Search results for: nursing interventions classification
3973 Nurses' Knowledge and Practice Regarding Care of Patients Connected to Intra-Aortic Balloon Pump at Cairo University Hospitals
Authors: Tharwat Ibrahim Rushdy, Warda Youssef Mohammed Morsy, Hanaa Ali Ahmed Elfeky
Abstract:
Background: Intra-aortic balloon pump (IABP) is the first and the most commonly used mechanical circulatory support for patients with acute coronary syndromes and cardiogenic shock. Therefore, critical care nurses not only have to know how to monitor and operate the IABP, but also to provide interventions for preventing possible complications. Aim of the study: To assess nurses' knowledge and practices regarding care of patients connected to IABP at the ICUs of Cairo University Hospitals. Research design: A descriptive exploratory design was utilized. Sample: Convenience samples of 40 nurses were included in the current study. Setting: This study was carried out at the Intensive Care Units of Cairo University Hospitals. Tools of data collection: Three tools were developed, tested for clarity, and feasibility: a- Nurses' personal background sheet, b- IABP nurses' knowledge self-administered questionnaire, and c- IABP Nurses' practice observational checklist. Results: The majority of the studied sample had unsatisfactory knowledge and practice level (88% & 95%) respectively with a mean of 9.45+2.94 and 30.5+8.7, respectively. Unsatisfactory knowledge was found regarding description and physiological effects, nursing care, indications, contraindications, complications, weaning, and removal of IABP in percentage of 95%, 90%, 72.5%, and 57.5%, respectively, with a mean total knowledge score of 9.45 +2.94. In addition, unsatisfactory practice was found regarding about preparation and initiation of IABP therapy, nursing practice during therapy, weaning, and removal of IABP in percentages of (97.5%, 97.5%, and 90%), respectively. Finally, knowledge level was found to differ significantly in relation to gender (t = 2.46 at P ≤ 0.018). However, gender didn't play a role in relation to practice (t = 0.086 at P≤ 0.932). Conclusion: In spite of having vital role in assessment and management of critically ill patients, critical care nurses in the current study had in general unsatisfactory knowledge and practice regarding care of patients connected to IABP. Recommendation: updating knowledge and practice of ICU nurses through carrying out continuing educational programs about IABP; strict observation of nurses' practice when caring for patients connected to IABP and provision of guidance to correct of poor practices and replication of this study on larger probability sample selected from different geographical locations.Keywords: knowledge, practice, intra-aortic balloon pump (IABP), ICU nurses, intensive care unit (ICU), introduction
Procedia PDF Downloads 4973972 Decision Making System for Clinical Datasets
Authors: P. Bharathiraja
Abstract:
Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.Keywords: decision making, data mining, normalization, fuzzy rule, classification
Procedia PDF Downloads 5173971 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification
Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang
Abstract:
This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI
Procedia PDF Downloads 1013970 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis
Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin
Abstract:
Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis
Procedia PDF Downloads 2023969 The Effects of Critical Incident Stress Debriefing and Other Related Interventions on the Psychological Recovery of Earthquake Survivors
Authors: Joyce Fernandez
Abstract:
This study examined the effects of critical incident stress debriefing and other related interventions on the psychological recovery of earthquake survivors. It is a mixed experimental and qualitative study using post-test only control group design and focus group discussion. After the conduct of critical incident stress debriefing activities and other related interventions in the form of counseling and psychiatric treatment to the survivors of a 6.9 magnitude earthquake, a post-test measuring the level of psychological recovery was given to randomized participants categorized as intervention and control groups. Using the traumatic assessment and belief scale as instrument for the quantitative aspect in order to gauge recovery in the psychological need areas of safety, trust, esteem, intimacy and control, the findings are the following: Intervention group participants have relatively better adjustment along the five psychological need areas compared to the control group participants; there is no significant difference in the psychological recovery among female and male participants of the invention and control groups and; there are significant differences between intervention and control groups in the psychological need areas of self-safety, self-trust, other-trust, self-esteem, and self-intimacy. Using a guided interview for the qualitative data, the themes derived are the following. Safety: The world is an unsafe place to live because of the calamities. Trust: Trust and dependence are anchored on the family. Esteem: Participants are having confused self-worth. Intimacy: Participants are thriving on attachment with their family. Control: Participants have unaltered desire to help but feeling restricted because of personal and logistical concerns.As an outcome of the study a Psychosocial Care Program for Individuals, Families and Communities Affected by Disaster and Trauma was proposed.Keywords: critical incident stress debriefing, earthquake survivors, psychological recovery, related interventions
Procedia PDF Downloads 2933968 Establishment of Nursing School in the Backward Region of Nepal
Authors: Shyam lamsal
Abstract:
Introduction: Karnali Academy of Health Sciences (KAHS) has been established in 2011, by an Act of parliament of Nepal, in Jumla, to provide health services in easy way in backward areas, to produce skilled health professionals & conduct research. The backward areas mentioned in act of KAHS are Humla, Jumla, Kalikot, Dolpa, Mugu districts of Karnali zone, Jajarkot district of Bheri zone & Bajura, Baghang & Achham districts of Seti zone in Nepal occupying around 25 % of the total national geography. Backward area of Nepal is specific to having worst health indicators with life expectancy (47 years), HDI (0.35), Literacy rate (58%), global acute malnutrition (13%), crude birth rate (33.6), crude death rate (9.6), Total fertility rate (4.2), infant mortality rate (61.5 per 1000 live births), under five mortality rate (59 per 1000 live births) and maternal mortality ratio (400 per 1000 live births). History of health facilities in backward region: All the nine districts of this region have a district hospital with very few grass root level health manpower. Government of Nepal regularly deploys one or two medical officers to each district who generally are not regular to their care. Jumla district itself was having one medical officer before the establishment of KAHS. Development activities: Establishment of 100 bedded specialty teaching hospital with 10 medical officers and five specialists, accredited its own nursing school for running diploma nursing programme, started “Karnali health survey” which covers 55 thousand households of backward region, started community care and school health camps, planning phase completed for 300 bedded teaching hospital construction. Future Plan: Expansion of the teaching hospital to 300 beds within 3 years, start health assistant and bachelor midwifery course in 2015 AD, start bachelor in laboratory and bachelor in public health course in 2016 AD and start MBBS course in 2018 AD. Deploy the medical officers and family physicians to all the district hospitals within 3 years. KAHS provides reservation up to 45% students from backward region with the commitment to stay for at least five years of their service period. Conclusion: This institution may be the example for the rest of the world in providing nursing care, education in remote areas as well as the best model for nursing manpower retention in remote areas of developing countries.Keywords: backward area, nursing school
Procedia PDF Downloads 3203967 Refining Sexual Assault Treatment: Recovered Survivors and Expert Therapists Concur on Effective Therapy Components
Authors: Avigail Moor, Michal Otmazgin, Hagar Tsiddon, Avivit Mahazri
Abstract:
The goal of the present study was to refine sexual assault therapy through the examination of the level of agreement between survivor and therapist assessments of key recovery-promoting therapeutic interventions. This is the first study to explore the level of agreement between those who partake in the treatment process from either position. Semi structured interviews were conducted in this qualitative study with 10 survivors and 10 experienced therapists. The results document considerable concurrence between them regarding relational and trauma processing treatment components alike. Together, these reports outline key effective interventions, both common and specific in nature, concomitantly supported by both groups.Keywords: sexual assault, rape treatment, therapist training, psychotherapy
Procedia PDF Downloads 573966 Comparison the Effectiveness of Pain Cognitive- Behavioral Therapy and Its Computerized Version on Reduction of Pain Intensity, Depression, Anger and Anxiety in Children with Cancer: A Randomized Controlled Trial
Authors: Najmeh Hamid, Vajiheh Hamedy , Zahra Rostamianasl
Abstract:
Background: Cancer is one of the medical problems that have been associated with pain. Moreover, the pain is combined with negative emotions such as anxiety, depression and anger. Poor pain management causes negative effects on the quality of life, which results in negative effects that continue a long time after the painful experiences. Objectives: The aim of this research was to compare the effectiveness of Common Cognitive Behavioral Therapy for Pain and its computerized version on the reduction of pain intensity, depression, anger and anxiety in children with cancer. Methods: The research method of this “Randomized Controlled Clinical Trial” was a pre, post-test and follow-up with a control group. In this research, we have examined the effectiveness of Common Cognitive Behavioral Therapy for Pain and its computerized version on the reduction of pain intensity, anxiety, depression and anger in children with cancer in Ahvaz. Two psychological interventions (cognitive behavioral therapy for pain and the computerized version) were compared with the control group. The sample consisted of 60 children aged 8 to 12 years old with different types of cancer at Shafa hospital in Ahwaz. According to the including and excluding criteria such as age, socioeconomic status, clinical diagnostic interview and other criteria, 60 subjects were selected. Then, randomly, 45 subjects were selected. The subjects were randomly divided into three groups of 15 (two experimental and one control group). The research instruments included Spielberger Anxiety Inventory (STAY-2) and International Pain Measurement Scale. The first experimental group received 6 sessions of cognitive-behavioral therapy for 6 weeks, and the second group was subjected to a computerized version of cognitive-behavioral therapy for 6 weeks, but the control group did not receive any interventions. For ethical considerations, a version of computerized cognitive-behavioral therapy was provided to them. After 6 weeks, all three groups were evaluated as post-test and eventually after a one-month follow-up. Results: The findings of this study indicated that both interventions could reduce the negative emotions (pain, anger, anxiety, depression) associated with cancer in children in comparison with a control group (p<0.0001). In addition, there were no significant differences between the two interventions (p<0.01). It means both interventions are useful for reducing the negative effects of pain and enhancing adjustment. Conclusion: we can use CBT in situations in which there is no access to psychologists and psychological services. In addition, it can be a useful alternative to conventional psychological interventions.Keywords: pain, children, psychological intervention, cancer, anger, anxiety, depression
Procedia PDF Downloads 803965 Rehabilitation of Dilapidated Buildings in Morocco: Turning Urban Challenges into Opportunities
Authors: Derradji A., Ben El Mamoun M., Zakaria E., Charadi I. Anrur
Abstract:
The issue of dilapidated buildings represents a significant opportunity for constructive and beneficial interventions in Morocco. Faced with challenges associated with aging constructions and rapid urbanization, the country is committed to developing innovative strategies aimed at revitalizing urban areas and enhancing the sustainability of infrastructure, thereby ensuring citizens' safety. Through targeted investments in the renovation and modernization of existing buildings, Morocco aims to stimulate job creation, boost the local economy, and improve the quality of life for residents. Additionally, the integration of sustainable construction standards and the strengthening of regulations will promote resilient and environmentally friendly urban development. In this proactive perspective, LABOTEST has been commissioned by the National Agency for Urban Renewal (ANRUR) to conduct an in-depth study. This study focuses on the technical expertise of 1800 buildings identified as dilapidated in the prefectures of Rabat and Skhirat-Témara following an initial clearance operation. The primary objective of this initiative is to conduct a comprehensive diagnosis of these buildings and define the necessary interventions to eliminate potential risks while ensuring appropriate treatment. The article presents the adopted intervention methodology, taking into account the social dimensions involved, as well as the results of the technical expertise. These results include the classification of buildings according to their degree of urgency and recommendations for appropriate conservatory measures. Additionally, different pathologies are identified and accompanied by specific treatment proposals for each type of building. Since this study, the adopted approach has been generalized to the entire territory of Morocco. LABOTEST has been solicited by other cities such as Casablanca, Chefchaouen, Ouazzane, Azilal, Bejaad, and Demnate. This extension of the initiative demonstrates Morocco's commitment to addressing urban challenges in a proactive and inclusive manner. These efforts also illustrate the endeavors undertaken to transform urban challenges into opportunities for sustainable development and socio-economic progress for the entire population.Keywords: building, dilapidated, rehabilitation, Morocco
Procedia PDF Downloads 643964 Disconnect between Water, Sanitation and Hygiene Related Behaviours of Children in School and Family
Authors: Rehan Mohammad
Abstract:
Background: Improved Water, Sanitation and Hygiene (WASH) practices in schools ensure children’s health, well-being and cognitive performance. In India under various WASH interventions in schools, teachers, and other staff make every possible effort to educate children about personal hygiene, sanitation practices and harms of open defecation. However, once children get back to their families, they see other practicing inappropriate WASH behaviors, and they consequently start following them. This show disconnect between school behavior and family behavior, which needs to be bridged to achieve desired WASH outcomes. Aims and Objectives: The aim of this study is to assess the factors causing disconnect of WASH-related behaviors between school and the family of children. It also suggests behavior change interventions to bridge the gap. Methodology: The present study has chosen a mixed- method approach. Both quantitative and qualitative methods of data collection have been used in the present study. The purposive sampling for data collection has been chosen. The data have been collected from 20% children in each age group of 04-08 years and 09-12 years spread over three primary schools and 20% of households to which they belong to which is spread over three slum communities in south district of Delhi. Results: The present study shows that despite of several behavior change interventions at school level, children still practice inappropriate WASH behaviors due to disconnect between school and family behaviors. These behaviors show variation from one age group to another. The inappropriate WASH behaviors being practiced by children include open defecation, wrong disposal of garbage, not keeping personal hygiene, not practicing hand washing practices during critical junctures and not washing fruits and vegetables before eating. The present study has highlighted that 80% of children in the age group of 04-08 years still practice inappropriate WASH behaviors when they go back to their families after school whereas, this percentage has reduced to 40% in case of children in the age group 09-12 years. Present study uncovers association between school and family teaching which creates a huge gap between WASH-related behavioral practices. The study has established that children learn and de-learn the WASH behaviors due to the evident disconnect between behavior change interventions at schools and household level. The study has also made it clear that children understand the significance of appropriate WASH practices but owing to the disconnect the behaviors remain unsettled. The study proposes several behavior change interventions to sync the behaviors of children at school and family level to ensure children’s health, well-being and cognitive performance.Keywords: behavioral interventions, child health, family behavior, school behavior, WASH
Procedia PDF Downloads 1113963 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1673962 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1593961 Computer Assisted Strategies Help to Pharmacist
Authors: Komal Fizza
Abstract:
All around the world in every field professionals are taking great support from their computers. Computer assisted strategies not only increase the efficiency of the professionals but also in case of healthcare they help in life-saving interventions. The background of this current research is aimed towards two things; first to find out if computer assisted strategies are useful for Pharmacist for not and secondly how much these assist a Pharmacist to do quality interventions. Shifa International Hospital is a 500 bedded hospital, and it is running Antimicrobial Stewardship, during their stewardship rounds pharmacists observed that a lot of wrong doses of antibiotics were coming at times those were being overlooked by the other pharmacist even. So, with the help of MIS team the patients were categorized into adult and peads depending upon their age. Minimum and maximum dose of every single antibiotic present in the pharmacy that could be dispensed to the patient was developed. These were linked to the order entry window. So whenever pharmacist would type any order and the dose would be below or above the therapeutic limit this would give an alert to the pharmacist. Whenever this message pop-up this was recorded at the back end along with the antibiotic name, pharmacist ID, date, and time. From 14th of January 2015 and till 14th of March 2015 the software stopped different users 350 times. Out of this 300 were found to be major errors which if reached to the patient could have harmed them to the greater extent. While 50 were due to typing errors and minor deviations. The pilot study showed that computer assisted strategies can be of great help to the pharmacist. They can improve the efficacy and quality of interventions.Keywords: antibiotics, computer assisted strategies, pharmacist, stewardship
Procedia PDF Downloads 4903960 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach
Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf
Abstract:
Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.Keywords: classification, defect, surface, detection, hole
Procedia PDF Downloads 153959 One Plus One is More than Two: Why Nurse Recruiters Need to Use Various Multivariate Techniques to Understand the Limitations of the Concept of Emotional Intelligence
Authors: Austyn Snowden
Abstract:
Aim: To examine the construct validity of the Trait Emotional Intelligence Questionnaire Short form. Background: Emotional intelligence involves the identification and regulation of our own emotions and the emotions of others. It is therefore a potentially useful construct in the investigation of recruitment and retention in nursing and many questionnaires have been constructed to measure it. Design: Secondary analysis of existing dataset of responses to TEIQue-SF using concurrent application of Rasch analysis and confirmatory factor analysis. Method: First year undergraduate nursing and computing students completed Trait Emotional Intelligence Questionnaire-Short Form. Responses were analysed by synthesising results of Rasch analysis and confirmatory factor analysis.Keywords: emotional intelligence, rasch analysis, factor analysis, nurse recruiters
Procedia PDF Downloads 4663958 Classification of EEG Signals Based on Dynamic Connectivity Analysis
Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović
Abstract:
In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients
Procedia PDF Downloads 2143957 Accuracy Analysis of the American Society of Anesthesiologists Classification Using ChatGPT
Authors: Jae Ni Jang, Young Uk Kim
Abstract:
Background: Chat Generative Pre-training Transformer-3 (ChatGPT; San Francisco, California, Open Artificial Intelligence) is an artificial intelligence chatbot based on a large language model designed to generate human-like text. As the usage of ChatGPT is increasing among less knowledgeable patients, medical students, and anesthesia and pain medicine residents or trainees, we aimed to evaluate the accuracy of ChatGPT-3 responses to questions about the American Society of Anesthesiologists (ASA) classification based on patients’ underlying diseases and assess the quality of the generated responses. Methods: A total of 47 questions were submitted to ChatGPT using textual prompts. The questions were designed for ChatGPT-3 to provide answers regarding ASA classification in response to common underlying diseases frequently observed in adult patients. In addition, we created 18 questions regarding the ASA classification for pediatric patients and pregnant women. The accuracy of ChatGPT’s responses was evaluated by cross-referencing with Miller’s Anesthesia, Morgan & Mikhail’s Clinical Anesthesiology, and the American Society of Anesthesiologists’ ASA Physical Status Classification System (2020). Results: Out of the 47 questions pertaining to adults, ChatGPT -3 provided correct answers for only 23, resulting in an accuracy rate of 48.9%. Furthermore, the responses provided by ChatGPT-3 regarding children and pregnant women were mostly inaccurate, as indicated by a 28% accuracy rate (5 out of 18). Conclusions: ChatGPT provided correct responses to questions relevant to the daily clinical routine of anesthesiologists in approximately half of the cases, while the remaining responses contained errors. Therefore, caution is advised when using ChatGPT to retrieve anesthesia-related information. Although ChatGPT may not yet be suitable for clinical settings, we anticipate significant improvements in ChatGPT and other large language models in the near future. Regular assessments of ChatGPT's ASA classification accuracy are essential due to the evolving nature of ChatGPT as an artificial intelligence entity. This is especially important because ChatGPT has a clinically unacceptable rate of error and hallucination, particularly in pediatric patients and pregnant women. The methodology established in this study may be used to continue evaluating ChatGPT.Keywords: American Society of Anesthesiologists, artificial intelligence, Chat Generative Pre-training Transformer-3, ChatGPT
Procedia PDF Downloads 473956 Reducing the Incidence Rate of Pressure Sore in a Medical Center in Taiwan
Authors: Chang Yu Chuan
Abstract:
Background and Aim: Pressure sore is not only the consequence of any gradual damage of the skin leading to tissue defects but also an important indicator of clinical care. If hospitalized patients develop pressure sores without proper care, it would result in delayed healing, wound infection, increase patient physical pain, prolonged hospital stay and even death, which would have a negative impact on the quality of care and also increase nursing manpower and medical costs. This project is aimed at decreasing the incidence of pressure sore in one ward of internal medicine. Our data showed 53 cases (0.61%) of pressure sore in 2015, which exceeded the average (0.5%) of Taiwan Clinical Performance Indicator (TCPI) for medical centers. The purpose of this project is to reduce the incidence rate of pressure sore in the ward. After data collection and analysis from January to December 2016, the reasons of developing pressure sore were found: 1. Lack of knowledge to prevent pressure among nursing staffs; 2. No relevant courses about preventing pressure ulcers and pressure wound care being held in this unit; 3. Low complete rate of pressure sore care education that family members should receive from nursing staffs; 4. Decompression equipment is not enough; 5. Lack of standard procedures for body-turning and positioning care. After team members brainstorming, several strategies were proposed, including holding in-service education, pressure sore care seed training, purchasing decompression mattress and memory pillows, designing more elements of health education tools, such as health education pamphlet, posters and multimedia films of body-turning and positioning demonstration, formulation and promotion of standard operating procedures. In this way, nursing staffs can understand the body-turning and positioning guidelines for pressure sore prevention and enhance the quality of care. After the implementation of this project, the pressure sore density significantly decreased from 0.61%(53 cases) to 0.45%(28 cases) in this ward. The project shows good results and good example for nurses working at the ward and helps to enhance quality of care.Keywords: body-turning and positioning, incidence density, nursing, pressure sore
Procedia PDF Downloads 2673955 A Public Health Perspective on Deradicalisation: Re-Conceptualising Deradicalisation Approaches
Authors: Erin Lawlor
Abstract:
In 2008 Time magazine named terrorist rehabilitation as one of the best ideas of the year. The term deradicalisation has become synonymous with rehabilitation within security discourse. The allure for a “quick fix” when managing terrorist populations (particularly within prisons) has led to a focus on prescriptive programmes where there is a distinct lack of exploration into the drivers for a person to disengage or deradicalise from violence. It has been argued that to tackle a snowballing issue that interventions have moved too quickly for both theory development and methodological structure. This overly quick acceptance of a term that lacks rigorous testing, measuring, and monitoring means that there is distinct lack of evidence base for deradicalisation being a genuine process/phenomenon, leading to academics retrospectively attempting to design frameworks and interventions around a concept that is not truly understood. The UK Home Office has openly acknowledged the lack of empirical data on this subject. This lack of evidence has a direct impact on policy and intervention development. Extremism and deradicalisation are issues that affect public health outcomes on a global scale, to the point that terrorism has now been added to the list of causes of trauma, both in the direct form of being victim of an attack but also the indirect context of witnesses, children and ordinary citizens who live in daily fear. This study critiques current deradicalisation discourses to establish whether public health approaches offer opportunities for development. The research begins by exploring the theoretical constructs of both what deradicalisation, and public health issues are. Questioning: What does deradicalisation involve? Is there an evidential base on which deradicalisation theory has established itself? What theory are public health interventions devised from? What does success look like in both fields? From establishing this base, current deradicalisation practices will then be explored through examples of work already being carried out. Critiques can be broken into discussion points of: Language, the difficulties with conducting empirical studies and the issues around outcome measurements that deradicalisation interventions face. This study argues that a public health approach towards deradicalisation offers the opportunity to attempt to bring clarity to the definitions of radicalisation, identify what could be modified through intervention and offer insights into the evaluation of interventions. As opposed to simply focusing on an element of deradicalisation and analysing that in isolation, a public health approach allows for what the literature has pointed out is missing, a comprehensive analysis of current interventions and information on creating efficacy monitoring systems. Interventions, policies, guidance, and practices in both the UK and Australia will be compared and contrasted, due to the joint nature of this research between Sheffield Hallam University and La Trobe, Melbourne.Keywords: radicalisation, deradicalisation, violent extremism, public health
Procedia PDF Downloads 663954 Improving Compliance in Prescribing Regular Medications for Surgical Patients: A Quality Improvement Project in the Surgical Assessment Unit
Authors: Abdullah Tahir
Abstract:
The omission of regular medications in surgical patients poses a significant challenge in healthcare settings and is associated with increased morbidity during hospital stays. Human factors such as high workload, poor communication, and emotional stress are known to contribute to these omissions, particularly evident in the surgical assessment unit (SAU) due to its high patient burden and long wait times. This study aimed to quantify and address the issue by implementing targeted interventions to enhance compliance in prescribing regular medications for surgical patients at Stoke Mandeville Hospital, United Kingdom. Data were collected on 14 spontaneous days between April and May 2023, and the frequency of prescription omissions was recorded using a tally chart. Subsequently, informative posters were introduced in the SAU, and presentations were given to the surgical team to emphasize the importance of compliance in this area. The interventions were assessed using a second data collection cycle, again over 14 spontaneous days in May 2023. Results demonstrated an improvement from 40% (60 out of 150) to 74% (93 out of 126) of patients having regular medications prescribed at the point of clerking. These findings highlight the efficacy of frequent prompts and awareness-raising interventions in increasing workforce compliance and addressing the issue of prescription omissions in the SAU.Keywords: prescription omissions, quality improvement, regular medication, surgical assessment unit
Procedia PDF Downloads 773953 The Impact on the Composition of Survey Refusals΄ Demographic Profile When Implementing Different Classifications
Authors: Eva Tsouparopoulou, Maria Symeonaki
Abstract:
The internationally documented declining survey response rates of the last two decades are mainly attributed to refusals. In fieldwork, a refusal may be obtained not only from the respondent himself/herself, but from other sources on the respondent’s behalf, such as other household members, apartment building residents or administrator(s), and neighborhood residents. In this paper, we investigate how the composition of the demographic profile of survey refusals changes when different classifications are implemented and the classification issues arising from that. The analysis is based on the 2002-2018 European Social Survey (ESS) datasets for Belgium, Germany, and United Kingdom. For these three countries, the size of selected sample units coded as a type of refusal for all nine under investigation rounds was large enough to meet the purposes of the analysis. The results indicate the existence of four different possible classifications that can be implemented and the significance of choosing the one that strengthens the contrasts of the different types of respondents' demographic profiles. Since the foundation of social quantitative research lies in the triptych of definition, classification, and measurement, this study aims to identify the multiplicity of the definition of survey refusals as a methodological tool for the continually growing research on non-response.Keywords: non-response, refusals, European social survey, classification
Procedia PDF Downloads 853952 Impact of Clinical Pharmacist Intervention in Improving Drug Related Problems in Patients with Chronic Kidney Disease
Authors: Aneena Suresh, C. S. Sidharth
Abstract:
Drug related problems (DRPs) are common in chronic kidney disease (CKD) patients and end stage patients undergoing hemodialysis. To treat the co-morbid conditions of the patients, more complex therapeutic regimen is required, and it leads to development of DRPs. So, this calls for frequent monitoring of the patients. Due to the busy work schedules, physicians are unable to deliver optimal care to these patients. Addition of a clinical pharmacist in the team will improve the standard of care offered to CKD patients by minimizing DRPs. In India, the role of clinical pharmacists in the improving the health outcomes in CKD patients is poorly recognized. Therefore, this study is conducted to put an insight on the role of clinical pharmacist in improving Drug Related Problems in patients with chronic kidney disease, thereby helping them to achieve desired therapeutic outcomes in the patients. A prospective interventional study was conducted for a year in a 620 bedded tertiary care hospital in India. Data was collected using an unstructured questionnaire, medication charts, etc. DRPs were categorized using Hepler and Strand classification. Relationships between the age, weight, GFR, average no of medication taken, average no of comorbidities, and average length of hospital days with the DRPs were identified using Mann Whitney U test. The study population primarily constituted of patients above the age of 50 years with a mean age of 59.91±13.59. Our study showed that 25% of the population presented with DRPs. On an average, CKD patients are prescribed at least 8 medications for the treatment in our study. This explains the high incidence of drug interactions in patients suffering from CKD (45.65%). The least common DRPs in our study were found to be sub therapeutic dose (2%) and adverse drug reactions (2%). Out of this, 60 % of the DRPs were addressed successfully. In our study, there is an association between the DRPs with the average number of medications prescribed, the average number of comorbidities, and the length of the hospital days with p value of 0.022, 0.004, and 0.000, respectively. In the current study, 86% of the proposed interventions were accepted, and 41 % were implemented by the physician, and only 14% were rejected. Hence, it is evident that clinical pharmacist interventions will contribute significantly to diminish the DRPs in CKD patients, thereby decreasing the economic burden of healthcare costs and improving patient’s quality of life.Keywords: chronic kidney disease, clinical pharmacist, drug related problem, intervention
Procedia PDF Downloads 1283951 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks
Procedia PDF Downloads 3313950 Population Dynamics and Land Use/Land Cover Change on the Chilalo-Galama Mountain Range, Ethiopia
Authors: Yusuf Jundi Sado
Abstract:
Changes in land use are mostly credited to human actions that result in negative impacts on biodiversity and ecosystem functions. This study aims to analyze the dynamics of land use and land cover changes for sustainable natural resources planning and management. Chilalo-Galama Mountain Range, Ethiopia. This study used Thematic Mapper 05 (TM) for 1986, 2001 and Landsat 8 (OLI) data 2017. Additionally, data from the Central Statistics Agency on human population growth were analyzed. Semi-Automatic classification plugin (SCP) in QGIS 3.2.3 software was used for image classification. Global positioning system, field observations and focus group discussions were used for ground verification. Land Use Land Cover (LU/LC) change analysis was using maximum likelihood supervised classification and changes were calculated for the 1986–2001 and the 2001–2017 and 1986-2017 periods. The results show that agricultural land increased from 27.85% (1986) to 44.43% and 51.32% in 2001 and 2017, respectively with the overall accuracies of 92% (1986), 90.36% (2001), and 88% (2017). On the other hand, forests decreased from 8.51% (1986) to 7.64 (2001) and 4.46% (2017), and grassland decreased from 37.47% (1986) to 15.22%, and 15.01% in 2001 and 2017, respectively. It indicates for the years 1986–2017 the largest area cover gain of agricultural land was obtained from grassland. The matrix also shows that shrubland gained land from agricultural land, afro-alpine, and forest land. Population dynamics is found to be one of the major driving forces for the LU/LU changes in the study area.Keywords: Landsat, LU/LC change, Semi-Automatic classification plugin, population dynamics, Ethiopia
Procedia PDF Downloads 853949 Presentation of International Military Intervention Correlates (IMIC) Database
Authors: Daniil Chernov
Abstract:
In the modern world, the number of conventional interstate wars is declining while the number of military interventions is rising. States no longer initiate conflicts by declaring war but actively intervene in existing military confrontations, often using a comparable number of coercive means. According to existing scholarly understanding, the decision to use force in international relations (in any form) is influenced by roughly the same set of factors: the dynamics of domestic political processes, national interests, international law, and ethical considerations. In the database on armed intervention to be presented in the report, the multifactor model of decision-making is developed. The database describes more than 200 different parameters for armed interventions between 1992 and 2022. The report will present the structure of the database, descriptive statistics, and its key advantages over other sources.Keywords: conflict resolution, international relations, military intervention, database
Procedia PDF Downloads 343948 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer
Authors: Ravinder Bahl, Jamini Sharma
Abstract:
The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning
Procedia PDF Downloads 3603947 Adolescent-Parent Relationship as the Most Important Factor in Preventing Mood Disorders in Adolescents: An Application of Artificial Intelligence to Social Studies
Authors: Elżbieta Turska
Abstract:
Introduction: One of the most difficult times in a person’s life is adolescence. The experiences in this period may shape the future life of this person to a large extent. This is the reason why many young people experience sadness, dejection, hopelessness, sense of worthlessness, as well as losing interest in various activities and social relationships, all of which are often classified as mood disorders. As many as 15-40% adolescents experience depressed moods and for most of them they resolve and are not carried into adulthood. However, (5-6%) of those affected by mood disorders develop the depressive syndrome and as many as (1-3%) develop full-blown clinical depression. Materials: A large questionnaire was given to 2508 students, aged 13–16 years old, and one of its parts was the Burns checklist, i.e. the standard test for identifying depressed mood. The questionnaire asked about many aspects of the student’s life, it included a total of 53 questions, most of which had subquestions. It is important to note that the data suffered from many problems, the most important of which were missing data and collinearity. Aim: In order to identify the correlates of mood disorders we built predictive models which were then trained and validated. Our aim was not to be able to predict which students suffer from mood disorders but rather to explore the factors influencing mood disorders. Methods: The problems with data described above practically excluded using all classical statistical methods. For this reason, we attempted to use the following Artificial Intelligence (AI) methods: classification trees with surrogate variables, random forests and xgboost. All analyses were carried out with the use of the mlr package for the R programming language. Resuts: The predictive model built by classification trees algorithm outperformed the other algorithms by a large margin. As a result, we were able to rank the variables (questions and subquestions from the questionnaire) from the most to least influential as far as protection against mood disorder is concerned. Thirteen out of twenty most important variables reflect the relationships with parents. This seems to be a really significant result both from the cognitive point of view and also from the practical point of view, i.e. as far as interventions to correct mood disorders are concerned.Keywords: mood disorders, adolescents, family, artificial intelligence
Procedia PDF Downloads 1013946 Activating Psychological Resources of DUI (Drivers under the Influence of Alcohol) Using the Traffic Psychology Intervention (IFT Course), Germany
Authors: Parichehr Sharifi, Konrad Reschke, Hans-Liudger Dienel
Abstract:
Psychological intervention generally targets changes in attitudes and behavior. Working with DUIs is part of traffic psychologists’ work. The primary goal of this field is to reduce the probability of re-conspicuous of the delinquent driver. One of these measurements in Germany is IFT courses for DUI s. The IFT course was designed by the Institute for Therapy Research. Participants are drivers who have fallen several times or once with a blood alcohol concentration of 1.6 per mill and who have completed a medical-psychological assessment (MPU) with the result of the course recommendation. The course covers four sessions of 3.5 hours each (1 hour / 60 m) and in a period of 3 to 4 weeks in the group discussion. This work analyzes interventions for the rehabilitation of DUI (Drunk Drivers offenders) offenders in groups under the aspect of activating psychological resources. From the aspect of sustainability, they should also have long-term consequences for the maintenance of unproblematic driving behavior in terms of the activation of resources. It is also addressing a selected consistency-theory-based intervention effect, activating psychological resources. So far, this has only been considered in the psychotherapeutic field but never in the field of traffic psychology. The methodology of this survey is one qualitative and three quantitative. In four sub-studies, it will be examined which measurements can determine the resources and how traffic psychological interventions can strengthen resources. The results of the studies have the following implications for traffic psychology research and practice: (1) In the field of traffic psychology intervention for the restoration of driving fitness, it can be stated that aspects of resource activation in this work have been investigated for the first time by qualitative and quantitative methods. (2) The resource activation could be confirmed based on the determined results as an effective factor of traffic psychological intervention. (3) Two sub-studies show a range of resources and resource activation options that must be given greater emphasis in traffic psychology interventions: - Social resource activation - improvement of the life skills of participants - Reactivation of existing social support options - Re-experiencing self-esteem, self-assurance, and acceptance of traffic-related behaviors. (4) In revising the IFT-§70 course, as well as other courses on recreating aptitude for DUI, new traffic-specific resource-enabling interventions against alcohol abuse should be developed to further enhance the courses through motivational, cognitive, and behavioral effects of resource activation, Resource-activating interventions can not only be integrated into behavioral group interventions but can also be applied in psychodynamic, psychodynamic (individual psychological) and other contexts of individual traffic psychology. The results are indicative but clearly show that personal resources can be strengthened through traffic psychology interventions. In the research, practice, training, and further education of traffic psychology, the aspect of primary resource activation (Grawe, 1999), therefore, always deserves the greatest attention for the rehabilitation of DUIs and Traffic safety.Keywords: traffic safety, psychological resources, activating of resources, intervention programs for alcohol offenders, empowerment
Procedia PDF Downloads 773945 Perception of Nursing Students’ Engagement With Emergency Remote Learning During COVID 19 Pandemic
Authors: Jansirani Natarajan, Mickael Antoinne Joseph
Abstract:
The COVID-19 pandemic has interrupted face-to-face education and forced universities into an emergency remote teaching curriculum over a short duration. This abrupt transition in the Spring 2020 semester left both faculty and students without proper preparation for continuing higher education in an online environment. Online learning took place in different formats, including fully synchronous, fully asynchronous, and blended in our university through the e-learning platform MOODLE. Studies have shown that students’ engagement, is a critical factor for optimal online teaching. Very few studies have assessed online engagement with ERT during the COVID-19 pandemic. Purpose: Therefore, this study, sought to understand how the sudden transition to emergency remote teaching impacted nursing students’ engagement with online courses in a Middle Eastern public university. Method: A cross-sectional descriptive research design was adopted in this study. Data were collected through a self-reported online survey using Dixon’s online students’ engagement questionnaire from a sample of 177 nursing students after the ERT learning semester. Results The maximum possible engagement score was 95, and the maximum scores in the domains of skills engagement, emotional engagement, participation engagement, and performance engagement were 30, 25, 30, and 10 respectively. Dixson (2010) noted that a mean item score of ≥3.5 (total score of ≥66.5) represents a highly engaged student. The majority of the participants were females (71.8%) and 84.2% were regular BSN students. Most of them (32.2%) were second-year students and 52% had a CGPA between 2 and 3. Most participants (56.5%) had low engagement scores with ERT learning during the COVID lockdown. Among the four engagement domains, 78% had low engagement scores for the participation domain. There was no significant association found between the engagement and the demographic characteristics of the participants. Conclusion The findings supported the importance of engaging students in all four categories skill, emotional, performance, and participation. Based on the results, training sessions were organized for faculty on various strategies for engaging nursing students in all domains by using the facilities available in the MOODLE (online e-learning platform). It added value as a dashboard of information regarding ERT for the administrators and nurse educators to introduce numerous active learning strategies to improve the quality of teaching and learning of nursing students in the University.Keywords: engagement, perception, emergency remote learning, COVID-19
Procedia PDF Downloads 633944 Effect of Facilitation in a Problem-Based Environment on the Metacognition, Motivation and Self-Directed Learning in Nursing: A Quasi-Experimental Study among Nurse Students in Tanzania
Authors: Walter M. Millanzi, Stephen M. Kibusi
Abstract:
Background: Currently, there has been a progressive shortage not only to the number but also the quality of medical practitioners for the most of nursing. Despite that, those who are present exhibit unethical and illegal practices, under standard care and malpractices. The concern is raised in the ways they are prepared, or there might be something missing in nursing curricula or how it is delivered. There is a need for transforming or testing new teaching modalities to enhance competent health workforces. Objective: to investigate the Effect of Facilitation in a Problem-based Environment (FPBE) on metacognition, self-directed learning and learning motivation to undergraduate nurse student in Tanzanian higher learning institutions. Methods: quasi-experimental study (quantitative research approach). A purposive sampling technique was employed to select institutions and achieving a sample size of 401 participants (interventional = 134 and control = 267). Self-administered semi-structured questionnaire; was the main data collection methods and the Statistical Package for Service Solution (v. 20) software program was used for data entry, data analysis, and presentations. Results: The pre-post test results between groups indicated noticeably significant change on metacognition in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05). SDL in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05. Motivation to learn in an intervention (M = 62.67, SD = 14.14) and the control (n = 267, M = 57.75), t (399) = 2.907, p < 0.01). A FPBE teaching pedagogy, was observed to be effective on the metacognition (AOR = 1.603, p < 0.05), SDL (OR = 1.729, p < 0.05) and Intrinsic motivation in learning (AOR = 1.720, p < 0.05) against conventional teaching pedagogy. Needless, was less likely to enhance Extrinsic motivation (AOR = 0.676, p > 0.05) and Amotivation (AOR = 0.538, p > 0.05). Conclusion and recommendation: FPBE teaching pedagogy, can improve student’s metacognition, self-directed learning and intrinsic motivation to learn among nurse students. Nursing curricula developers should incorporate it to produce 21st century competent and qualified nurses.Keywords: facilitation, metacognition, motivation, self-directed
Procedia PDF Downloads 188