some detail. It is shown that hot cracking susceptibility of the UNS S31035 steel is only slightly higher than that of UNS S31008 despite the more complicated metallurgy. Weldability of the two alloys is therefore judged to be comparable making the newer alloy well suited also for critical applications.

Keywords: austenitic stainless steel, hot cracking susceptibility, UNS S31035, UNS S31008, varestraint weldability testing

Procedia PDF Downloads 127
1656 Manufacturing of Vacuum Glazing with Metal Edge Seal

Authors: Won Kyeong Kang, Tae-Ho Song

Abstract:

Vacuum glazing (VG) is a super insulator, which is able to greatly improve the energy efficiency of building. However, a significant amount of heat loss occurs through the welded edge of conventional VG. The joining method should be improved for further application and commercialization. For this purpose VG with metal edge seal is conceived. In this paper, the feasibility of joining stainless steel and soda lime glass using glass solder is assessed numerically and experimentally. In the case of very thin stainless steel, partial joining with glass is identified, which need further improvement for practical application.

Keywords: VG, metal edge seal, vacuum glazing, manufacturing,

Procedia PDF Downloads 602
1655 High Performance Fibre Reinforced Alkali Activated Slag Concrete

Authors: A. Sivakumar, K. Srinivasan

Abstract:

The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix.

Keywords: accelerators, alkali activators, geopolymer, hot air oven curing, polypropylene fibres, slag, steam curing, steel fibres

Procedia PDF Downloads 270
1654 Numerical Investigations on Group Piles’ Lateral Bearing Capacity Considering Interaction of Soil and Structure

Authors: Mahdi Sadeghian, Mahmoud Hassanlourad, Alireza Ardakani, Reza Dinarvand

Abstract:

In this research, the behavior of monopiles, under lateral loads, was investigated with vertical and oblique piles by Finite Element Method. In engineering practice when soil-pile interaction comes to the picture some simplifications are applied to reduce the design time. As a simplified replacement of soil and pile interaction analysis, pile could be replaced by a column. The height of the column would be equal to the free length of the pile plus a portion of the embedded length of it. One of the important factors studied in this study was that columns with an equivalent length (free length plus a part of buried depth) could be used instead of soil and pile modeling. The results of the analysis show that the more internal friction angle of the soil increases, the more the bearing capacity of the soil is achieved. This additional length is 6 to 11 times of the pile diameter in dense soil although in loose sandy soil this range might increase.

Keywords: Depth of fixity, Lateral bearing capacity, Oblique pile, Pile group, Soil-structure interaction

Procedia PDF Downloads 224
1653 Monitoring Saltwater Corrosion on Steel Samples Using Coda Wave Interferometry in MHZ Frequencies

Authors: Maxime Farin, Emmanuel Moulin, Lynda Chehami, Farouk Benmeddour, Pierre Campistron

Abstract:

Assessing corrosion is crucial in the petrochemical and marine industry. Usual ultrasonic methods based on guided waves to detect corrosion can inspect large areas but lack precision. We propose a complementary and sensitive ultrasonic method (~ 10 MHz) based on coda wave interferometry to detect and quantify corrosion at the surface of a steel sample. The method relies on a single piezoelectric transducer, exciting the sample and measuring the scattered coda signals at different instants in time. A laboratory experiment is conducted with a steel sample immersed in salted water for 60~h with parallel coda and temperature measurements to correct coda dependence to temperature variations. Micrometric changes to the sample surface caused by corrosion are detected in the late coda signals, allowing precise corrosion detection. Moreover, a good correlation is found between a parameter quantifying the temperature-corrected stretching of the coda over time with respect to a reference without corrosion and the corrosion surface over the sample recorded with a camera.

Keywords: coda wave interferometry, nondestructive evaluation, corrosion, ultrasonics

Procedia PDF Downloads 225
1652 Seismic Response Analysis of Frame Structures Based on Super Joint Element Model

Authors: Li Xu, Yang Hong, T. Zhao Wen

Abstract:

Experimental results of many RC beam-column subassemblage indicate that slippage of longitudinal beam rebar within the joint and the shear deformation of joint core have significant influence on seismic behavior of the subassemblage. However, rigid joint assumption has been generally used in the seismic response analysis of RC frames, in which two kinds of inelastic deformation of joint have been ignored. Based on OpenSees platform, ‘Super Joint Element Model’ with more detailed inelastic mechanism is used to simulate the inelastic response of joints. Two finite element models of typical RC plane frame, namely considering or ignoring the inelastic deformation of joint respectively, were established and analyzed under seven strong earthquake waves. The simulated global and local inelastic deformations of the RC plane frame is shown and discussed. The analyses also confirm the security of the earthquake-resistant frame designed according to Chinese codes.

Keywords: frame structure, beam-column joint, longitudinal bar slippage, shear deformation, nonlinear analysis

Procedia PDF Downloads 403
1651 Bioassay Guided Isolation of Cytotoxic and Antimicrobial Components from Ethyl Acetate Extracts of Cassia sieberiana D.C. (Fabaceae)

Authors: Sani Abubakar, Oumar Al-Mubarak Adoum

Abstract:

The leaves extracts of Cassia sieberiana D. C. were screened for antimicrobial bioassay against Staphylococcus aureus, Salmonella typhi, and Escherichia coli and cytotoxicity using Brine Shrimp Test (BST). The crude ethanol extract, Chloroform soluble fraction, aqueous soluble fraction, ethyl acetate soluble fraction, methanol soluble fraction, and n-hexane soluble fraction were tested against antimicrobial and cytotoxicity. The Ethyl acetate fraction obtained proved to be most active in inducing complete lethality at minimum doses in BST and also active on Salmonella typhi. The bioactivity result was used to guide the column chromatography, which led to the isolation of pure compound CSB-8, which was found active in the BST with an LC₅₀ value of 34(722-182)µg/ml and showed remarkable activity on Salmonella typhi (zone of inhibition 25mm) at 10,000µg/ml. The ¹H-NMR, ¹³C NMR, FTIR, and GC-MS spectra of the compound suggested the proposed structure to be 2-pentadecanone.

Keywords: antimicrobial bioassay, cytotoxicity, column chromatagraphy, Cassia sieberiana D.C.

Procedia PDF Downloads 26
1650 Performance Evaluation of Composite Beam under Uniform Corrosion

Authors: Ririt Aprilin Sumarsono

Abstract:

Composite member (concrete and steel) has been widely advanced for structural utilization due to its best performance in resisting load, reducing the total weight of the structure, increasing stiffness, and other available advantages. On the other hand, the environment load such as corrosion (e.g. chloride ingress) creates significant time-dependent degradation for steel. Analysis performed in this paper is mainly considered uniform corrosion for evaluating the composite beam without examining the pit corrosion as the initial corrosion formed. Corrosion level in terms of weight loss is modified in yield stress and modulus elasticity of steel. Those two mechanical properties are utilized in this paper for observing the stresses due to corrosion attacked. As corrosion level increases, the effective width of the composite beam in the concrete section will be wider. The position of a neutral axis of composite section will indicate the composite action due to corrosion of composite beam so that numerous shear connectors provided must be reconsidered. Flexure capacity quantification provides stresses, and shear capacity calculation derives connectors needed in overcoming the shear problem for composite beam under corrosion. A model of simply supported composite beam examined in this paper under uniform corrosion where the stresses as the focus of the evaluation. Principal stress at the first stage of composite construction decline as the corrosion level incline, parallel for the second stage stress analysis where the tension region held by the steel undergoes lower capacity due to corrosion. Total stresses of the composite section for steel to be born significantly decreases particularly in the outermost fiber of tension side. Whereas, the available compression side is smaller as the corrosion level increases so that the stress occurs on the compression side shows reduction as well. As a conclusion, the increment of corrosion level will degrade both compression and tension side of stresses.

Keywords: composite beam, modulus of elasticity, stress analysis, yield strength, uniform corrosion

Procedia PDF Downloads 282
1649 Structural Parameter Identification of Old Steel Truss Bridges

Authors: A. Bogdanovic, M. Vitanova, J. Bojadjieva, Z. Rakicevic, V. Sesov, K. Edip, N. Naumovski, F. Manojlovski, A.Popovska, A. Shoklarovski, T. Kitanovski, D. Ivanovski, I. Markovski, D. Filipovski

Abstract:

The conditions of existing structures change in the course of time and can hardly be characterized particularly if a bridge has long been in function and there is no design documentation related to it. To define the real conditions of a structure, detailed static and dynamic analysis of the structure has to be carried out and its modal parameters have to be defined accurately. Modal analysis enables a quite accurate identification of the natural frequencies and mode shapes. Presented in this paper are the results from the performed detailed analyses of a steel truss bridge that has been in use for more than 7 decades by the military services of R.N. Macedonia and for which there is no documentation at all. Static and dynamic investigations and ambient vibration measurements were performed. The acquired data were used to identify the mode shapes that were used for comparison with the numerical model. Dynamic tests were performed to define the bridge behaviour and the damping index. Finally, based on all the conducted detailed analyses and investigations, conclusions on the conditions of the bridge structure were drawn.

Keywords: ambient vibrations, dynamic identification, in-situ measurement, steel truss bridge

Procedia PDF Downloads 81
1648 Anticorrosive Properties of Poly(O-Phenylendiamine)/ZnO Nanocomposites Coated Stainless Steel

Authors: Aisha Ganash

Abstract:

Poly(o-phenylendiamine) and poly(ophenylendiamine)/ZnO(PoPd/ZnO) nanocomposites coating were prepared on type-304 austenitic stainless steel (SS) using H2SO4 acid as electrolyte by potentiostatic methods. Fourier transforms infrared spectroscopy and scanning electron microscopy techniques were used to characterize the composition and structure of PoPd/ZnO nanocomposites. The corrosion protection of polymer coatings ability was studied by Eocp-time measurement, anodic and cathodic potentiodynamic polarization and Impedance techniques in 3.5% NaCl as a corrosive solution. It was found that ZnO nanoparticles improve the barrier and electrochemical anticorrosive properties of poly(o-phenylendiamine).

Keywords: anticorrosion, conducting polymers, electrochemistry, nanocomposites

Procedia PDF Downloads 288
1647 Soil Arching Effect in Columnar Embankments: A Numerical Study

Authors: Riya Roy, Anjana Bhasi

Abstract:

Column-supported embankments provide a practical and efficient solution for construction on soft soil due to the low cost and short construction times. In the recent years, geosynthetic have been used in combination with column systems to support embankments. The load transfer mechanism in these systems is a combination of soil arching effect, which occurs between columns and membrane effect of the geosynthetic. This paper aims at the study of soil arching effect on columnar embankments using finite element software, ABAQUS. An axisymmetric finite element model is generated and using this model, parametric studies are carried out. Thus the effects of various factors such as height of embankment fill, elastic modulus of pile and tensile stiffness of geosynthetic, on soil arching have been studied. The development of negative skin friction along the pile-soil interface have also been studied and the results obtained from this study are compared with the current design methods.

Keywords: ABAQUS, geosynthetic, negative skin friction, soil arching

Procedia PDF Downloads 372
1646 Investigation of Ductile Failure Mechanisms in SA508 Grade 3 Steel via X-Ray Computed Tomography and Fractography Analysis

Authors: Suleyman Karabal, Timothy L. Burnett, Egemen Avcu, Andrew H. Sherry, Philip J. Withers

Abstract:

SA508 Grade 3 steel is widely used in the construction of nuclear pressure vessels, where its fracture toughness plays a critical role in ensuring operational safety and reliability. Understanding the ductile failure mechanisms in this steel grade is crucial for designing robust pressure vessels that can withstand severe nuclear environment conditions. In the present study, round bar specimens of SA508 Grade 3 steel with four distinct notch geometries were subjected to tensile loading while capturing continuous 2D images at 5-second intervals in order to monitor any alterations in their geometries to construct true stress-strain curves of the specimens. 3D reconstructions of X-ray computed tomography (CT) images at high-resolution (a spatial resolution of 0.82 μm) allowed for a comprehensive assessment of the influences of second-phase particles (i.e., manganese sulfide inclusions and cementite particles) on ductile failure initiation as a function of applied plastic strain. Additionally, based on 2D and 3D images, plasticity modeling was executed, and the results were compared to experimental data. A specific ‘two-parameter criterion’ was established and calibrated based on the correlation between stress triaxiality and equivalent plastic strain at failure initiation. The proposed criterion demonstrated substantial agreement with the experimental results, thus enhancing our knowledge of ductile fracture behavior in this steel grade. The implementation of X-ray CT and fractography analysis provided new insights into the diverse roles played by different populations of second-phase particles in fracture initiation under varying stress triaxiality conditions.

Keywords: ductile fracture, two-parameter criterion, x-ray computed tomography, stress triaxiality

Procedia PDF Downloads 83
1645 Improvement of Buckling Behavior of Cold Formed Steel Uprights with Open Cross Section Used in Storage Rack Systems

Authors: Yasar Pala, Safa Senaysoy, Emre Calis

Abstract:

In this paper, structural behavior and improvement of buckling behavior of cold formed steel uprights with open cross-section used storage rack system are studied. As a first step, in the case of a stiffener having an inclined part on the flange, experimental and nonlinear finite element analysis are carried out for three different upright lengths. In the uprights with long length, global buckling is observed while distortional buckling and local buckling are observed in the uprights with medium length and those with short length, respectively. After this point, the study is divided into two groups. One of these groups is the case where the stiffener on the flange is folded at 90°. For this case, four different distances of the stiffener from the web are taken into account. In the other group, the case where different depth of stiffener on the web is considered. Combining experimental and finite element results, the cross-section giving the ultimate critical buckling load is selected.

Keywords: steel, upright, buckling, modes, nonlinear finite element analysis, optimization

Procedia PDF Downloads 254
1644 Electrochemical Studies of Some Schiff Bases on the Corrosion of Steel in H2SO4 Solution

Authors: Ahmed A. Farag, M. A. Hgazy

Abstract:

The influence of three Schiff bases (SB-I, SB-II, and SB-III) on the corrosion of carbon steel in 0.5 M H2SO4 solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiency increases with the concentration of the Schiff bases and follow the trend: SB-III > SB-II > SB-I. Tafel polarization measurements revealed that the three tested inhibitors function as anodic inhibitors. The thermodynamic parameters Kads and ΔGºads are calculated and discussed. The Langmuir isotherm equation was found to provide an accurate description of the adsorption behaviour of the investigated Schiff bases. Depending on the results, the inhibitive mechanism was proposed.

Keywords: Schiff bases, corrosion inhibitors, EIS, adsorption

Procedia PDF Downloads 533
1643 Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm

Authors: Burcu Akyildiz, Cigdem Kadaifci, Y. Ilker Topcu, Burc Ulengin

Abstract:

In today’s business environment, companies should make strategic decisions to gain sustainable competitive advantage. Order selection is a crucial issue among these decisions especially for steel production industry. When the companies allocate a high proportion of their design and production capacities to their ongoing projects, determining which customer order should be chosen among the potential orders without exceeding the remaining capacity is the major critical problem. In this study, it is aimed to identify and prioritize the evaluation factors for the customer order selection problem. Conjoint analysis is used to examine the importance level of each factor which is determined as the potential profit rate per unit of time, the compatibility of potential order with available capacity, the level of potential future order with higher profit, customer credit of future business opportunity, and the negotiability level of production schedule for the order.

Keywords: conjoint analysis, order prioritization, profit management, structural steel firm

Procedia PDF Downloads 380
1642 Experimental Studies on Prestressed Precast Concrete Bridge Piers

Authors: C. Shim, C. Koem, S. Park, S. Lee

Abstract:

This paper deals with experimental studies on pre stressed precast concrete columns with continuous reinforcing bars and pre stressing tendons. Design requirements on minimum transverse reinforcement ratio are not included in current design codes. Pre stressing introduces additional compression to the column. Precast columns with different transverse reinforcement ratios were tested to derive adequate design requirement. Displacement ductility of the pre stressed precast columns was evaluated and compared with previous studies. Design of axial steels including reinforcing bars and pre stressing tendons influenced on the seismic performance. Without significant increase of transverse reinforcement ratio, the specimens showed required displacement ductility without reduction of their flexural strength. Design recommendations for precast bridge piers were derived.

Keywords: displacement ductility, flexural strength, prestressed precast column, transverse reinforcement

Procedia PDF Downloads 274
1641 Timber Urbanism: Assessing the Carbon Footprint of Mass-Timber, Steel, and Concrete Structural Prototypes for Peri-Urban Densification in the Hudson Valley’s Urban Fringe

Authors: Eleni Stefania Kalapoda

Abstract:

The current fossil-fuel based urbanization pattern and the estimated human population growth are increasing the environmental footprint on our planet’s precious resources. To mitigate the estimated skyrocketing in greenhouse gas emissions associated with the construction of new cities and infrastructure over the next 50 years, we need a radical rethink in our approach to construction to deliver a net zero built environment. This paper assesses the carbon footprint of a mass-timber, a steel, and a concrete structural alternative for peri-urban densification in the Hudson Valley's urban fringe, along with examining the updated policy and the building code adjustments that support synergies between timber construction in city making and sustainable management of timber forests. By quantifying the carbon footprint of a structural prototype for four different material assemblies—a concrete (post-tensioned), a mass timber, a steel (composite), and a hybrid (timber/steel/concrete) assembly applicable to the three updated building typologies of the IBC 2021 (Type IV-A, Type IV-B, Type IV-C) that range between a nine to eighteen-story structure alternative—and scaling-up that structural prototype to the size of a neighborhood district, the paper presents a quantitative and a qualitative approach for a forest-based construction economy as well as a resilient and a more just supply chain framework that ensures the wellbeing of both the forest and its inhabitants.

Keywords: mass-timber innovation, concrete structure, carbon footprint, densification

Procedia PDF Downloads 98
1640 Evaluation of the Need for Seismic Retrofitting of the Foundation of a Five Story Steel Building Because of Adding of a New Story

Authors: Mohammadreza Baradaran, F. Hamzezarghani

Abstract:

Every year in different points of the world it occurs with different strengths and thousands of people lose their lives because of this natural phenomenon. One of the reasons for destruction of buildings because of earthquake in addition to the passing of time and the effect of environmental conditions and the wearing-out of a building is changing the uses of the building and change the structure and skeleton of the building. A large number of structures that are located in earthquake bearing areas have been designed according to the old quake design regulations which are out dated. In addition, many of the major earthquakes which have occurred in recent years, emphasize retrofitting to decrease the dangers of quakes. Retrofitting structural quakes available is one of the most effective methods for reducing dangers and compensating lack of resistance caused by the weaknesses existing. In this article the foundation of a five-floor steel building with the moment frame system has been evaluated for quakes and the effect of adding a floor to this five-floor steel building has been evaluated and analyzed. The considered building is with a metallic skeleton and a piled roof and clayed block which after addition of a floor has increased to a six-floor foundation of 1416 square meters, and the height of the sixth floor from ground state has increased 18.95 meters. After analysis of the foundation model, the behavior of the soil under the foundation and also the behavior of the body or element of the foundation has been evaluated and the model of the foundation and its type of change in form and the amount of stress of the soil under the foundation for some of the composition has been determined many times in the SAFE software modeling and finally the need for retrofitting of the building's foundation has been determined.

Keywords: seismic, rehabilitation, steel building, foundation

Procedia PDF Downloads 270
1639 The Use of Hearing Protection Devices and Hearing Loss in Steel Industry Workers in Samut Prakan Province, Thailand

Authors: Petcharat Kerdonfag, Surasak Taneepanichskul, Winai Wadwongtham

Abstract:

Background: Although there have not been effective treatments for Noise Induced Hearing Loss (NIHL), it can be definitely preventable with promoting the use of Hearing Protection devices (HPDs) among workers who have been exposed to excessive noise for a long period. Objectives: The objectives of this study were to explore the use of HPDs among steel industrial workers in the high noise level zone in Samut Prakan province, Thailand and to examine the relationships of the HPDs use and hearing loss. Materials and Methods: In this cross-sectional study, eligible ninety-three participants were recruited in the designated zone of higher noise (> 85dBA) of two factories, using simple random sampling. The use of HPDs was gathered by the self-record form, examined and confirmed by the researcher team. Hearing loss was assessed by the audiometric screening at the regional Samut Prakan hospital. If an average threshold level exceeds 25 dBA at high frequency (4 and 6 Hz) in each ear, participants would be lost of hearing. Data were collected from October to December, 2016. All participants were examined by the same examiners for the validity. An Audiometric testing was performed with the participants who have been exposed to high noise levels at least 14 hours from workplace. Results: Sixty participants (64.5%) had secondary level of education. The average mean score of percent time of using HPDs was 60.5% (SD = 25.34). Sixty-seven participants (72.0%) had abnormal hearing which they have still needed to increase lower percent time of using HPDs (Mean = 37.01, SD = 23.81) than those having normal hearing (Mean = 45.77, SD = 28.44). However, there was no difference in the mean average of percent time of using HPDs between these two groups.Conclusion: The findings of this study have confirmed that the steel industrial workers still need to be motivated to use HPDs regularly. Future research should pay more attentions for creating a meaningful innovation to steel industrial workers.

Keywords: hearing protection devices, noise induced hearing loss, audiometric testing, steel industry

Procedia PDF Downloads 247