Search results for: radiation doses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1855

Search results for: radiation doses

1195 Temperature Distribution for Asphalt Concrete-Concrete Composite Pavement

Authors: Tetsya Sok, Seong Jae Hong, Young Kyu Kim, Seung Woo Lee

Abstract:

The temperature distribution for asphalt concrete (AC)-Concrete composite pavement is one of main influencing factor that affects to performance life of pavement. The temperature gradient in concrete slab underneath the AC layer results the critical curling stress and lead to causes de-bonding of AC-Concrete interface. These stresses, when enhanced by repetitive axial loadings, also contribute to the fatigue damage and eventual crack development within the slab. Moreover, the temperature change within concrete slab extremely causes the slab contracts and expands that significantly induces reflective cracking in AC layer. In this paper, the numerical prediction of pavement temperature was investigated using one-dimensional finite different method (FDM) in fully explicit scheme. The numerical predicted model provides a fundamental and clear understanding of heat energy balance including incoming and outgoing thermal energies in addition to dissipated heat in the system. By using the reliable meteorological data for daily air temperature, solar radiation, wind speech and variable pavement surface properties, the predicted pavement temperature profile was validated with the field measured data. Additionally, the effects of AC thickness and daily air temperature on the temperature profile in underlying concrete were also investigated. Based on obtained results, the numerical predicted temperature of AC-Concrete composite pavement using FDM provided a good accuracy compared to field measured data and thicker AC layer significantly insulates the temperature distribution in underlying concrete slab.

Keywords: asphalt concrete, finite different method (FDM), curling effect, heat transfer, solar radiation

Procedia PDF Downloads 253
1194 The application of Gel Dosimeters and Comparison with other Dosimeters in Radiotherapy: A Literature Review

Authors: Sujan Mahamud

Abstract:

Purpose: A major challenge in radiotherapy treatment is to deliver precise dose of radiation to the tumor with minimum dose to the healthy normal tissues. Recently, gel dosimetry has emerged as a powerful tool to measure three-dimensional (3D) dose distribution for complex delivery verification and quality assurance. These dosimeters act both as a phantom and detector, thus confirming the versatility of dosimetry technique. The aim of the study is to know the application of Gel Dosimeters in Radiotherapy and find out the comparison with 1D and 2D dimensional dosimeters. Methods and Materials: The study is carried out from Gel Dosimeter literatures. Secondary data and images have been collected from different sources such as different guidelines, books, and internet, etc. Result: Analyzing, verifying, and comparing data from treatment planning system (TPS) is determined that gel dosimeter is a very excellent powerful tool to measure three-dimensional (3D) dose distribution. The TPS calculated data were in very good agreement with the dose distribution measured by the ferrous gel. The overall uncertainty in the ferrous-gel dose determination was considerably reduced using an optimized MRI acquisition protocol and a new MRI scanner. The method developed for comparing measuring gel data with calculated treatment plans, the gel dosimetry method, was proven to be a useful for radiation treatment planning verification. In 1D and 2D Film, the depth dose and lateral for RMSD are 1.8% and 2%, and max (Di-Dj) are 2.5% and 8%. Other side 2D+ ( 3D) Film Gel and Plan Gel for RMSDstruct and RMSDstoch are 2.3% & 3.6% and 1% & 1% and system deviation are -0.6% and 2.5%. The study is investigated that the result fined 2D+ (3D) Film Dosimeter is better than the 1D and 2D Dosimeter. Discussion: Gel Dosimeters is quality control and quality assurance tool which will used the future clinical application.

Keywords: gel dosimeters, phantom, rmsd, QC, detector

Procedia PDF Downloads 134
1193 Effects of Hypolipidemic Agents in Aminoglycoside-Induced Experimental Nephrotoxicity in Rats: Biochemical and Histopathological Evidence

Authors: Balakumar Pitchai, Xiang Llan Ang, Sunil Prajapati, Varatharajan Rajavel, Sundram Karupiah, Mohd Baidi Bahari

Abstract:

The study examined the pretreatment and post-treatment effects of low-doses of fenofibrate and rosuvastatin in gentamicin-induced acute nephrotoxicity in rats. Gentamicin (100 mg/kg/day, i.p.) was administered to rats for 8 days. In the pretreatment protocol, low-dose fenofibrate (30 mg/kg/day, p.o.) or low-dose rosuvastatin (2 mg/kg/day, p.o.) treatments were started a day before the administration of gentamicin and continued for 8 days. In the post-treatment protocol, rats administered gentamicin were treated with low-dose fenofibrate (30 mg/kg/day, p.o.) or low-dose rosuvastatin (2 mg/kg/day, p.o.) for 6 days after the completion of 8 days protocol of gentamicin administration. Gentamicin-associated acute nephrotoxicity in rats was assessed in terms of biochemical analysis and renal histopathological studies. Gentamicin-administered rats showed marked renal functional changes as assessed in terms of a significant increase in serum creatinine and urea levels as compared to normal rats. The renal dysfunction noted in gentamicin administered rats was accompanied with elevated serum uric acid level as compared to normal rats while there was no significant change in lipid profile. Low-dose fenofibrate pretreatment in gentamicin-administered rats afforded a significant renal functional improvements and renoprotection while its post-treatment showed no significant renoprotection. On the other hand, pretreatment with low-dose rosuvastatin partially reduced gentamicin-induced increase in serum creatinine level, but its post-treatment did not afford renal functional improvements in gentamicin-administered rats. However, all pre and post-treatments with low-doses of fenofibrate or rosuvastatin significantly reduced the elevated serum uric acid concentration in gentamicin-administered rats. Renal histopathological analysis showed a discernible incidence of acute tubular necrosis in gentamicin-administered rats which were markedly reduced by low-dose fenofibrate or low-dose rosuvastatin pretreatments; but, not by their post-treatments. In conclusion, low-dose fenofibrate pretreatment considerably prevented gentamicin-induced acute tubular necrosis and renal functional abnormalities in rats while its post-treatment resulted in no significant renoprotective action. In spite of effective prevention of gentamicin-induced acute tubular necrosis, the pretreatment with low-dose rosuvastatin had only a partial and fractional protection on renal functional abnormalities. The post-treatment with low-dose rosuvastatin was ineffective in affording a renoprotection in gentamicin-administered rats.

Keywords: gentamicin-nephrotoxicity, low-dose fenofibrate, low-dose rosuvastatin, renoprotection

Procedia PDF Downloads 186
1192 Epoxomicin Affects Proliferating Neural Progenitor Cells of Rat

Authors: Bahaa Eldin A. Fouda, Khaled N. Yossef, Mohamed Elhosseny, Ahmed Lotfy, Mohamed Salama, Mohamed Sobh

Abstract:

Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on the brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have their maximum effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS e.g. lead, however; most of the agents cannot be identified with certainty due the defective nature of predictive toxicology models used. A novel alternative method that can overcome most of the limitations of conventional techniques is the use of 3D neurospheres system. This in-vitro system can recapitulate most of the changes during the period of brain development making it an ideal model for predicting neurotoxic effects. In the present study, we verified the possible DNT of epoxomicin which is a naturally occurring selective proteasome inhibitor with anti-inflammatory activity. Rat neural progenitor cells were isolated from rat embryos (E14) extracted from placental tissue. The cortices were aseptically dissected out from the brains of the fetuses and the tissues were triturated by repeated passage through a fire-polished constricted Pasteur pipette. The dispersed tissues were allowed to settle for 3 min. The supernatant was, then, transferred to a fresh tube and centrifuged at 1,000 g for 5 min. The pellet was placed in Hank’s balanced salt solution cultured as free-floating neurospheres in proliferation medium. Two doses of epoxomicin (1µM and 10µM) were used in cultured neuropsheres for a period of 14 days. For proliferation analysis, spheres were cultured in proliferation medium. After 0, 4, 5, 11, and 14 days, sphere size was determined by software analyses. The diameter of each neurosphere was measured and exported to excel file further to statistical analysis. For viability analysis, trypsin-EDTA solution were added to neurospheres for 3 min to dissociate them into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Epoxomicin was found to affect proliferation and viability of neuropsheres, these effects were positively correlated to doses and progress of time. This study confirms the DNT effects of epoxomicin on 3D neurospheres model. The effects on proliferation suggest possible gross morphologic changes while the decrease in viability propose possible focal lesion on exposure to epoxomicin during early childhood.

Keywords: neural progentor cells, epoxomicin, neurosphere, medical and health sciences

Procedia PDF Downloads 406
1191 Neuropharmacological and Neurochemical Evaluation of Methanolic Extract of Elaeocarpus sphaericus (Gaertn.) Stem Bark by Using Multiple Behaviour Models of Mice

Authors: Jaspreet Kaur, Parminder Nain, Vipin Saini, Sumitra Dahiya

Abstract:

Elaeocarpus sphaericus has been traditionally used in the Indian traditional medicine system for the treatment of stress, anxiety, depression, palpitation, epilepsy, migraine and lack of concentration. The study was investigated to evaluate the neurological potential such as anxiolytic, muscle relaxant and sedative activity of methanolic extract of Elaeocarpus sphaericus stem bark (MEESSB) in mice. Preliminary phytochemical screening and acute oral toxicity of MEESSB was carried out by using standard methods. The anxiety was induced by employing Elevated Plus-Maze (EPM), Light and Dark Test (LDT), Open Field Test (OFT) and Social Interaction test (SIT). The motor coordination and sedative effect was also observed by using actophotometer, rota-rod apparatus and ketamine-induced sleeping time, respectively. Animals were treated with different doses of MEESSB (i.e.100, 200, 400 and 800 mg/kg orally) and diazepam (2 mg/kg i.p) for 21 days. Brain neurotransmitters like dopamine, serotonin and nor-epinephrine level were estimated by validated methods. Preliminary phytochemical analysis of the extract revealed the presence of tannins, phytosterols, steroids and alkaloids. In the acute toxicity studies, MEESSB was found to be non-toxic and with no mortality. In anxiolytic studies, the different doses of MEESSB showed a significant (p<0.05) effect on EPM and LDT. In OFT and SIT, a significant (p<0.05) increase in ambulation, rearing and social interaction time was observed. In the case of motor coordination activity, the MEESSB does not cause any significant effect on the latency to fall off from the rotarod bar as compared to the control group. Moreover, no significant effects on ketamine-induced sleep latency and total sleeping time induced by ketamine were observed. Results of neurotransmitter estimation revealed the increased concentration of dopamine, whereas the level of serotonin and nor-epinephrine was found to be decreased in the mice brain, with MEESSB at dose 800 mg/kg only. The study has validated the folkloric use of the plant as an anxiolytic in Indian traditional medicine while also suggesting potential usefulness in the treatment of stress and anxiety without causing sedation.

Keywords: anxiolytic, behavior experiments, brain neurotransmitters, elaeocarpus sphaericus

Procedia PDF Downloads 162
1190 The Techno-Economic Comparison of Solar Power Generation Methods for Turkish Republic of North Cyprus

Authors: Mustafa Dagbasi, Olusola Bamisile, Adii Chinedum

Abstract:

The objective of this work is to examine and compare the economic and environmental feasibility of 40MW photovoltaic (PV) power plant and 40MW parabolic trough (PT) power plant to be installed in two different cities, namely Nicosia and Famagusta in Turkish Republic of Northern Cyprus (TRNC). The need for using solar power technology around the world is also emphasized. Solar radiation and sunshine data for Nicosia and Famagusta are considered and analyzed to assess the distribution of solar radiation, sunshine duration, and air temperature. Also, these two different technologies with same rated power of 40MW will be compared with the performance of the proposed Solar Power Plant at Bari, Italy. The project viability analysis is performed using System Advisor Model (SAM) through Annual Energy Production and economic parameters for both cities. It is found that for the two cities; Nicosia and Famagusta, the investment is feasible for both 40MW PV power plant and 40MW PT power plant. From the techno-economic analysis of these two different solar power technologies having same rated power and under the same environmental conditions, PT plants produce more energy than PV plant. It is also seen that if a PT plant is installed near an existing steam turbine power plant, the steam from the PT system can be used to run this turbine which makes it more feasible to invest. The high temperatures that are used to produce steam for the turbines in the PT plant system can be supplemented with a secondary plant based on natural gas or other biofuels and can be used as backup. Although the initial investment of PT plant is higher, it has higher economic return and occupies smaller area compared to PV plant of the same capacity.

Keywords: solar power, photovoltaic plant, parabolic trough plant, techno-economic analysis

Procedia PDF Downloads 270
1189 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes

Authors: Peng Zhang, Cai Liang

Abstract:

The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.

Keywords: plastic waste, recycling, hydrogen, microwave

Procedia PDF Downloads 52
1188 Performance Investigation of Thermal Insulation Materials for Walls: A Case Study in Nicosia (Turkish Republic of North Cyprus)

Authors: L. Vafaei, McDominic Eze

Abstract:

The performance of thermal energy in homes and buildings is a significant factor in terms of energy efficiency of a building. In a large sense, the performance of thermal energy is dependent on many factors of which the amount of thermal insulation is at one end a considerable factor, as likewise the essence of mass and the wall thickness and also the thermal resistance of wall material. This study is aimed at illustrating the different wall system in Turkish Republic of North Cyprus (TRNC), acknowledge the problem and suggest a solution through comparing the effect of thermal radiation two model rooms- L1 (Ytong wall) and L2 (heat insulated wall using stone wool) set up for experimentation. The model room has four face walls. The study consists of two stage, the first test is to access the effect of solar radiation for south facing wall and the second stage is to test the thermal performance of Ytong and heat insulated wall, the effects of climatic condition during winter. The heat insulated wall contains material hollow brick, stone wool, and gypsum while the Ytong wall contains cement concrete, for the outer surface and the inner surface and Ytong stone. The total heat of the wall was determined, 7T-Type thermocouple was used with a data logger system to record the data, temperature change recorded at an interval of 10 minutes. The result obtained was that Ytong wall save more energy than the heat insulated wall at night while heat insulated wall saves energy during the day when intensity is at maximum.

Keywords: heat insulation, hollow bricks, south facing, Ytong bricks wall

Procedia PDF Downloads 250
1187 DNA Damage and Apoptosis Induced in Drosophila melanogaster Exposed to Different Duration of 2400 MHz Radio Frequency-Electromagnetic Fields Radiation

Authors: Neha Singh, Anuj Ranjan, Tanu Jindal

Abstract:

Over the last decade, the exponential growth of mobile communication has been accompanied by a parallel increase in density of electromagnetic fields (EMF). The continued expansion of mobile phone usage raises important questions as EMF, especially radio frequency (RF), have long been suspected of having biological effects. In the present experiments, we studied the effects of RF-EMF on cell death (apoptosis) and DNA damage of a well- tested biological model, Drosophila melanogaster exposed to 2400 MHz frequency for different time duration i.e. 2 hrs, 4 hrs, 6 hrs,8 hrs, 10 hrs, and 12 hrs each day for five continuous days in ambient temperature and humidity conditions inside an exposure chamber. The flies were grouped into control, sham-exposed, and exposed with 100 flies in each group. In this study, well-known techniques like Comet Assay and TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) Assay were used to detect DNA damage and for apoptosis studies, respectively. Experiments results showed DNA damage in the brain cells of Drosophila which increases as the duration of exposure increases when observed under the observed when we compared results of control, sham-exposed, and exposed group which indicates that EMF radiation-induced stress in the organism that leads to DNA damage and cell death. The process of apoptosis and mutation follows similar pathway for all eukaryotic cells; therefore, studying apoptosis and genotoxicity in Drosophila makes similar relevance for human beings as well.

Keywords: cell death, apoptosis, Comet Assay, DNA damage, Drosophila, electromagnetic fields, EMF, radio frequency, RF, TUNEL assay

Procedia PDF Downloads 143
1186 Phytochemical Screening, Proximate Analysis, Lethality Studies and Anti-Tumor Potential of Annona muricata L. (Soursop) Fruit Extract in Rattus novergicus

Authors: O. C. Abbah, O. Obidoa, J. Omale

Abstract:

Prostate tumor is fast becoming a leading cause of morbidity and mortality in human male adults, with 50 percent of men aged 50 years and above having histological evidence of the benign tumor. The study was set out to undertake phytochemical screening and proximate analysis of the pulp of A. muricata fruit - soursop; to determine the acute toxicity of the fruit pulp extract and its effect on male albino Wistar rats with concurrent induction of experimental benign prostate hyperplasia (BPH). Eighteen rats (average weight of 100g) were used for the lethality studies and were orally administered graded doses of aqueous extracts of the fruit pulp up to 5000 mg/kg body weight. Twenty five rats weighing 150-200g were divided into five groups of five rats each for the tumor studies. The groups included four controls – Hormone control, HC, which took Testosterone, T; and Estradiol, E2 – only, in olive oil as vehicle; Vehicle control, VC; Soursop control, SC, which received the extract only; VS, Vehicle and Soursop – and the Test group, TG (500mg/kg b.w.). All rats were dosed orally. Tumor was induced with exogenous Testosterone propionate: Estradiol valerate at 300µg: 80µg/kg b.w. (respectively) in olive oil, administered subcutaneously in the inguinal region of the rats on alternate days for 21 days. Administration of the fruit pulp at graded doses up to 5000mg/kg resulted in no lethality even after 72 hours. Results from tumor studies revealed that the administration of the fruit extracts significantly (p < 0.05) reduced the relative prostate weight of the TG compared with the HC, with values of 006±0.001 and 0.010±0.003 respectively. Treatment with vehicle, soursop and vehicle with soursop caused no significant (p>0.05) change in prostate size, with their respective relative prostate weights being 0.002±0.001, 0.004±0.002 and 0.002±0.001 compared with TG. Also, treatment with A. muricata fruit extract significantly decreased (p < 0.05) serum prostate specific antigen, PSA, in TG compared with HC, with values 0.055±0.017 and 0.194±0.068 ng/ml respectively. Furthermore, A. muricata administration displayed Testosterone boosting, Estradiol lowering and consequently testosterone-estradiol ratio increasing potential at the end of the 21 days. The preventive property of soursop against experimental BPH was corroborated by histological evidence in this study. The study concludes that A. muricata fruit holds a great potential for benign prostate tumor prevention and, possibly, management.

Keywords: annona muricata, benign prostate tumor, hormone, preventive potential, soursop

Procedia PDF Downloads 294
1185 Biological Studies on Producing Samoli Bread Supplement with Irradiated Sunflower Flour by Gamma Rays

Authors: Amal. N. Al-Kuraieef

Abstract:

Smoli bread was made by supplementation sunflower flour which was prepared from sunflower (Dahr-EL-Haea) gray after hilling and milling, flour was irradiated by two doses (5 and 10 kGy). After that, the ratios of irradiated sunflower flour were 5 and 10%. All samples of samoli bread were examined for organoleptic and biological evaluation. Biological assay (PER, NPU, FE, DC and BV) was carried out on rats fed 5 and 10% irradiated and non-irradiated sunflower Samoli bread. Results obtained showed that, total lipids, cholesterol and triglycerides were reduced comparable, to that of casein. Also, figures of the biological evaluations were higher than those of the control samoli bread and improved its nutritive values.

Keywords: gamma rays, sunflower, samoli bread, cholesterol, lipids, triglycerides

Procedia PDF Downloads 142
1184 A Corporate Social Responsibility Project to Improve the Democratization of Scientific Education in Brazil

Authors: Denise Levy

Abstract:

Nuclear technology is part of our everyday life and its beneficial applications help to improve the quality of our lives. Nevertheless, in Brazil, most often the media and social networks tend to associate radiation to nuclear weapons and major accidents, and there is still great misunderstanding about the peaceful applications of nuclear science. The Educational Portal Radioatividades (Radioactivities) is a corporate social responsibility initiative that takes advantage of the growing impact of Internet to offer high quality scientific information for teachers and students throughout Brazil. This web-based initiative focusses on the positive applications of nuclear technology, presenting the several contributions of ionizing radiation in different contexts, such as nuclear medicine, agriculture techniques, food safety and electric power generation, proving nuclear technology as part of modern life and a must to improve the quality of our lifestyle. This educational project aims to contribute for democratization of scientific education and social inclusion, approaching society to scientific knowledge, promoting critical thinking and inspiring further reflections. The website offers a wide variety of ludic activities such as curiosities, interactive exercises and short courses. Moreover, teachers are offered free web-based material with full instructions to be developed in class. Since year 2013, the project has been developed and improved according to a comprehensive study about the realistic scenario of ICTs infrastructure in Brazilian schools and in full compliance with the best e-learning national and international recommendations.

Keywords: information and communication technologies, nuclear technology, science communication, society and education

Procedia PDF Downloads 303
1183 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys

Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze

Abstract:

At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.

Keywords: internal friction, shear modulus, gamma-irradiation, SiGe alloys

Procedia PDF Downloads 126
1182 Performance of the Photovoltaic Module under Different Shading Patterns

Authors: E. T. El Shenawy, O. N. A. Esmail, Adel A. Elbaset, Hesham F. A. Hamed

Abstract:

Generation of the electrical energy based on photovoltaic (PV) technology has been increased over the world due to either the continuous reduction in the traditional energy sources in addition to the pollution problems related to their usage, or the clean nature and safe usage of the PV technology. Also, PV systems can generate clean electricity in the site of use without any transmission, which can be considered cost effective than other generation systems. The performance of the PV system is highly affected by the amount of solar radiation incident on it. Completely or partially shaded PV systems can affect its output. The PV system can be shaded by trees, buildings, dust, incorrect system configuration, or other obstacles. The present paper studies the effect of the partial shading on the performance of a thin film PV module under climatic conditions of Cairo, Egypt. This effect was measured and evaluated according to practical measurement of the characteristic curves such as current-voltage and power-voltage for two identical PV modules (with and without shading) placed at the same time on one mechanical structure for comparison. The measurements have been carried out for the following shading patterns; half cell (bottom, middle, and top of the PV module); complete cell; and two adjacent cells. The results showed that partially shading the PV module changes the shapes of the I-V and P-V curves and produces more than one maximum power point, that can disturb the traditional maximum power point trackers. Also, the output power from the module decreased according to the incomplete solar radiation reaching the PV module due to shadow patterns. The power loss due shading was 7%, 22%, and 41% for shading of half-cell, one cell, and two adjacent cells of the PV module, respectively.

Keywords: I-V measurements, PV module characteristics, PV module power loss, PV module shading

Procedia PDF Downloads 121
1181 Vitamin D Intoxication with Hypercalcemia Due to Overuse of Supplement

Authors: Sara Ataei, Mohammad Bagher Oghazian, Mania Radfar

Abstract:

We describe a patient with hypercalcemia associated with the injection of high doses vitamin D as supplement for a period of six months. A 76-year-old woman had been taking an intramuscular injection of vitamin D 300,000 IU every ten days for six months. She was hospitalized with symptoms of hypercalcemia: chronic constipation, unstable gait, a chronic generalized musculoskeletal pain and increased fatigue. On admission her 25 (OH) vitamin D and Calcium levels were 559 nmol/L and 13.85 mg/dL respectively, and Parathyroid Hormone (PTH) level was 7.1 pg/mL. Immediately she received diuresis therapy with saline and furosemide in conjunction with calcitonin and pamidronate. At discharge her serum calcium level was 11.5 mg/dL. To lower endogenous overproduction of calcitriol, prednisolone 20 mg/day for 10 days was administered at discharge time.

Keywords: vitamin D, hypercalcemia, vitamin D toxicity, parathyroid hormone

Procedia PDF Downloads 473
1180 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome

Authors: Agada N. Ihuoma, Nagata Yasunori

Abstract:

Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.

Keywords: artificial Intelligence, backward elimination, linear regression, solar energy

Procedia PDF Downloads 147
1179 Bioinsecticidal Activity and Phytochemical Study of the Crude Extract from the Plant Artemisia judaica

Authors: Fatma Acheuk, Idir Bitam, Leila Bendifallah, Malika Ramdani, Fethia Barika

Abstract:

Phytochemical study of the plant Artemisia judaica showed the presence of various groups of natural products: saponins, tannins, coumarins, flavonoids, carbohydrates, and reducer compounds. However, alkaloids are present as traces. The crude ethanol extract of the test plant presented significant insecticidal activity on mosquito larvae in stage I, II and III. The LD50 highlighted the excellent insecticidal effect of the tested extract. Similarly, the LT50 are achieved early with high doses. The results obtained are encouraging and suggest the possibility of using the secondary metabolites of this plant such as bio-insecticide.

Keywords: Atamisia judaica, crud extract, mosquito, insecticidal activity

Procedia PDF Downloads 498
1178 Heat Transfer Phenomena Identification of a Non-Active Floor in a Stack-Ventilated Building in Summertime: Empirical Study

Authors: Miguel Chen Austin, Denis Bruneau, Alain Sempey, Laurent Mora, Alain Sommier

Abstract:

An experimental study in a Plus Energy House (PEH) prototype was conducted in August 2016. It aimed to highlight the energy charge and discharge of a concrete-slab floor submitted to the day-night-cycles heat exchanges in the southwestern part of France and to identify the heat transfer phenomena that take place in both processes: charge and discharge. The main features of this PEH, significant to this study, are the following: (i) a non-active slab covering the major part of the entire floor surface of the house, which include a concrete layer 68 mm thick as upper layer; (ii) solar window shades located on the north and south facades along with a large eave facing south, (iii) large double-glazed windows covering the majority of the south facade, (iv) a natural ventilation system (NVS) composed by ten automatized openings with different dimensions: four are located on the south facade, four on the north facade and two on the shed roof (north-oriented). To highlight the energy charge and discharge processes of the non-active slab, heat flux and temperature measurement techniques were implemented, along with airspeed measurements. Ten “measurement-poles” (MP) were distributed all over the concrete-floor surface. Each MP represented a zone of measurement, where air and surface temperatures, and convection and radiation heat fluxes, were intended to be measured. The airspeed was measured only at two points over the slab surface, near the south facade. To identify the heat transfer phenomena that take part in the charge and discharge process, some relevant dimensionless parameters were used, along with statistical analysis; heat transfer phenomena were identified based on this analysis. Experimental data, after processing, had shown that two periods could be identified at a glance: charge (heat gain, positive values) and discharge (heat losses, negative values). During the charge period, on the floor surface, radiation heat exchanges were significantly higher compared with convection. On the other hand, convection heat exchanges were significantly higher than radiation, in the discharge period. Spatially, both, convection and radiation heat exchanges are higher near the natural ventilation openings and smaller far from them, as expected. Experimental correlations have been determined using a linear regression model, showing the relation between the Nusselt number with relevant parameters: Peclet, Rayleigh, and Richardson numbers. This has led to the determination of the convective heat transfer coefficient and its comparison with the convective heat coefficient resulting from measurements. Results have shown that forced and natural convection coexists during the discharge period; more accurate correlations with the Peclet number than with the Rayleigh number, have been found. This may suggest that forced convection is stronger than natural convection. Yet, airspeed levels encountered suggest that it is natural convection that should take place rather than forced convection. Despite this, Richardson number values encountered indicate otherwise. During the charge period, air-velocity levels might indicate that none air motion occurs, which might lead to heat transfer by diffusion instead of convection.

Keywords: heat flux measurement, natural ventilation, non-active concrete slab, plus energy house

Procedia PDF Downloads 402
1177 Phytochemical Study and Bioinsecticidal Effect of the Crude Extract from the Plant Artemisia Judaica

Authors: Fatma Acheuk, Idir Bitam, Leila Bendifallah, Malika Ramdani, Fethia Barika

Abstract:

Phytochemical study of the plant Artemisia judaica showed the presence of various groups of natural products: saponins, tannins, coumarins, flavonoids, carbohydrates, and reducer compounds. However alkaloids are present as traces. The crude ethanol extract of the test plant presented significant insecticidal activity on mosquito larvae in stage I, II, and III. The LD50 highlighted the excellent insecticidal effect of the tested extract. Similarly, the LT50 are achieved early with high doses. The results obtained are encouraging and suggest the possibility of using the secondary metabolites of this plant such as bio-insecticide.

Keywords: Atamisia judaica, crud extract, mosquito, insecticidal activity

Procedia PDF Downloads 570
1176 A Prospective Study of a Clinically Significant Anatomical Change in Head and Neck Intensity-Modulated Radiation Therapy Using Transit Electronic Portal Imaging Device Images

Authors: Wilai Masanga, Chirapha Tannanonta, Sangutid Thongsawad, Sasikarn Chamchod, Todsaporn Fuangrod

Abstract:

The major factors of radiotherapy for head and neck (HN) cancers include patient’s anatomical changes and tumour shrinkage. These changes can significantly affect the planned dose distribution that causes the treatment plan deterioration. A measured transit EPID images compared to a predicted EPID images using gamma analysis has been clinically implemented to verify the dose accuracy as part of adaptive radiotherapy protocol. However, a global gamma analysis dose not sensitive to some critical organ changes as the entire treatment field is compared. The objective of this feasibility study is to evaluate the dosimetric response to patient anatomical changes during the treatment course in HN IMRT (Head and Neck Intensity-Modulated Radiation Therapy) using a novel comparison method; organ-of-interest gamma analysis. This method provides more sensitive to specific organ change detection. Random replanned 5 HN IMRT patients with causes of tumour shrinkage and patient weight loss that critically affect to the parotid size changes were selected and evaluated its transit dosimetry. A comprehensive physics-based model was used to generate a series of predicted transit EPID images for each gantry angle from original computed tomography (CT) and replan CT datasets. The patient structures; including left and right parotid, spinal cord, and planning target volume (PTV56) were projected to EPID level. The agreement between the transit images generated from original CT and replanned CT was quantified using gamma analysis with 3%, 3mm criteria. Moreover, only gamma pass-rate is calculated within each projected structure. The gamma pass-rate in right parotid and PTV56 between predicted transit of original CT and replan CT were 42.8%( ± 17.2%) and 54.7%( ± 21.5%). The gamma pass-rate for other projected organs were greater than 80%. Additionally, the results of organ-of-interest gamma analysis were compared with 3-dimensional cone-beam computed tomography (3D-CBCT) and the rational of replan by radiation oncologists. It showed that using only registration of 3D-CBCT to original CT does not provide the dosimetric impact of anatomical changes. Using transit EPID images with organ-of-interest gamma analysis can provide additional information for treatment plan suitability assessment.

Keywords: re-plan, anatomical change, transit electronic portal imaging device, EPID, head, and neck

Procedia PDF Downloads 201
1175 Impact of α-Adrenoceptor Antagonists on Biochemical Relapse in Men Undergoing Radiotherapy for Localised Prostate Cancer

Authors: Briohny H. Spencer, Russ Chess-Williams, Catherine McDermott, Shailendra Anoopkumar-Dukie, David Christie

Abstract:

Background: Prostate cancer is the second most common cancer diagnosed in men worldwide and the most prevalent in Australian men. In 2015, it was estimated that approximately 18,000 new cases of prostate cancer were diagnosed in Australia. Currently, for localised disease, androgen depravation therapy (ADT) and radiotherapy are a major part of the curative management of prostate cancer. ADT acts to reduce the levels of circulating androgens, primarily testosterone and the locally produced androgen, dihydrotestosterone (DHT), or by preventing the subsequent activation of the androgen receptor. Thus, the growth of the cancerous cells can be reduced or ceased. Radiation techniques such as brachytherapy (radiation delivered directly to the prostate by transperineal implant) or external beam radiation therapy (exposure to a sufficient dose of radiation aimed at eradicating malignant cells) are also common techniques used in the treatment of this condition. Radiotherapy (RT) has significant limitations, including reduced effectiveness in treating malignant cells present in hypoxic microenvironments leading to radio-resistance and poor clinical outcomes and also the significant side effects for the patients. Alpha1-adrenoceptor antagonists are used for many prostate cancer patients to control lower urinary tract symptoms, due to the progression of the disease itself or may arise as an adverse effect of the radiotherapy treatment. In Australia, a significant number (not a majority) of patients receive a α1-ADR antagonist and four drugs are available including prazosin, terazosin, alfuzosin and tamsulosin. There is currently limited published data on the effects of α1-ADR antagonists during radiotherapy, but it suggests these medications may improve patient outcomes by enhancing the effect of radiotherapy. Aim: To determine the impact of α1-ADR antagonists treatments on time to biochemical relapse following radiotherapy. Methods: A retrospective study of male patients receiving radiotherapy for biopsy-proven localised prostate cancer was undertaken to compare cancer outcomes for drug-naïve patients and those receiving α1-ADR antagonist treatments. Ethical approval for the collection of data at Genesis CancerCare QLD was obtained and biochemical relapse (defined by a PSA rise of >2ng/mL above the nadir) was recorded in months. Rates of biochemical relapse, prostate specific antigen doubling time (PSADT) and Kaplan-Meier survival curves were also compared. Treatment groups were those receiving α1-ADR antagonists treatment before or concurrent with their radiotherapy. Data was statistically analysed using One-way ANOVA and results expressed as mean ± standard deviation. Major findings: The mean time to biochemical relapse for tamsulosin, prazosin, alfuzosin and controls were 45.3±17.4 (n=36), 41.5±19.6 (n=11), 29.3±6.02 (n=6) and 36.5±17.6 (n=16) months respectively. Tamsulosin, prazosin but not alfuzosin delayed time to biochemical relapse although the differences were not statistically significant. Conclusion: Preliminary data for the prior and/or concurrent use of tamsulosin and prazosin showed a positive trend in delaying time to biochemical relapse although no statistical significance was shown. Larger clinical studies are indicated and with thousands of patient records yet to be analysed, it may determine if there is a significant effect of these drugs on control of prostate cancer.

Keywords: alpha1-adrenoceptor antagonists, biochemical relapse, prostate cancer, radiotherapy

Procedia PDF Downloads 359
1174 The Impact of the New Head Injury Pathway on the Number of CTs Performed in a Paediatric Population

Authors: Amel M. A. Osman, Roy Mahony, Lisa Dann, McKenna S.

Abstract:

Background: Computed Tomography (CT) is a significant source of radiation in the pediatric population. A new head injury (HI) pathway was introduced in 2021, which altered the previous process of HI being jointly admitted with general pediatrics and surgery to admit these patients under the Emergency Medicine Team. Admitted patients included those with positive CT findings not requiring immediate neurosurgical intervention and those who did not meet current criteria for urgent CT brain as per NICE guidelines but were still symptomatic for prolonged observations. This approach aims to decrease the number of CT scans performed. The main aim is to assess the variation in CT scanning rates since the change in the admitting process. A retrospective review of patients presenting to CHI PECU with HI over 6-month period (01/01/19-31/05/19) compared to a 6-month period post introduction of the new pathway (01/06/2022-31/12/2022). Data was collected from the electronic record databases, symphony, and PACS. Results: In 2019, there were 869 presentations of HI, among which 32 (3.68%) had CT scans performed. 2 (6.25%) of those scanned had positive findings. In 2022, there were 1122 HI presentations, with 47 (4.19%) CT scans performed and positive findings in 5 (10.6%) cases. 57 patients were admitted under the new pathway for observation, with 1 having a CT scan following admission. Conclusion: Quantitative lifetime radiation risks for children are not negligible. While there was no statistically significant reduction in CTs performed amongst HIs presenting to our department, a significant group met the criteria for admission under the PECU consultant for prolonged monitoring. There was also a greater proportion of abnormalities on CT scans performed in 2022, demonstrating improved patient selection for imaging. Further data analysis is ongoing to determine if those who were admitted would have previously been scanned under the old pathway.

Keywords: head injury, CT, admission, guidline

Procedia PDF Downloads 37
1173 Novel EGFR Ectodomain Mutations and Resistance to Anti-EGFR and Radiation Therapy in H&N Cancer

Authors: Markus Bredel, Sindhu Nair, Hoa Q. Trummell, Rajani Rajbhandari, Christopher D. Willey, Lewis Z. Shi, Zhuo Zhang, William J. Placzek, James A. Bonner

Abstract:

Purpose: EGFR-targeted monoclonal antibodies (mAbs) provide clinical benefit in some patients with H&N squamous cell carcinoma (HNSCC), but others progress with minimal response. Missense mutations in the EGFR ectodomain (ECD) can be acquired under mAb therapy by mimicking the effect of large deletions on receptor untethering and activation. Little is known about the contribution of EGFR ECD mutations to EGFR activation and anti-EGFR response in HNSCC. Methods: We selected patient-derived HNSCC cells (UM-SCC-1) for resistance to mAb Cetuximab (CTX) by repeated, stepwise exposure to mimic what may occur clinically and identified two concurrent EGFR ECD mutations (UM-SCC-1R). We examined the competence of the mutants to bind EGF ligand or CTX. We assessed the potential impact of the mutations through visual analysis of space-filling models of the native sidechains in the original structures vs. their respective side-chain mutations. We performed CRISPR in combination with site-directed mutagenesis to test for the effect of the mutants on ligand-independent EGFR activation and sorting. We determined the effects on receptor internalization, endocytosis, downstream signaling, and radiation sensitivity. Results: UM-SCC-1R cells carried two non-synonymous missense mutations (G33S and N56K) mapping to domain I in or near the EGF binding pocket of the EGFR ECD. Structural modeling predicted that these mutants restrict the adoption of a tethered, inactive EGFR conformation while not permitting association of EGFR with the EGF ligand or CTX. Binding studies confirmed that the mutant, untethered receptor displayed a reduced affinity for both EGF and CTX but demonstrated sustained activation and presence at the cell surface with diminished internalization and sorting for endosomal degradation. Single and double-mutant models demonstrated that the G33S mutant is dominant over the N56K mutant in its effect on EGFR activation and EGF binding. CTX-resistant UM-SCC-1R cells demonstrated cross-resistance to mAb Panitumuab but, paradoxically, remained sensitive to the reversible receptor tyrosine kinase inhibitor Erlotinib. Conclusions: HNSCC cells can select for EGFR ECD mutations under EGFR mAb exposure that converge to trap the receptor in an open, constitutively activated state. These mutants impede the receptor’s competence to bind mAbs and EGF ligand and alter its endosomal trafficking, possibly explaining certain cases of clinical mAb and radiation resistance.

Keywords: head and neck cancer, EGFR mutation, resistance, cetuximab

Procedia PDF Downloads 73
1172 Bionaut™: A Microrobotic Drug-Device Platform for the Local Treatment of Brainstem Gliomas

Authors: Alex Kiselyov, Suehyun Cho, Darrell Harrington; Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Michael Shpigelmacher

Abstract:

Despite the most aggressive surgical and adjuvant therapeutic strategies, treatment of both pediatric and adult brainstem tumors remains problematic. Novel strategies, including targeted biologics, immunotherapy, and specialized delivery systems such as convection-enhanced delivery (CED), have been proposed. While some of these novel treatments are entering phase I trials, the field is still in need of treatment(s) that exhibits dramatically enhanced potency with optimal therapeutic ratio. Bionaut Labs has developed a modular microrobotic platform for performing localized delivery of diverse therapeutics in vivo. Our biocompatible particles (Bionauts™) are externally propelled and visualized in real-time. Bionauts™ are specifically designed to enhance the effect of radiation therapy via anatomically precise delivery of a radiosensitizing agent, as exemplified by temozolomide (TMZ) and Avastin™ to the brainstem gliomas of diverse origin. The treatment protocol is designed to furnish a better therapeutic outcome due to the localized (vs systemic) delivery of the drug to the neoplastic lesion(s) for use as a synergistic combination of radiation and radiosensitizing agent. In addition, the procedure is minimally invasive and is expected to be appropriate for both adult and pediatric patients. Current progress, including platform optimization, selection of the lead radiosensitizer as well as in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of porcine and ovine models, will be discussed.

Keywords: Bionaut, brainstem, glioma, local delivery, micro-robot, radiosensitizer

Procedia PDF Downloads 179
1171 Efficacy of Some Plant Extract against Larvae and Pupae of American Bollworm (Helicoverpa armigera) including the Effect on Peritropme Membrane

Authors: Deepali Lal, Sudha Summerwar, Jyoutsna Pandey

Abstract:

The resistance of pesticide by the pest is an important matter of concern.The pesticide of plant origin having nontoxic biodegradable and environmentally friendly qualities. The frequent spraying of toxic chemicals is developing resistance to the pesticide. Leaf powder of the plants like Argimone mexicana and Calotropis procera is prepared, Different doses of these plant extracts are given to the Fourth in star stages of Helicoverpa armigera through feeding methods, to find their efficacy the experimental findings will be put under analysis using various parameters. The effect on paritrophic membrane is also studied.

Keywords: distillation plant, acetone, alcohol, pipette, castor leaves, grams pods, larvae of helicoverpa armigera, plant extract, vails, jars, cotton

Procedia PDF Downloads 293
1170 Radon-222 Concentration and Potential Risk to Workers of Al-Jalamid Phosphate Mines, North Province, Saudi Arabia

Authors: El-Said. I. Shabana, Mohammad S. Tayeb, Maher M. T. Qutub, Abdulraheem A. Kinsara

Abstract:

Usually, phosphate deposits contain 238U and 232Th in addition to their decay products. Due to their different pathways in the environment, the 238U/232Th activity concentration ratio usually found to be greater than unity in phosphate sediments. The presence of these radionuclides creates a potential need to control exposure of workers in the mining and processing activities of the phosphate minerals in accordance with IAEA safety standards. The greatest dose to workers comes from exposure to radon, especially 222Rn from the uranium series, and has to be controlled. In this regard, radon (222Rn) was measured in the atmosphere (indoor and outdoor) of Al-Jalamid phosphate-mines working area using a portable radon-measurement instrument RAD7, in a purpose of radiation protection. Radon was measured in 61 sites inside the open phosphate mines, the phosphate upgrading facility (offices and rooms of the workers, and in some open-air sites) and in the dwellings of the workers residence-village that lies at about 3 km from the mines working area. The obtained results indicated that the average indoor radon concentration was about 48.4 Bq/m3. Inside the upgrading facility, the average outdoor concentrations were 10.8 and 9.7 Bq/m3 in the concentrate piles and crushing areas, respectively. It was 12.3 Bq/m3 in the atmosphere of the open mines. These values are comparable with the global average values. Based on the average values, the annual effective dose due to radon inhalation was calculated and risk estimates have been done. The average annual effective dose to workers due to the radon inhalation was estimated by 1.32 mSv. The potential excess risk of lung cancer mortality that could be attributed to radon, when considering the lifetime exposure, was estimated by 53.0x10-4. The results have been discussed in detail.

Keywords: dosimetry, environmental monitoring, phosphate deposits, radiation protection, radon

Procedia PDF Downloads 257
1169 All-Optical Gamma-Rays and Positrons Source by Ultra-Intense Laser Irradiating an Al Cone

Authors: T. P. Yu, J. J. Liu, X. L. Zhu, Y. Yin, W. Q. Wang, J. M. Ouyang, F. Q. Shao

Abstract:

A strong electromagnetic field with E>1015V/m can be supplied by an intense laser such as ELI and HiPER in the near future. Exposing in such a strong laser field, laser-matter interaction enters into the near quantum electrodynamics (QED) regime and highly non-linear physics may occur during the laser-matter interaction. Recently, the multi-photon Breit-Wheeler (BW) process attracts increasing attention because it is capable to produce abundant positrons and it enhances the positron generation efficiency significantly. Here, we propose an all-optical scheme for bright gamma rays and dense positrons generation by irradiating a 1022 W/cm2 laser pulse onto an Al cone filled with near-critical-density plasmas. Two-dimensional (2D) QED particle-in-cell (PIC) simulations show that, the radiation damping force becomes large enough to compensate for the Lorentz force in the cone, causing radiation-reaction trapping of a dense electron bunch in the laser field. The trapped electrons oscillate in the laser electric field and emits high-energy gamma photons in two ways: (1) nonlinear Compton scattering due to the oscillation of electrons in the laser fields, and (2) Compton backwardscattering resulting from the bunch colliding with the reflected laser by the cone tip. The multi-photon Breit-Wheeler process is thus initiated and abundant electron-positron pairs are generated with a positron density ~1027m-3. The scheme is finally demonstrated by full 3D PIC simulations, which indicate the positron flux is up to 109. This compact gamma ray and positron source may have promising applications in future.

Keywords: BW process, electron-positron pairs, gamma rays emission, ultra-intense laser

Procedia PDF Downloads 247
1168 High-Rise Building with PV Facade

Authors: Jiří Hirš, Jitka Mohelnikova

Abstract:

A photovoltaic system integrated into a high-rise building façade was studied. The high-rise building is located in the Central Europe region with temperate climate and dominant partly cloudy and overcast sky conditions. The PV façade has been monitored since 2013. The three-year monitoring of the façade energy generation shows that the façade has an important impact on the building energy efficiency and sustainable operation.

Keywords: buildings, energy, PV façade, solar radiation

Procedia PDF Downloads 285
1167 Effective of Different Doses of Bacterial Insecticide Against Trogoderma Granarium (Everts)

Authors: Fatima Huda Hallak

Abstract:

The current study aimed to evaluate the activity of bacterial insecticide Vertinic against the second star larvae of Trogoderma granarium (Everts) by four treatments: A, B, C, D, at seven concentrations: 0.001, 0.01, 0.1,1,10,100,1000 PPM. The mortality rate of larvae was 100% at concentrations 10 and 100 in treatments A and B after 24 hours and after 48 hours in treatment D at 1 PPM. The efficiency of treatment A was greater as compared to treatment B at all concentrations and all exposure times. The efficiency of treatment D was greater as compared to treatment C; for example, at 0.001, 0.01, 0.1, 1 PPM, after 120 hours, the Mortality rate of larve was 6.76, 13.33, 43.33, 100% in treatment D, which it was 0.00, 0.00, 23.33, 96.67%, respectively in the treatment C.

Keywords: bacterial insecticide, trogoderma granarium (everts), fourth star larvae, vertimic

Procedia PDF Downloads 39
1166 Cross-Dipole Right-Hand Circularly Polarized UHF/VHF Yagi-Uda Antenna for Satellite Applications

Authors: Shativel S., Chandana B. R., Kavya B. C., Obli B. Vikram, Suganthi J., Nagendra Rao G.

Abstract:

Satellite communication plays a pivotal role in modern global communication networks, serving as a vital link between terrestrial infrastructure and remote regions. The demand for reliable satellite reception systems, especially in UHF (Ultra High Frequency) and VHF (Very High Frequency) bands, has grown significantly over the years. This research paper presents the design and optimization of a high-gain, dual-band crossed Yagi-Uda antenna in CST Studio Suite, specifically tailored for satellite reception. The proposed antenna system incorporates a circularly polarized (Right-Hand Circular Polarization - RHCP) design to reduce Faraday loss. Our aim was to use fewer elements and achieve gain, so the antenna is constructed using 6x2 elements arranged in cross dipole and supported with a boom. We have achieved 10.67dBi at 146MHz and 9.28dBi at 437.5MHz.The process includes parameter optimization and fine-tuning of the Yagi-Uda array’s elements, such as the length and spacing of directors and reflectors, to achieve high gain and desirable radiation patterns. Furthermore, the optimization process considers the requirements for UHF and VHF frequency bands, ensuring broad frequency coverage for satellite reception. The results of this research are anticipated to significantly contribute to the advancement of satellite reception systems, enhancing their capabilities to reliably connect remote and underserved areas to the global communication network. Through innovative antenna design and simulation techniques, this study seeks to provide a foundation for the development of next-generation satellite communication infrastructure.

Keywords: Yagi-Uda antenna, RHCP, gain, UHF antenna, VHF antenna, CST, radiation pattern.

Procedia PDF Downloads 47